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e importance of pairwise protein structural comparison in biomedical research is fueling the search for algorithms capable of
�nding more accurate structural match of two input proteins in a timely manner. In recent years, we have witnessed rapid advances
in the development ofmethods for approximate and optimal solutions to the protein structurematching problem. Albeit slow, these
methods can be extremely useful in assessing the accuracy of more efficient, heuristic algorithms. We utilize a recently developed
approximation algorithm for protein structure matching to demonstrate that a deep search of the protein superposition space leads
to increased alignment accuracy with respect to many well-established measures of alignment quality. e results of our study
suggest that a large and important part of the protein superposition space remains unexplored by current techniques for protein
structure alignment.

1. Introduction

Pairwise protein structure alignment is one of the most
important problems in computational molecular biology.
At the same time, protein structure alignment is a very
difficult problem, due to an in�nite number of possible
ways to position a pair of proteins in the three-dimensional
space. Because of the enormous size of the search space,
the research into protein structure alignment has been
traditionally focused on the development of methods with
better objective functions, that explore a relatively small but
representative set of proteins’ spatial superpositions.

In this paper, we take a different approach and study
the bene�ts of searching proteins’ superpositions in a more
detailed manner. We demonstrate signi�cant increase in the
alignment accuracy of several well-known distance-based
alignment methods, obtained by utilizing the superpositions
that rigorously optimize a very simple and intuitive alignment
metric, de�ned as the largest number of residues from the
input proteins that can be �t under a prede�ned distance
cutoff.

e size of gap between the accuracy of current heuristic
solutions and optimal solutions, observed in this study,
suggests that the protein structure alignment problem will
likely remain a hot topic in years to come.

2. Materials andMethods

Our study is carried out using two protein structure align-
ment benchmarks: Sisyphus and FSSP. In both benchmarks,
an in-house algorithm, MaxPairs [1], is applied to compute
the superpositions that closely approximate the measure
𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶, which is de�ned as the largest number of pairs
of residues from the input proteins that can be �t under 𝑑𝑑
Ångströms. MaxPairs algorithm is based on the approxima-
tion algorithm EPSILON-OPTIMAL [1], which is capable
of �nding a superposition of the input proteins that �ts at
least as many pairs of residues under the distance 𝑑𝑑 𝑑 𝑑𝑑 as
an optimal superposition �ts under the distance 𝑑𝑑, for any
accuracy threshold 𝜀𝜀 𝜀 𝜀. As an approximation algorithm,
EPSILON-OPTIMAL suffers from high computational com-
plexity. e algorithm’s run time is a high degree polynomial
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in the lengths of the structures being compared. To cir-
cumvent high computational cost, the present study utilizes
MaxPairs—a heuristic version of EPSILON-OPTIMAL that
searches through a relatively small subset of the space of all
superpositions of the input proteins inspected by EPSILON-
OPTIMAL. While still not practical, as demonstrated in [1],
MaxPairs enjoys accuracy superior to that of some widely
utilized alignment programs and, as such, this algorithm is an
indispensable tool for assessing the precision ofmore efficient
and more popular algorithms. In present study, we set the
distance cutoff to𝑑𝑑 𝑑 𝑑Åand the accuracy threshold to 𝜀𝜀 𝜀 𝜀.
Going below 𝜀𝜀 𝜀 𝜀 proves to be computationally prohibitive
with our computing infrastructure.

We evaluated the performance of threewell-knownmeth-
ods for protein structure comparison, STRUCTAL [2–4],
TM-align [5], and LOCK2 [6, 7], before and aer replacing
their original superpositions with superpositions that opti-
mize 𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶.

It is important to emphasize that our experiment is not
designed to compare these three methods head-to-head, but
rather to assess the extent of improvements in the accuracy of
each method that can be made by exploring the search space
in a more thorough manner.

In choosing the methods for our study, we only consid-
ered the availability of soware and the simplicity of imple-
menting the alignment scoring functions (see the Results
section). An overview of the three algorithms is given below.

STRUCTAL. e STRUCTAL algorithm [2–4] employs itera-
tive dynamic programming to balance the cRMS score with
the lengths of aligned regions. In each iteration, the algo-
rithm computes an optimal residue-residue correspondence
(alignment) of the input proteins 𝑎𝑎 𝑎 𝑎𝑎𝑎1,… , 𝑎𝑎𝑚𝑚) and 𝑏𝑏 𝑏
(𝑏𝑏1,… , 𝑏𝑏𝑛𝑛) and then �nds a superposition that minimizes
cRMS of the aligned subchains (𝑎𝑎𝑖𝑖1 ,… , 𝑎𝑎𝑖𝑖𝑘𝑘 ) and (𝑏𝑏𝑖𝑖1 ,… , 𝑏𝑏𝑖𝑖𝑘𝑘 ).
e cRMS score is given by

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 󵀎󵀎
1
𝑘𝑘
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󶙲󶙲𝑎𝑎𝑖𝑖𝑟𝑟 − 𝑏𝑏𝑖𝑖𝑟𝑟󶙲󶙲

2
. (1)

e alignment step in STRUCTAL is carried out using
a dynamic programming routine, which implements the
following recurrence formula:
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where
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20

1 + 󶀢󶀢𝑑𝑑𝑖𝑖𝑖𝑖𝑖
2/5󶀲󶀲
, 𝑑𝑑𝑖𝑖𝑖𝑖𝑖 = 󶙲󶙲𝑎𝑎𝑖𝑖 − 𝑏𝑏𝑗𝑗󶙲󶙲 . (3)

e outputs of STRUCTAL are the subchains 𝑝𝑝 of 𝑎𝑎 and 𝑞𝑞 of
𝑏𝑏, along with the rigidly transformed protein 𝑏𝑏, denoted by

𝑏̂𝑏, and a residue-residue correspondence that maximizes the
STRUCTAL score
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where𝐺𝐺𝑝𝑝𝑝𝑝𝑝 denotes the total number of gaps in the alignment.
e STRUCTAL program used in our analysis was down-
loaded from http://csb.stanford.edu/levitt/Structal/.

TM-align. TM-align is another popular protein structure
alignment program,widely used inmany applications, in par-
ticular for assessing the quality of protein models generated
by comparative modeling or abinitio techniques. e score
matrix in TM-align is protein-length speci�c and is de�ned
as

𝑆𝑆 󶀡󶀡𝑖𝑖𝑖 𝑖𝑖󶀱󶀱 =
1

1 + 󶀢󶀢𝑑𝑑𝑖𝑖𝑖𝑖𝑖/𝑑𝑑0󶀲󶀲
2 , (5)

where 𝑑𝑑0 =1 .24
3√𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿   𝐿, and 𝐿𝐿 is the length of

the shorter structure [5]. In contrast to linear gap penal-
ties employed by STRUCTAL, the gap penalties in TM-
align are affine and are set to 0.6 for gap-opening and 0.0
for gap-extension [5]. An improved version of the algo-
rithm, called Fr-TM-align, has been published [8]. e TM-
align soware, used in this study, was downloaded from
http://zhanglab.ccmb.med.umich.edu/TM-align/.

LOCK2. LOCK2 [6] is an improved version of the original
LOCK program [7]. It incorporates secondary structure
information into the alignment process. An initial super-
position is obtained by comparing the vectors of secondary
structure elements. An iterative procedure is then applied
to minimize RMSD between aligned subchains of the input
proteins, using the threshold distance of 3Å for atomic
superposition. Rigid body motions for RMSD minimization
are realized using quaternion transformations [9, 10].

e alignment returned by LOCK2 is a sequence of pairs
of points

󶀢󶀢𝑎𝑎𝑖𝑖1 , 𝑏𝑏𝑖𝑖1󶀲󶀲 ,… , 󶀢󶀢𝑎𝑎𝑖𝑖𝑘𝑘 , 𝑏𝑏𝑖𝑖𝑘𝑘󶀲󶀲 , 𝑖𝑖1 < ⋯ < 𝑖𝑖𝑘𝑘, (6)

where 𝑎𝑎𝑖𝑖𝑟𝑟 are 𝑏𝑏𝑖𝑖𝑟𝑟 each other’s nearest neighbors. More specif-
ically, for every 𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟  𝑟, the point 𝑏𝑏𝑖𝑖𝑟𝑟 is the closest point
in protein 𝑏𝑏 to the point 𝑎𝑎𝑖𝑖𝑟𝑟 and vice versa.e �nal alignment
is generated through a two-step process. First, for every atom
𝑎𝑎𝑖𝑖 from protein 𝑎𝑎, the algorithm �nds the nearest atom from
protein 𝑏𝑏 that is at distance ≤3Å from 𝑎𝑎𝑖𝑖. In the second step,
the algorithm selects the maximum number of aligned pairs
in sequential order, by removing pairs that violate colinearity.

e LOCK2 soware can be downloaded from
http://lock2.stanford.edu.

3. Results

3.1. Sisyphus Benchmark. e Sisyphus test [11] is frequently
used to assess the accuracy of automated methods for
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F 1: e procedure for creating methods’ speci�c alignments
and alignments based on MaxPairs superpositions.

protein structure comparison [1, 12]. is sophisticated
benchmark utilizes 125 alignments of structurally related
proteins, created by experts in the �eld of protein structure
analysis. e reference alignments can be downloaded from
http://sisyphus.mrc-cpe.cam.ac.uk.

In present study, we (like Rocha et al. [12]) utilize only
a subset of the Sisyphus test set, containing 106 alignments
between single-chain proteins. e two-step process is illus-
trated in Figure 1. In the �rst step, STRUCTAL, TM-align,
and LOCK2 are run with default parameters to generate
the methods’ speci�c alignments between proteins from
the Sisyphus set. ese alignments are then compared to
the reference (“gold-standard”) alignments to compute the
percentage of correctly aligned residue pairs [1, 12].

In the second step, the MaxPairs algorithm is run to
compute the set of (near-)optimal superpositions, namely,
the superpositions that rigorously maximize the number of
pairs of atoms that can be �t under 3�. �e used our own
implementations of the STRUCTAL, TM-align, and LOCK2
alignment procedures to compute optimal residue-residue
correspondence (alignment) between the newly superim-
posed proteins. e percentage agreement with reference
alignments is recorded again and compared to the agreement
obtained in the �rst step.

e agreement with reference alignments in the Sisyphus
test is de�ned as a function of themagnitude of the alignment
error. More speci�cally, for the alignment tolerance shi 𝑠𝑠,
the agreement is de�ned as 𝐼𝐼𝑠𝑠/𝐿𝐿ref, where 𝐼𝐼𝑠𝑠 is the number of
aligned residues that are shied by no more than 𝑠𝑠 positions
in the reference alignment and 𝐿𝐿ref is the length of the
reference alignment [12]. e perfect agreement is the one
that corresponds to zero-shi (𝑠𝑠 𝑠 𝑠𝑠.

e dashed lines in Figures 2, 3, and 4 track the per-
formance of original STRUCTAL, TM-align, and LOCK2
methods. e solid lines show the performance of the same
methods when run on the superpositions that maximize
the number of residues under 3�. As seen in these �gures,
there is a signi�cant boost in the methods’ accuracy resulting
from the “�ne-tooth comb” search of superposition space.
More precisely, the new superpositions improve absolute
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F 3: e agreement of TM-align alignments and reference
alignments in the Sisyphus benchmark.

agreement with the reference alignments for STRUCTAL,
TM-align, and LOCK2 by 11%, 5%, and 5%, respectively, with
a similar trend continuing for nonzero shi.

e increase in number of correctly aligned residues,
obtained by switching to MaxPairs superpositions, varies
from one pair of structures to another (Figures 5, 6, and
7). For some pairs, the difference is striking. However, it
should be emphasized that, in some of these cases, such a
high difference might be due to unavailability of information
in P�B �les used by the methods in our study. For instance,
the LOCK method is built to take advantage of the residues’
secondary structure assignment. Hence, it is reasonable to
assume that the lack of secondary structure information in
the P�B �le for one or both structures will oen decrease the
accuracy of the LOCK alignment of those structures.
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F 5: e increase in accuracy of STRUCTAL obtained on 106
pairs from the Sisyphus benchmark.

A more detailed analysis shows that, when MaxPairs
superpositions are used, the number of residue pairs correctly
aligned by STRUCTAL increases by more than 10 for 31 out
of 106 test pairs. e corresponding number of test pairs for
which the same magnitude of increase is observed for TM-
align and LOCK is 14 and 13, respectively. For comparison,
original STRUCTAL superpositions have such an advantage
only in 3 out of 106 test pairs. For TM-align and LOCK, the
corresponding numbers are 5 and 4.

evalue added by the deep search of superposition space
makes some of the methods analyzed here comparable to
the best to date methods evaluated in the Sisyphus test. A
slight accuracy advantage of algorithms such as Matt [13],
PPM [14], and ProtDeform [12] is due to the fact that
these methods consider proteins as �exible, rather than rigid
objects. In other words, unlike STRUCTAL, TM-align, and
LOCK2, which all utilize single transformations of input
proteins to compute �nal alignments, the new generation of
protein structure alignment methods consider sequences of
different rigid transformations at different sites. It should be
emphasized that the methods based on sequences of local
transformations can themselves bene�t from incorporating
the ��ne-tooth comb� search to detect fragments of local
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0

20

40

60

80

100

−20

−40 106 protein pairs

LOCK2

A
d

d
it

io
n

al
 c

o
rr

ec
t 

p
ai

rs

F 7:e increase in accuracy of LOCK2 obtained on 106 pairs
from the Sisyphus benchmark.

similarity. is would lead to further improvements in their
overall accuracy, but the true extent of these improvements
can only be accessed through a carefully designed study.

3.2. FSSP Benchmark. Our second benchmarking set utilizes
183 representative pairs of proteins, related at various levels
according to FSSP structural classi�cation [15]. is test set
consists of 55 family pairs, 68 superfamily pairs, and 60-
fold pairs (see Supplementary Material available online at
doi:10.1155/2012/459248).

In contrast to Sisyphus benchmark, which compares
alignments returned by automated methods to those gener-
ated by human experts, the alignment precision in the FSSP
benchmark is assessed using a set of well-known alignment
quality measures:

(i) NumPairs(d) represents the number of aligned pairs
of residues in two proteins that are at distance ≤ 𝑑𝑑
Ångströms from each other. We note that, unlike
𝐶𝐶𝐶𝐶 𝐶𝐶𝐶 , which is a globally optimal metric, repre-
senting the maximum number of pairs of residues in
the superimposed structures that can be placed under
𝑑𝑑 Ångströms, NumPairs(d) represents the method
speci�c count of pairs of aligned residues at distance
≤ 𝑑𝑑.

(ii) Similarity Index, denoted by SI, is de�ned as 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐
min{𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, where𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is the number of
aligned residues in proteins 𝑎𝑎 and 𝑏𝑏 and 𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐿𝐿𝐿𝐿𝐿𝐿
are the lengths of 𝑎𝑎 and 𝑏𝑏, respectively [16].e cRMS
score, used in the formula for SI, is computed based
upon the method speci�c alignments.



BioMed Research International 5

(61)

(57)
(56)

(55)

0.5

0.6

0.7

0.8

MaxPairs TM-align STRUCTAL LOCK2

Overall

(45)

(40)
(38)

(37)

0.5

0.6

0.7

0.8

MaxPairs TM-align STRUCTAL LOCK2

Fold

(58)

(55)
(54)

(52)

0.5

0.6

0.7

0.8

MaxPairs TM-align STRUCTAL LOCK2

Superfamily (82)

(78)
(78) (77)

0.5

0.6

0.7

0.8

MaxPairs TM-align STRUCTAL LOCK2

Family

F 8: Alignment independent PSI scores in the FSSP benchmark. e number in parentheses is the highest number of pairs of residues
(averaged over each test set) that can be placed under 3Å, given the superpositions generated by each method.

T 1: Average (per-pair) accuracy of STRUCTAL, TM-align, and
LOCK2 in the FSSP benchmark, for all structural levels combined.
e best results are indicated in bold.

NumPairs(3) PSI(3) SI
STRUCTAL

Original 50.47 0.59 7.85
Near-optimal 53.81 0.63 7.37

TM-align
Original 53.35 0.62 5.86
Near-optimal 55.85 0.65 5.95

LOCK2
Original 51.75 0.60 8.35
Near-optimal 58.46 0.68 5.69

(iii) e Percentage of Structural Similarity, PSI(d), is
de�ned as NumPairs(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (see, for
example, [8]).

As seen in Table 1, a more detailed search of the super-
position space increases both NumPairs and PSI scores for
all three methods in our study. e increase in SI scores is
also seen for both STRUCTAL and LOCK2. It is interesting to
note, though, that the original TM-align superpositions yeald
better SI scores than the optimal superpositions.

T 2: Average accuracy of the three methods in our study,
computed on 60 pairs of proteins that share the same FSSP fold.

NumPairs(3) PSI(3) SI
STRUCTAL

Original 31.48 0.47 10.07
Near-optimal 36.68 0.54 9.63

TM-align
Original 35.98 0.52 7.60
Near-optimal 39.58 0.57 7.76

LOCK2
Original 34.82 0.50 12.56
Near-optimal 42.47 0.61 7.25

e FSSP level-speci�c results of our benchmarking
analysis are summarized in Tables 2, 3, and 4.

Figure 8 shows the alignment independent PSI scores
computed from superpositions generated by STRUCTAL,
TM-align, and LOCK2. For reference, a near-optimal PSI
score, averaged across the FSSP test set and computed by the
MaxPairs algorithm, is also provided in this �gure.

e data used in Figure 8 shows that (on average)
STRUCTAL, TM-align, and LOCK fail to place 8%, 7%,
and 11% pairs of residues at distance ≤ 3Å, respectively.
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T 3: Average accuracy computed on the set of 68 pairs of
proteins that belong to the same FSSP superfamily.

NumPairs(3) PSI(3) SI
STRUCTAL

Original 47.71 0.58 8.41
Near-optimal 50.09 0.61 7.61

TM-align
Original 51.40 0.62 6.11
Near-optimal 52.71 0.64 6.10

LOCK2
Original 48.63 0.59 8.17
Near-optimal 55.37 0.67 5.85

T 4: Average accuracy computed on the set of 55 pairs of
structures from the same FSSP family.

NumPairs(3) PSI(3) SI
STRUCTAL

Original 74.6 0.74 4.76
Near-optimal 77.11 0.76 4.62

TM-align
Original 74.71 0.73 3.65
Near-optimal 77.49 0.76 3.79

LOCK2
Original 74.09 0.73 3.98
Near-optimal 79.73 0.78 3.80

As expected, the best performance of these methods is
observed at the FSSP family level (STRUCTAL fails to place
5%, TM-align: 5%, LOCK: 6%) and worst at FSSP fold level
(STRUCTAL: 15%, TM-align: 12%, LOCK: 17%).

3.3. Illustrative Examples. Several examples illustrating the
advantage of the deep search of superposition space are given
in Figures 9, 10, 11, 12, and 13.

While examples in Figures 9–13 are striking, it should
be noted that they represent rather isolated cases. In fact
(as the reader can conclude from Figures 5, 6, and 7),
there are several examples where the output of heuristic
methods compares favorably to that of MaxPairs (although
the difference in quality is not as obvious as that shown in
Figures 9–13). As emphasized before, in many instances, the
inaccuracy of the alignment generated by heuristic methods
is due to insufficient structural information stored in the PDB
�le, relied upon these methods.

4. Discussion

Resent years have witnessed advances in the development
of methods for approximate and exact solution to protein
structure alignment problem.One of the �rst suchmethods is
the Umeyama�s algorithm for �nding the transformation that
gives the leastmean squared error between two point patterns
[17]. Since then, several algorithms have been published

(a) (b)

F 9: Structural alignment of two cystatin-like folds: delta-5-
3-ketosteroid isomerase from pseudomonas putida, PDB ID: 1opy
(black) and chicken egg white cystatin, PDB ID: 1cewI (gray),
obtained by (a) a heuristic method and (b) MaxPairs. For simplicity
of presentation, we hide the parts of two structures that are not
well superimposed by either program. In this particular test case,
switching to MaxPairs superpositions yields a twofold increase in
the number of pairs of residues that can be �t under 3Å (59 versus
29). e corresponding percentage increase for the distance cutoff
of 5Å is 76% (65 versus 37 pairs).

(a) (b)

F 10: Structural superposition of the urease from Bacillus
pasteurii, PDB ID: 1ubpA (black) and the dynein light chain 1 from
human, PDB ID: 1cmiA (gray), obtained by (a) a heuristic method
and (b) MaxPairs (we hide misaligned C-terminal regions from
both structures). In this test case, a subtle change in structural
superposition, made by MaxPairs, increases the number of pairs of
residues that can be �t under 3Å from 9 to 36 (and from 16 to 42
when the cutoff distance of 5Å is used).

for �nding a near-optimal solution to the structure align-
ment problem under distance constraints. e procedure by
Akutsu, for example, returns a superposition of the input
proteins that �ts at least as many pairs of residues under the
distance 𝑐𝑐 𝑐 𝑐𝑐 as an optimal alignment �ts under the distance
𝑑𝑑, for every �xed 𝑐𝑐 𝑐 𝑐 [18].is algorithm runs on the order
of 𝑂𝑂𝑂𝑂𝑂8), where 𝑛𝑛 denotes the protein length. An improved
running time procedure for the same problem has also been
published [19]. e EPSILON-OPTIMAL algorithm, used in
present study, is able to place at least as many pairs of residues
under the distance 𝑑𝑑 𝑑 𝑑𝑑 as an optimal superposition places
under the distance 𝑑𝑑. e asymptotic cost of EPSILON-
OPTIMAL is 𝑂𝑂𝑂𝑂𝑂4) for globular and 𝑂𝑂𝑂𝑂𝑂8) for nonglobular
proteins [1].
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(a) (b)

F 11: Structural superposition of HiPIP (high-potential iron
protein) from Chromatium vinosum, PDB ID: 1ckuA (black) and
HiPIP isolated from the phototrophic bacterium Rhodocyclus
tenuis, PDB ID: 1isuA (gray), obtained by (a) a heuristic method
and (b) MaxPairs. is is another example illustrating an obvious
difference in quality of two structural matches.

(a) (b)

F 12: Structural superposition of two helical regions in the
elongation factor TS, PDB ID: 1tfeA (black) and the ribosomal
protein S7, PDB ID: 1rssA (gray), obtained by (a) a heuristic method
and (b) MaxPairs. Regions not aligned well by the two programs are
hidden for simplicity of presentation. When run on superpositions
generated by MaxPairs, the same heuristic method aligns 22 more
residues under the distance 3Å (29 versus 7).

e polynomial time approximation schemes (PTASs)
have been designed for selected nonsequential protein struc-
ture alignment measures [20] as well as for the class of
measures satisfying the so-called Lipschitz condition [21].
Moreover, methods exist that rigorously minimize proteins’
intra-atomic distances, including the algorithm by Caprara
et al., which is capable of approximating the “Contact Map
Overlap” (CMO) measure with great accuracy [22]. Finally,
the algorithms for absolute optimum, with respect to selected
alignment metrics, have also been published [1, 23], but they
are computationally too expensive for everyday use.

Although inefficient for large scale analysis, the algo-
rithms for exact solution are indispensable tools for assessing
the accuracy of more commonly used heuristic methods.e
present study utilizes a set of precomputed superpositions
to evaluate the improvements in accuracy of three well-
known protein structure alignment algorithms, obtained by
the deep search of the superposition space. In the Sisyphus
benchmark, these superpositions increase the accuracy of
alignments generated by STRUCTAL, TM-align, and LOCK2

(a) (b)

F 13: Structural superposition of the DNA-binding domain of
PHO4, PDB ID: 1a0aA (black) and the basic/helix-loop-helix/leucine
zipper domain of the upstream stimulatory factor, PDB ID: 1an4A
(gray), obtained by (a) a heuristic method and (b) MaxPairs. Unlike
the heuristic method, MaxPair is capable of aligning both helical
regions from these two proteins.

by 11%, 7%, and 6%, respectively. An improvement of similar
magnitude is seen aer allowing for alignment errors (residue
shis). In the FSSP benchmark, the new superpositions
increase NumPairs and PSI scores for STRUCTAL, TM-
align, and LOCK2 by ∼7%, ∼5%, and ∼13%, respectively. A
particularly noticeable improvement is seen in the Similarity
Index scores of alignments generated by LOCK2 (from 8.35
to 5.69).

We emphasize that our analysis provides an estimate
of the lower bound on the difference between optimal and
heuristic solution, since alignments generated by MaxPairs
are not always optimal (in the strict sense).

Finally, it is reasonable to expect that a more thorough
exploration of the superposition space, coupled with the
fragment-based alignment techniques, can be used to further
improve the precision of methods based on sequences of
local transformations, such as Matt [13], PPM [14], and
ProtDeform [12].

5. Conclusions

A typical distance-based protein structure alignmentmethod
explores the space of proteins’ spatial superpositions, com-
puting an optimal residue-residue correspondence (align-
ment) each time a new superposition is generated. Because of
the large search space, current methods for protein structure
alignment must trade precision for speed and explore only a
small but representative set of superpositions.

Weutilize an algorithmcapable of �nding an alignment of
any speci�ed accuracy to demonstrate signi�cant increase in
the alignment quality of solutions generated by three popular
protein structure alignment methods, obtained through the
deep search of the superposition space.e large lower bound
on the size of gap between optimal and heuristic solutions,
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observed in this study, suggests that the protein structure
alignment problem will likely remain an attractive research
area throughout the next decade.
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