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Aging is considered to be an important risk factor for several inflammatory diseases. B
cells play a major role in chronic inflammatory diseases by antibody secretion, antigen
presentation and T cell regulation. Different B cell subsets have been implicated in
infections and multiple autoimmune diseases. Since aging decreases B cell numbers,
affects B cell subsets and impairs antibody responses, the aged B cell is expected to have
major impacts on the development and progression of these diseases. In this review, we
summarize the role of B cells in health and disease settings, such as atherosclerotic
disease. Furthermore, we provide an overview of age-related changes in B cell
development and function with respect to their impact in chronic inflammatory diseases.

Keywords: B cells, aging, inflammaging, immunosenescence, autoimmune diseases, atherosclerosis
INTRODUCTION

Aging has a major impact on the composition and function of the immune system, thereby
drastically increasing the risk for inflammatory diseases (1). Not surprisingly, the ongoing
demographic shift towards an older population results in an increased incidence of infections,
autoimmune diseases and fatal cardiovascular events (2), underlining the importance to
enhance our understanding of the age-associated changes in the immune system, which are
termed immunosenescence.

During aging, hematopoietic stem cells (HSCs) in the bone marrow show reduced self-renewal
and differentiate preferentially towards the myeloid cell subsets (3). As a result, the production of
neutrophils and monocytes is increased, whereas the generation of B and T lymphocytes is
drastically declined. In addition to alterations in the number of immune cells, aging hallmarks,
including genomic instability, telomere shortening, epigenetic dysregulation and cellular
senescence, contribute to the malfunctioning of the innate and adaptive immune system (4).
Abbreviations: APC, antigen presenting cell; ApoE, apolipoprotein E; ATLO, artery tertiary lymphoid organ; BAFF, B cell
activating factor; BAFFR, B cell activating factor receptor; BCR, B cell receptor; BREG, regulatory B cell; BM, bone marrow;
CASIN, Cdc42 activity specific inhibitor; CSR, class-switch recombination; CVD, cardiovascular disease; CVID, common
variable immunodeficiency; DC, dendritic cell; FO, follicular; GC, germinal center; GM-CSF, granulocyte macrophage-colony
stimulating factor; HSC, hematopoietic stem cell; IRA, innate response activator; MHC, major histocompatibility complex;
MZ, marginal zone; oxLDL, oxidized low-density lipoprotein; pre-B cells, precursor B cells; pro-B cells, progenitor B cells; RA,
rheumatoid arthritis; scATAC seq, single-cell assay for transposase-accessible chromatin sequencing; scRNAseq, single-cell
RNA sequencing; SIGLEC-G, sialic acid-binding immunoglobulin-like lectin G; SLE, systemic lupus erythematosus; TD,
T cell-dependent; TFH, follicular helper T cell; TH, T helper; TI, T cell-independent; TLR, toll-like receptor; TREG, regulatory
T cell; VAT, visceral adipose tissue; APC, antigen presenting cell; BM, bone marrow; TH, T helper.
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Several studies showed that the innate immune response in aged
mice is prolonged due to the decreased phagocytic ability by
neutrophils and macrophages (5, 6). Moreover, aged dendritic
cells (DCs) showed an increased secretion of the pro-
inflammatory cytokines IL-6 and TNF-a (7). Aging is also
associated with crucial changes in the adaptive immune
response. Aged T cells displayed reduced proliferative capacity
and an increased production of pro-inflammatory cytokines (8,
9), thereby contributing to a chronic state of low-grade
inflammation, called ‘inflammaging’. The age-related defects in
CD4+ T cell helper function also impaired B cell responses (10).
Moreover, aging is associated with intrinsic B cell defects, such as
reduced antibody production and decreased affinity maturation
in antibody responses resulting in an increased risk for infections
(11). In light of the current pandemic, this also contributes to the
high infection rate and poor prognosis of COVID-19 in the aged
population (12). Dysfunctional B cell responses in the elderly,
including increased autoantibody production, are also associated
with an increased risk for autoimmune diseases and other
chronic inflammatory diseases, such as atherosclerosis (13).
Taken together, B cells play a major role in these diseases via
antibody secretion, antigen presentation and T cell regulation.
This review aims to provide an overview of the effects of aging on
the functions of B cells in health and disease settings.
B CELL DEVELOPMENT

B cells are antigen-presenting cells (APCs) that are generated
from multipotent HSCs (14–16). In the bone marrow, HSCs
differentiate into B lymphocyte progenitors, which further
differentiate into progenitor B cells (pro-B cells), precursor B
cells (pre-B cells) and immature B cells (17). These
developmental stages can be distinguished by the expression of
different markers on the cell surface (Table 1). During this
process, each B cell clone develops a unique B cell receptor
(BCR) with a specific epitope-binding site via sequential
immunoglobulin gene recombination of variable, diversity and
joining genes (32). The generated heavy and light chain
polypeptides, which consist of constant and variable regions,
form the mature BCR (33). Together with B cell-specific
membrane proteins, including CD19, BCRs form signaling
complexes that activate the NF-kB, PI3K and MAPK pathways
(34). These pathways, in turn, stimulate cell survival and induce
the migration of transitional immature B cells to the spleen for
their final stages of maturation (35). Subsequently, mature B cells
migrate to the peritoneal cavity or lymphoid follicles of
secondary lymphoid organs, where they can encounter foreign
antigens. Upon binding of an antigen to the BCR, in combination
with innate and costimulatory signals, B cells can function as
APCs and differentiate into antibody-secreting plasma cells (36,
37). Under infectious conditions, antigen-specific B cells present
peptides via major histocompatibility complex (MHC) II to
naive CD4+ T cells, resulting in CD4+ T cell activation and
follicular helper T cell (TFH) differentiation (38). Moreover,
multiple studies investigating the APC function of B cells
showed that B cell-derived cytokines contribute to T cell
Frontiers in Immunology | www.frontiersin.org 2
profile skewing, such as T helper (TH) 1 or TH2 (39, 40). Most
B cells, however, are activated via T cell-independent (TI) or T
cell-dependent (TD) mechanisms (41). During T cell-
independent (TI) B cell activation, antigens with repetitive
epitopes, such as polysaccharides, bind to the BCR, resulting in
BCR crosslinking (42). Together with costimulation from toll-
like receptors (TLRs), this leads to the development of short-
lived plasma cells. In contrast, T cell-dependent B cell activation
results in long-lived plasma cell differentiation and memory B
cell formation (43). This type of activation requires antigen
presentation to and costimulation from TH2 or TFH cells. In
turn, B cell-derived plasma cells secrete immunoglobulins with
heavy and light chains similar to the BCR in order to mark or
neutralize the foreign antigen (44). Depending on the type of
activated B cell, these antibodies can be of the IgA, IgD, IgE, IgG
or IgM isotype (45).

B-1 Development
In the early stages of B cell development, two distinct lineages arise
from different precursor cells (46). The B-1 lineage, which was
originally studied inmice where it develops into the B-1a and B-1b
subsets, is predominant in neonates and is characterized by the
expression of CD43 (18, 26). Although the exact mechanisms of B-
1 development are not fully understood, the absence of nucleotides
at the junctions of V and J segments in their BCR (47), which are
inserted in other B cell subsets by the postnatal enzyme terminal
deoxynucleotidyl transferase (48), suggests that B-1 cells are
originally derived from fetal liver progenitor cells. Some studies
indicated that B-1 progenitors develop prior to the existence of
HSCs from pre-HSCs or fetal multipotent progenitor cells (49, 50).
However, it has also been shown that fetal HSCs are responsible
for B-1 development and that fetal lymphopoiesis can be restored
in adult HSCs with Lin28b overexpression (51), suggesting that B-
1 cells are generated in different waves. B-1 cells mainly reside in
the peritoneal cavity where they can elicit antibody-producing and
antigen-presenting functions (52). B-1a cells, that in contrast to B-
1b cells also express the T cell surface glycoprotein CD5 (19), are
responsible for most naturally occurring IgA and IgM antibodies,
which are produced in the absence of antigen stimulation (53).
Upon infection, B-1a cells can also respond to TI antigens and
produce pathogen-specific antibodies (54). B-1b cells, however,
have a broader antigen repertoire which allows them to produce
bacteria-specific IgM in response to TI antigens and generate TI
memory (55). In addition to antibody production, B-1 cells can
activate CD4+ T cells through antigen presentation (56).
Contradictive results are shown regarding the predominance of
B cells in CD4+ T cell activation, and thus the exact role of B cells
in antigen presentation is not fully understood (38, 57, 58). It has
been previously reported that B-1a cells present antigens to both
peritoneal and peripheral CD4+ T cells (59). In the peritoneal
cavity, B-1a cells stimulate the activation of IL-10-, IL-4- and
IFN-g- producing T cells, whereas splenic B-1a cells induce TH17
differentiation (60). Splenic and serosal B-1a cells can also
transform into granulocyte macrophage-colony stimulating
factor- (GM-CSF) producing innate response activator (IRA) B
cells (61). In addition to GM-CSF, which stimulates
extramedullary hematopoiesis and DC activation during chronic
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inflammation (62), IRA B cells secrete IgM and IL-3, which in turn
promotes monocyte and neutrophil production (63).

B-2 Development
B-2 cells comprise most of the adult B cell population in peripheral
tissues. In contrast to the B-1 subset, mature B-2 development and
survival is dependent on the B cell activating factor (BAFF) –
BAFF receptor (BAFFR) signaling pathway (64). Expression of the
pro-survival receptor BAFFR starts when transitional B-2 cells
undergo their final maturation stages in the spleen (65). BAFF is
expressed by various cell subsets as monocytes, macrophages,
DCs, stromal cells and T cells (66). Disruption of BAFF-BAFFR
signaling results in dramatically decreased B-2 cell numbers (67).
Frontiers in Immunology | www.frontiersin.org 3
B-2 cells can be further subdivided in marginal zone (MZ)
and follicular (FO) B cells (68). MZ B cells are formed upon
Notch-BRP-J signaling and are distinguished by very low CD23
and high CD21 expression (20, 21, 27). Upon recognition of a
pathogen, short-lived MZ-derived plasma cells secrete high
volumes of IgM. In addition, MZ B cells have the capacity to
phagocytose the invading pathogen and present antigens to naive
CD4+ T cells (69). Antigen presentation by MZ B cells induces
TH1 effector differentiation and might thus be important for the
generation and reactivation of memory CD4+ T cells (70). After
TD activation, FO B cells can ultimately differentiate into plasma
cells, which are long-lived and produce high amounts of
antibodies (71). However, the majority of FO B cells interact
TABLE 1 | Phenotype of distinct B cell subsets in mice and humans.

Species Organ B cell subset Markers Literature

Mouse BM B lymphocyte progenitor Ly6D+ IL-7Ra+ CD135+

CD3- CD4- CD8- Gr-1- CD11b- TER-119- CD117- Sca-1-
(15, 17)

B-1 progenitor CD19+ CD93+

CD3- CD4- CD8- Gr-1- CD11b- TER-119- B220low

B-2 progenitor B220+

CD3- CD4- CD8- Gr-1- CD11b- TER-119- CD19- CD93-

Pre-Pro B cell B220+ CD43+ CD93+ CXCR4+ CD135+ IL-7Ra+

CD3- CD4- CD8- Gr-1- CD11b- TER-119- CD19- CD24low CD117- IgM-

Pro-B cell B220+ CD19+ CD24+ CD43+ IL-7Ra+

CD3- CD4- CD8- Gr-1- CD11b- TER-119- CD117- IgM-

Pro-B cell B220+ CD19+ CD24+ IL-7Ra+

CD3- CD4- CD8- Gr-1- CD11b- TER-119- CD43- IgM-

Immature B cell B220+ CD19+ CD24+ CD93+ IgM+

CD23- CD43- IgD-

Peritoneal Cavity B-1a cell CD19high CD43+ CD1dmid CD5+

CD23-
(18, 19)

B-1b cell CD19high CD43+ CD1dmid

CD23- CD5-

Spleen T1 B cell B220+ CD19+ CD24+ CD93+ IgM+

CD43- IgDlow
(15, 17)

T2 B cell B220+ CD19+ CD24+ CD93+ IgM+ IgD+

CD43-

MZ B cell B220+ CD19mid CD21high CD1d+ IgMhigh

CD43- CD23- CD93- IgDlow
(20, 21)

FO B cell B220+ CD19mid CD23high CD1dmid IgDhigh CXCR5+

CD43- CD21low IgMlow

ABC CD19+ BAFFR+ CD11b+ CD11c+ (T-bet+) (22, 23)
Lymphoid Tissue + Peripheral Blood GC B cell B220+ CD19+ CD40+ MHCII+ (24)

BREG CD19+ CD1dhigh CD5+ (25)
Human BM B lymphocyte progenitor CD10+ CD34+ Pax5+ (16)

Pre-Pro B cell CD10+ CD34+ Pax5+ CD38+

CD117-

Pro-B cell CD10+ CD34+ Pax5+ CD38+ CD19+ CD20+ CD24+ CD93+ IL-3R+ IL-7Ra+

CD117-

Pre-B cell CD10+ Pax5+ CD38+ CD19+ CD20+ CD24+ CD93+ IL-3R+ IL-7Ra+ IL-4Ra+

CD117- CD34-

Immature B cell CD10+ CD38+ CD19+ CD20+ CD24+ CD93+ CD21+ CD40+ IL-4Ra+

CD117- CD27- IL-7Ra-

Peritoneal Cavity B-1 cell CD20+ CD27+ CD43+

CD38low
(26)

Spleen Transitional B cell CD38+ CD19+ CD20+ CD24+ CD93+ CD21+ CD23+ CD5+ TACI+

CD10- CD27-
(16)

MZ B cell CD19+ CD20+ CD21+ TACI+ CD1c+ CD27+ FCRL3+ (27)
FO B cell CD19+ CD20+ CD21+ TACI+ CD22+ CD23+ CXCR5+ MHCII+

CD10- CD27- CD38low CD24low

ABC CD19+ BAFFR+ CD11b+ CD11c+ (T-bet+) (28, 29)
Lymphoid Tissue + Peripheral Blood GC B cell CD38+ CD19+ CD20+ TACI+ CD27+ MHCII+ CD40+ CD83+ (30)

BREG CD19+ CD24high CD27+ (31)
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with antigen-specific TFH cells to become GC B cells (24), which
express high levels of the DNA-mutating enzyme activation-
induced cytidine deaminase (AID) (30). Under the influence of
CD40 ligand-mediated signals and cytokines, secreted by TFH

cells, AID becomes activated and induces class switch
recombination (CSR) (72). During CSR, the constant region of
the BCR is hypermutated and as a result, the antibody
production of the GC B cell is switched from IgM to IgG, IgA
or IgE isotypes (73).

Regulatory B Cells
There is evidence that some B cell subpopulations have the
capacity to differentiate into regulatory B cells (BREGS) under
pro- and anti-inflammatory environmental conditions (74).
Although the exact source of BREGS remains elusive, the
similarity of cell surface markers between BREGS and various B
cell subsets indicates a role for BCR signaling rather than the
existence of a specific BREG precursor (75). The development of
BREGS is antigen-specific and can be induced via innate and
adaptive mechanisms (76). In the adaptive pathway, BREGS

present antigens to CD4+ T cells and become activated
through CD40-CD40L and IL-21 signals (77), whereas in the
innate pathway, TLR2 and TLR9 signaling and IL-1b play
important roles (78). In addition, BREGS can be induced by the
anti-inflammatory cytokine IL-35 (79). BREGS can have different
phenotypes (Table 2) and provide tolerance via various IL-10-
dependent and IL-10-independent mechanisms (85) including
cell-cell contact and the secretion of IL-35 and TGF-b (86–88).
The IL-10-producing B10 subset expresses CD1d in mice and
CD24 in humans (25, 31). In both species, B10 cells suppress the
APC function of DCs and inhibit TH1 and TH17 differentiation.
A BREG subset that inhibits effector T cells and promotes TREG

differentiation through PD-L1 interaction was also identified in
both mice and humans (81). Murine TIM-1+ BREGS also secrete
IL-10 and mainly promote TH2 and TREG generation (80).
Moreover, Kaku et al. showed that some murine BREGS

mediate their immunosuppression via CD73 expression and
adenosine production (82). Interestingly, in humans, a
CD73low B cell subset was marked as CD4+ T cell-suppressing
BREG (84). Transitional B cells, B-1a and MZ B cells can also
suppress CD4+ and CD8+ T cell activation and are therefore
sometimes classified as BREGS. In addition, Lundy et al.
discovered that some B-1a cells exert their tolerogenic effects
via the expression of the apoptotic surface molecule FasL (83).
Frontiers in Immunology | www.frontiersin.org 4
Further studies are required to elucidate if distinct BREG

subpopulations are indeed derived from specialized
conventional B cell subsets or whether BREGS derive from
specific progenitor cells and differentiate into subsets after
encounter with an antigen.
AGING AND B CELL SUBSETS

Recent studies revealed that the production of precursor B cells
in the bone marrow is significantly decreased in aged mice and
humans (89–92). This reduction could be attributed to age-
related changes in the microenvironment of the bone marrow,
including diminished levels of the pro-B cell-survival cytokine
IL-7 and an enlarged bias of HSCs to produce myeloid cells
instead of lymphocytes (93, 94). Despite the comparable
reduction in precursor B cells in both mice and humans,
conflicting results regarding peripheral B cells have been
shown. In mice, the number of mature splenic B cells is
maintained due to an increase in autoreactive and age-
associated B cells (ABCs) (95). Although the ABC subset is
also detected in humans (96), the absolute number of B cells in
the periphery declines with age in humans (97). In the study of
Frasca et al., the number of peripheral naive B cells was
unaffected, whereas the absolute number of switch memory B
cells declined upon aging. Noteworthy, the characterization of
memory B cells in mice and humans is not identical. According
to Reynaud et al., recirculating MZ B cells in humans are defined
as long-lived IgM memory B cells in mice (98). Additionally,
Benitez et al. illustrated that the dynamics of peripheral B cell
production differs between humans and mice (99). In particular,
the splenic FO B cell compartment was larger in humans
compared to mice, which might explain the difference in
observed effects of aging on B cell numbers. Nevertheless, the
quality of aged peripheral B cells is reduced in both mice and
humans. Frasca et al. discovered that aging downregulates CSR
in human and murine peripheral B cells (97, 100), which might
explain why aged murine plasma cells mainly secrete IgM,
whereas young murine plasma cells mainly secrete IgG (101).
Antibodies generated in aged mice also showed decreased affinity
and thus provided less protection (102). Although these studies
mainly investigated IgG responses, aging affects all B cell
subsets (Table 3).
TABLE 2 | Phenotypes and functions of regulatory B cells.

Species BREG subset Markers Function Literature

Mouse B10 cells CD19+ CD5+ CD1d+ Induce TREGS and inhibit TH1 and TH17 differentiation (25)
TIM-1+ B cells CD19+ TIM-1+ Promote TH2 and TREG differentiation (80)
PD-L1+ B cells CD19+ PD-L1+ Promote TREG differentiation (81)
CD73+ B cells B220+ CD39+ CD73+ Inhibit effector T cells (82)
B-1a FasL+ cells CD19+ CD5+ FasL+ Mediate CD4+ T cell apoptosis (83)

Human B10 cells CD19+ CD24high CD27+ Induce TREGS and suppress TH1 and TH17 differentiation (31)
PD-L1+ B cells CD19+ PD-L1+ Suppress pro-inflammatory cytokine production and inhibit CD8+ T cell activation (81)
Br1 cells CD25high CD71high CD73low Inhibit CD4+ T cell proliferation (84)
October 2021 | Volume 12 | Arti
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Aging and B-1 Cells
As mentioned above, most B-1 cells are derived from fetal or
neonatal precursors and are maintained via self-replenishment
during the adult life (127). According to Alter-Wolf et al., the
number of B-1 progenitors in mice is unaffected upon aging and
Hinkley et al. even observed an increase in murine B-1 cells due
to clonal expansion (103, 104). In contrast, studies in young and
aged humans showed that the percentage of B-1 cells is decreased
in the elderly (105, 128), which could possibly be explained by
the low capacity of the adult human bone marrow to generate B-
1 cells compared to adult murine bone marrow. While the
Frontiers in Immunology | www.frontiersin.org 5
antibody-secreting capacity remained unaffected in humans,
the number of spontaneously IgM-secreting B-1 cells was
reduced most likely via downregulation of the transcription
factors XBP-1 and Blimp-1, both involved in the proliferation
and differentiation of plasma cells (129, 130), and upregulation of
the plasma cell-inhibiting transcription factor PAX-5 (131). In
addition to the decrease in IgM-secreting B-1 cells, the diversity
of IgM antibodies was reduced (103). In line with these
findings, Adler et al. illustrated that aging limited bacterial
protection by IgM secreted by B-1 cells (106). This could be
the effect of N-region nucleotide additions, which are found on
TABLE 3 | Effects of aging on B cell subsets.

B cell
subset

Model Effect of aging Literature

Total B
cells

Young (2-3 months) and old (>8 months) C57BL/6 and BALB/c mice Reduced numbers of B cell precursors (89, 91)
Human bone marrow specimens from 598 patients (2 months – 98 years) Decreased numbers of B cell precursors and changed

antibody expression
(92)

Human peripheral blood from 46 donors (18-86 years) and young (2-4 months) and
old (24-27 months) BALB/c mice

Impaired CSR (96, 97)

Human peripheral blood from 130 donors (21-99 years) Declined percentage of memory B cells, no effect on
total number of peripheral B cells

(97)

Young (2 months) and old (24 months) C57BL/6 mice Increased IgM production, decreased IgG production (101, 102)
B-1 cells Young (2-4 months) and old (21-26 months) BALB/c mice No effect on B-1 precursors (103)

C57BL/6 and C57BL/6 SCID mice (1-18 months) Increased number of peritoneal B-1b cells (104)
Human peripheral blood from 85 donors (20-103 years) Decreased percentage of CD5+ B cells (105)
Studies of vaccination against pneumococcal infections in elderly (65+) Reduced protection of antibodies secreted by B-1 cells

against bacteria
(106)

PBMCs from young (~ 41 years old) and old (~79 years old) individuals and young (5-
8 weeks) and old (18 – 22 months) C57BL/6 mice

Accumulation of 4-1BBL+ MHC-I+ CD86HI B cells (107, 108)

Young (2-3 months) and old (16-22 months) BALB/c and C57BL/6 mice Reduced B-2 antibody production to T-dependent
antigens

(109)

B-2 cells Young (2-3 months) and old (20-25 months) C57BL/6 mice Dysfunctional antibody production (110, 111)
Young (2-4 months) and old (21-26 months) BALB/c mice Reduced number of B-2 progenitors (112)
Young (3 months) and old (18 months) C57BL/6 mice Reduced number of FO B cells, increased sensitivity of

MZ B cells to BAFF
(113)

Young (2-4 months) and old (>20 months) B10.BR mice Impaired GC expansion and differentiation and reduced
CD4+ T cell helper function

(114)

Young (2-3 months) and old (20-21 months) BALB/c mice Impaired FO DC function, reduced GC formation and B-
2 antibody production

(115)

Human peripheral blood from 85 donors (20-103 years) Decreased numbers of naive and memory B-2 cells,
increased percentage of unswitched IgM memory cells

(105)

Human peripheral blood from 54 donors (20-45 and 70-86 years) Reduced percentage of classical switched memory B
cells

(116)

Young (3 months) and old (10 months) SAMP8 mice and young (2 months) and old
(17-18 months) BALB/c mice

Reduced number of MZ B cells and inhibited T-
independent antibody responses

(117, 118)

C57BL/6 mice (2-30 months) Impaired antigen capture and immunoglobulin production
of MZ B cells

(119)

ABCs Young (2-3 months) and old (>22 months) B10.D2 mice Increased amount of peripheral antigen-experienced B
cells

(95)

Young (2-5 months) and old (24-29 months) C57BL/6 mice ABC expansion and decreased number of IL-10
secreting FO B cells

(120)

C57BL/6 and C57BL/6 × BALB/c mice (3-22 months) Increased number of ABCs, probably due to exhausted
FO expansion

(121)

Young (3-4 months) and old (>20 months) C57BL/6 mice Depletion of ABCs in aged mice revived B cell
production

(122)

Young (1-3 months) and old (>24 months) C57BL/6 mice Accumulation of ABCs in female mice (28)
Human peripheral blood from 88 donors (20-55 and 75-102 years) Elevated percentage of double negative exhausted

memory cells
(123)

Young (2 months) and old (15 months) C57BL/6 mice Increased proportion of TH17 cells* (124)
AABs Young (3-4 months) and old (18-24 months) C57BL/6 mice Accumulation of AABs in the VAT of obese mice (125)

Young (3 months) and old (19-24 months) C57BL/6 mice AAB accumulation in the VAT of obese female mice (126)
October 2021 | Volume 12 | Arti
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immunoglobulins produced by aged B-1 cells (132). Together
these results suggest that B-1 cell functions in humans are
impaired upon aging. Although the number of B-1 cells was
not decreased in aged mice, recent research showed that aging
affected B-1a cells (107). Under the influence of aged myeloid
cells, B-1a cells in aged mice and humans were converted into
pro-inflammatory 4-1BBL expressing cells. These 4-1BBL+ B
cells were shown to activate anti-tumor granzyme B-secreting
CD8+ T cells via the MHC/TCR and 4-1BBL/4-1BB axes (108).
This finding implies that aging also affects murine B-1 cell
functionality. However, Lee-Chang et al. only studied the
effects of aging on neonatal B-1a cells. Since generation of the
B-1b subset seems to be more predominant in aged mice (104),
B-1b cells should be further investigated in an aged setting.

Aging and B-2 Cells
Since Hu et al. reported in 1993 that aging reduced the B-2 cell
antibody response to T cell-dependent antigens in mice, the
effects of aging on the B-2 subset are under broad investigation
(109). Initially, the loss of IgG and high affinity antibodies was
thought to be induced by dysfunctional aged DCs and T cells (10,
133). DCs and T cells of aged mice were shown to be defective in
the expression of B cell-activation markers, such as CD40L,
resulting in diminished numbers of GC B cells and impaired
isotype switching. Moreover, the number of regulatory T cells
(TREGS), which can directly suppress B cell functions, is increased
in aged mice (134, 135). Although contradicting results regarding
the age-related effects on the immunosuppressive activity of
TREGS has been shown, Sage et al. reported that the frequency
and function of follicular TREGS was increased in aged mice (136),
resulting in a defective antibody response. However, an adoptive
transfer with young T cells and aged B cells to immunodeficient
mice also resulted in low levels of high affinity antibodies,
implying intrinsic B cell defects (110). Consistent with this
finding, Frasca et al. concluded that isotype switching was
impaired in aged B-2 cells in both mice and humans due to a
reduction in E47 mRNA stability and AID transcription (111). In
addition to the reduced antibody affinity, the number of
progenitor cells is decreased in aged murine bone marrow
(112). Despite the maintenance of peripheral B-2 cell numbers
in mice, the amount and percentage of the FO B cell subset is
slightly declined upon aging (113). Together with the disrupted
follicle organization of aged T cells (114), this might explain the
reduction in GC numbers (115). The reduction in the FO B cell
subset might also be responsible for the decline in naive and
memory B-2 cell numbers in aged humans (105, 116). Apart
from the FO lineage, aging also affects the MZ B cell subset.
Although the exact effects of aging on MZ B cells remain unclear,
recent studies reported an age-associated increase in autoreactive
antibodies (137). Since previous research illustrated that
autoreactive MZ B cells might elude negative selection in the
presence of high levels of the pro-survival factor BAFF (138),
which is increased upon aging (139), Miller et al. speculated that
the increase in autoreactive antibodies is caused by BAFF
hypersensitivity of aged MZ B cells (113). However, Miller
et al. did not investigate MZ B cell numbers in aged mice. In
contrast to the hypothesis by Miller et al., both Cortegano and
Frontiers in Immunology | www.frontiersin.org 6
Birjandi et al. observed a reduction of MZ B cells in aged mice
(117, 118). The age-related disruption of the marginal zone due
to a decline in MZ macrophages may partially account for the
reduction in MZ B cells. Besides decreased MZ B cell numbers,
Turner et al. showed that antigen capture and antibody
production of aged MZ B cells was defective, resulting in a
diminished T cell-independent immune response (119).
Altogether, these studies suggest that aging impairs B-2 cell
functions in both humans and mice.

Age-Associated B Cells
The maintenance of B-2 cell numbers in aged mice could
possibly be explained by the accumulation of age-associated B
cells. In 24 to 30 months-old C57BL/6 mice, half of all splenic B
cells are considered to be ABCs, whereas the frequency of this
population is extremely low in young mice (120). These ABCs
are observed in both mice and humans and could be
distinguished from other B cell subsets by their expression
markers, including CD11b, CD11c and T-bet, and innate
activation stimuli, such as toll-like receptor TLR7 signals (22).
Although the exact cell surface markers are still under debate,
ABCs do not express CD43 and CD5 that are found on B-1 cells.
The ABC subset is also different from MZ and FO B cells, since
ABCs do not depend on BAFF signals (121). HoweverHao et al.
did show that FO B cells can transform into ABCs in both young
and aged mice, suggesting that ABCs are derived from B-2 cells
(121). This might also explain the reduction in the FO B cell pool
upon aging (113). When Knode et al. repeated this experiment in
aged mice, they concluded that ABCs arise from GC B cells
following T cell-dependent antigen activation (140), thereby
indicating ABCs as memory subset. In contrast, recent studies
have shown that ABCs mainly arise in an antigen-limited
environment and proposed that homeostatic expansion
stimulates ABC formation to balance B cell progenitor loss
(141–143). However, ABCs were reported to inhibit B cell
generation via the production of TNF, and their depletion
resulted in reactivated B lymphopoiesis (122, 144), suggesting
that the loss of B cell precursors is caused rather than balanced by
ABCs. Nonetheless, different subsets of ABCs have been
described, indicating that ABCs can be generated via different
developmental routes dependent on environmental factors, such
as age and antigen load. One of these subsets, comprising almost
two-thirds of all ABCs, is characterized by the expression of the
TH1 transcription factor T-bet (23, 28). In addition, a T-bet
negative subset, which is characterized by the expression of
CXCR5, has been reported (29). The expansion of the T-bet+

subset is dependent on innate stimuli, such as TLR7 and TLR9
ligands, in an IL-21 and IFN-g rich environment. Previous
research demonstrated that the transient expression of T-bet
by B cells stimulated IgG2a antibody isotype switching and a
correlation between ABCs and protective IgG2a was also
observed in virally infected mice (145, 146). In humans, an
increase in ABCs was associated with elevated levels of IgG1
(147). Notably, Colonna-Romano et al. discovered the expansion
of an ABC-like CD27- IgD- IgG+ memory B cell subset in the
periphery of aged individuals, clarifying the high numbers of IgG
observed in the elderly (123). Although T-bet expression was not
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shown for the latter double negative memory subset, Wang et al.
proposed that loss of T-bet is probably necessary for the
conversion of ABCs into plasma cells (148), suggesting that the
double negative memory B cell might be an intermediate state
from ABC to plasma cell. However, if and how plasma cells can
be derived from ABCs remains poorly understood. Nonetheless,
ABCs are speculated to secrete autoreactive antibodies,
explaining their abundance in autoimmune diseases (149).
Aside from immunoglobulin production, the antigen
presenting function of ABCs is intensively investigated.
Whereas Colonna-Romano et al. reported that the double
negative exhausted memory B cell is incapable of antigen
presentation, recent findings conclude that ABCs are efficient
APCs that skew TH17 differentiation, thereby possibly explaining
the increase in TH17 differentiation observed in aged mice and
humans (124, 150, 151). Upon activation, TH17 cells secrete the
pro-inflammatory cytokine IL-17, which plays important roles in
both protective immunity and autoimmunity by the induction of
neutrophil migration and activation (152), thereby contributing
to inflammaging. Moreover, ABCs promote inflammaging by the
production of IFN-g and TNF-a (144). Strikingly, ABCs were
also observed to secrete high levels of the anti-inflammatory
cytokine IL-10, suggesting an immunoregulatory function. Ratliff
et al., however, stated that this IL-10 was produced by an ABC-
inhibiting regulatory FO B cell subset (120). Although many
studies confirm the presence of an ABC subset in both mice and
humans, the expression markers defined in these studies differ
considerably. Some studies include CD11c and T-bet, whereas
others focus on CD21 and CD27 or the production of IgM and
IgG. These differences indicate heterogeneity in the ABC subset,
suggesting that further research should examine age-related
effects on distinct ABC subsets.

Adipose-Resident Aged B Cells
In the white visceral adipose tissue (VAT) of aged female obese
mice, Frasca et al. discovered the accumulation of an exhausted
memory B cell subset similar to ABCs (125). In addition, Frasca
et al. highlighted that FO B cells in a fatty environment rapidly
transform into this pro-adipogenic B cell subset, resulting in a
disrupted lipid metabolism. Comparable to splenic ABCs, this
subset, defined as adipose-resident age-related B cells (AABs),
expressed pro-inflammatory markers and was found to be more
abundant in aged female than in aged male mice (126). Since the
sex-related differences in ABC content are thought to be caused
by TLR7, which is located on the X-chromosome and has been
shown to escape X-chromosome silencing (153), the activation
mechanisms of AABs are thought to be similar to ABCs.
Although the direct effects of TLR7 signaling on AAB
accumulation are not investigated, Camell et al. concluded that
AAB expansion is dependent on the NLRP3 inflammasome
(126), which can be activated by TLR7 signaling (154).
Interestingly, upon NLRP3 deficiency, Camell et al. observed a
reduction in both VAT AABs as splenic ABCs, confirming
comparable activation routes for these subsets. In contrast,
AABs do not express T-bet and induce TH1 differentiation
rather than TH17 polarization (155, 156), indicating that AABs
are functionally different from ABCs. Altogether, these data
Frontiers in Immunology | www.frontiersin.org 7
illustrate that aging induces the expansion of ABCs in the
spleen and the accumulation of AABs in white VAT, resulting
in impaired antibody responses and disrupted lipolysis.

Aging and BREGS
As observed by Ratliff et al., aging reduced the number of an
IL-10-secreting regulatory FO B cell subset (120) and similar to
these findings a reduction in IL-10 levels upon aging was
reported recently (157). However, IL-10 is not exclusively
produced by BREGS and the effects of aging on BREGS are thus
far not examined. The general decrease in B cell precursors and
B-1 and B-2 subsets implies a subsequent reduction in BREGS.
Nevertheless, the immunosuppressive functions of TREGS were
observed to be increased (158), whereas naive T cell numbers
decreased upon aging (159). Since the differentiation of naive T
cells into TREGS can be stimulated by BREGS (160), the
immunosuppressive function of BREGS is possibly also
augmented upon aging. Contributing to this hypothesis, Dang
et al. showed that PD-L1 expression on B lymphocytes increased
with aging in healthy donors (161). However, these PD-L1-
expressing B cells were identified by CD19 only and not
specifically defined as BREGS. In contrast, increased
autoimmunity in the elderly might suggest an age-related loss
of tolerogenic BREGS (162). Since BREGS play an important role in
regulating inflammaging and balancing the pro-inflammatory
responses of ABCs, it is necessary to investigate the consequences
of aging on the number and functions of the BREG subset.
AGED B CELL HOMEOSTASIS IN DISEASE

The Aged B Cell in Infections
The age-associated changes in the immune system heavily
increase the risk for bacterial and viral infections in the elderly
(Figure 1) (163). In combination with the reduced responses to
vaccinations in the elderly, this increase results in high
hospitalization and mortality rates due to infectious diseases,
such as COVID-19, pneumonia and influenza (164, 165).
Although aging of the T cell repertoire and the associated TH1/
TH2 imbalance, with a reduced TFH and TH2 output in the
elderly (136, 166), contributes to the high frequency of influenza
infection (167), intrinsic defects in aged B cells substantially
impair the influenza-specific response. Firstly, the decreased
ability in CSR and somatic hypermutation of aged B cells
results in lower antibody titers against pathogens (168, 169).
The generated antibodies in the elderly are also less protective
due to their lower affinity and neutralization capacity (170).
Furthermore, a recent study investigating the effectiveness of
influenza vaccination at different ages observed an age-
dependent increase or decrease in DNA methylation at specific
CpG sites (171). These age-related epigenetic alterations could
often be linked to the low responsiveness of the subject to
influenza vaccination, indicating that epigenetic remodeling
upon aging negatively impacts the humoral response (172). In
addition, the percentage of ABCs in aged individuals negatively
correlates with the responsiveness to the influenza vaccine (173).
Frasca et al. reported that ABCs secrete pro-inflammatory
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cytokines, but do not produce antibodies against influenza
antigens in aged individuals (174). However, several studies
showed that influenza-specific ABCs differentiate into
protective antibody-producing cells in both mice and humans
(141, 175). Although the exact role of ABCs in infectious diseases
is still under debate, elevated percentages of CD21- CD11c+

ABCs were also detected in severe COVID-19 cases compared to
mild cases (176) and high levels of pro-inflammatory cytokines
were negatively associated with the risk for pneumonia (177).

B Cell Aging in Autoimmune Diseases
As described above in the section regarding ABCs, aging of the
B cell repertoire contributes to autoimmunity (Figure 1).
Autoreactive B cells are concluded to be responsible for the
production of autoantibodies, the presentation of autoantigens
and the secretion of pro-inflammatory cytokines (178). Upon
aging, the level of self-reactive antibodies is elevated, resulting in
the onset and development of autoimmune diseases (179). Since
ABCs were observed to secrete autoantibodies, recent studies
examined the association of this B cell subset with
autoimmunity. In several autoimmune diseases, such as
Frontiers in Immunology | www.frontiersin.org 8
common variable immunodeficiency (CVID) (180),
rheumatoid arthritis (RA) (181) and systemic lupus
erythematosus (SLE) (148), the number of ABCs was
significantly higher in both patients and autoimmune prone
mice compared to healthy controls. Remarkably, Rubtsov et al.
observed that the frequency of the ABC subset was significantly
higher in aged female RA patients compared to young female
patients and male patients of any age (28), suggesting that the
previously described sex differences in ABCs contribute to the
higher prevalence of autoimmune diseases in women relative to
men (182). Due to the young age of investigated male and female
SLE patients, peripheral ABCs in SLE were not detected by
Rubtsov et al. Nevertheless, recent studies discovered the
presence of ABCs, induced by TLR7 signaling, in lupus mice
and patients (29, 183). Duffy et al. already reviewed that
upregulated TLR7 signaling facilitated autoimmune responses
(184), however, the exact mechanisms leading to TLR activation
in autoimmune diseases remain unclear. Santiago-Raber et al.
speculated that autoantibodies promote the uptake of self-RNA
by DCs, resulting in the stimulation of TLR7 (185). Moreover,
antibodies against self-DNA can give rise to the formation of
FIGURE 1 | Age-related effects on B cells and the impact on disease prevalence. Aging is associated with reduced lymphoid output in the bone marrow and
intrinsic defects in B cells, including decreased CSR, SHM and antibody affinity. The increase in ABCs also results in increased pro-inflammatory cytokine secretion
and autoantibody reduction. Together, these age-related B cell changes contribute to the increased risk for infections and autoimmune diseases upon aging.
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immune complexes, which can subsequently activate TLR9,
leading to pro-inflammatory immune responses (186).
However, Nickerson et al. demonstrated that TLR9 can inhibit
TLR7 and ABC development (187), indicating a regulatory role
for the receptor. Nonetheless, the tolerance mechanism induced
by TLR9 fails in ABCs due to the pro-inflammatory signals
CD40L, IFN-g and IL-21, resulting in autoinflammatory B
cells (188).

B Cell Aging in Atherosclerosis
As B cells play an important role in the lipid-driven, chronic
inflammatory disease atherosclerosis (189), B cell aging is
expected to also impact atherosclerosis development.
Atherosclerosis, the main underlying cause of fatal
cardiovascular events, leads to the formation of plaque in
medium- to large-sized arteries (190). Rupture or erosion of an
atherosclerotic plaque causes myocardial infarction or stroke. A
hallmark step for the initiation of atherosclerosis is the retention
and subsequent oxidation of circulating low-density lipoproteins
(LDLs) in the subendothelial space of the arterial vessel wall.
Oxidation of LDL (oxLDL) results in the formation of oxidation-
specific epitopes (OSEs) (191, 192), which are recognized by the
immune system and thus trigger a series of inflammatory
responses starting with the recruitment of monocytes (193). In
the intima, these monocytes differentiate into macrophages that
phagocytose oxLDL. As a result of oxLDL uptake, macrophages
convert into foam cells, which further attract immune cells to the
lesion. Although these immune cells mainly include monocytes
and T cells, B cells are also recruited to the vessel wall of the
atherosclerotic plaque (194). B cells affect plaque formation by
regulating T cell responses and producing antibodies, such as
antibodies against OSEs (189). Palinski et al. reported that these
anti-OSE antibodies are able to block the uptake of oxidized LDL,
thereby suggesting an atheroprotective role for B cells (195). In
addition, Caligiuri et al. observed a decrease in atherosclerotic
lesion size upon transfer of splenic B cells to apolipoprotein E
(ApoE) deficient mice (196). Although these results indicate that
B cells are anti-atherogenic, several studies showed reduced
atherosclerosis after B cell depletion (197, 198). These
contradictory results can be attributed to differential effects
exerted by different B cell subsets during atherosclerosis
progression (199, 200).

B-1 cells confer an atheroprotective function by their anti-
oxLDL IgM production (201). In line with these findings, Gruber
et al. reported decreased atherosclerotic lesion size as a result of B
cell-specific depletion of sialic acid-binding immunoglobulin-like
lectin G (SIGLEC-G), which resulted in increased numbers of B-1
cells and elevated OSE-specific IgM plasma levels (202). Although
B-1a and B-1b cells show similar anti-atherogenic effects (203,
204), B-1a cells can give rise to pro-atherogenic IRA B cells (61).
IRA B cells secrete GM-CSF, which promotes TH1 skewing,
thereby aggravating atherosclerotic lesion formation (205).
Moreover, IRA B cells induce the expansion of infiltrating
monocytes and neutrophils and thus promote inflammation
(62, 206). In contrast to B-1 cells, Kyaw et al. observed
increased atherosclerotic lesions after an adoptive transfer of
5 × 106 B-2 B cells to B lymphocyte-deficient ApoE-/- mice
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(207). Moreover, B-2 depletion as a result of BAFFR deficiency
in ApoE-/- mice reduced atherosclerosis progression (208, 209).
Similar to these findings, inhibition of BAFFR with monoclonal
antibodies, which similar to BAFFR deficiency leads to increased
soluble BAFF levels, decreased atherosclerotic plaque formation
(210). Interestingly, it has been shown that an antibody-mediated
neutralization of BAFF in atherogenic diet-fed ApoE-/- and
LDLr-/- mice promoted atherosclerosis progression (211).
Similar to BAFFR inhibition, pro-atherogenic B-2 cell numbers
were also decreased upon BAFF neutralization, thereby
suggesting an anti-inflammatory role of BAFF independent of
BAFFR signaling and B cells in atherosclerosis. As mentioned
previously, B-2 cells are divided in FO B cells and MZ B cells. Tay
et al., reported that mature B cell-specific Blimp-1 deficiency
impaired plasma cell differentiation from FO B cells, resulting in
decreased IgG levels and reduced atherosclerosis development in
LDLr-/- mice (212). In line with these findings, Douna et al.
discovered that specific FO B cell inhibition by BTLA stimulation
resulted in significantly reduced atherosclerosis (213). In contrast
to FO B cells, MZ B cells exhibit atheroprotective properties by
suppressing the proatherogenic TFH response, thereby inhibiting
atherosclerosis development (214). Nevertheless, the exact
functions of the distinct B-2 subsets in atherosclerosis need to
be further investigated. Apart from B-1 and B-2 cells, BREGS have
been identified in atherosclerosis (215). BREGS exhibit anti-
atherogenic functions via various mechanisms, including
secretion of IL-10 and IL-35, inhibition of GC B cells, apoptosis
induction of effector T cells, and stimulation of the
atheroprotective molecule adenosine (82, 216–218).

Although studies investigating the effects of inflammaging on
cardiovascular disease (CVD) are scarce, the increased
prevalence of atherosclerosis upon aging suggests an important
role for age-related immune alterations in atherosclerosis.
Importantly, acute cardiovascular events mostly occur in the
elderly and thus treatment of CVD patients occurs in the context
of an aged immune system. Recent single-cell RNA sequencing
(scRNAseq) studies have shown that B cells are present in
atherosclerotic plaques of aged CVD patients (219–221) and
an increased understanding of the contributions of age-induced
B cell impairment to atherosclerosis progression is therefore
crucial for atherosclerosis immunotherapy. Similar to the human
atherosclerotic plaque, transcriptomic and single-cell analysis
revealed that B cells are present in high-fat diet-induced lesions
of young ApoE-/- and LDLr-/- mice (199, 222, 223). Although
these studies show that the number of lesional B cells is limited, B
cells have also been located in the perivascular adipose tissue
surrounding the atherosclerotic aorta (224). In addition, several
studies identified the presence of artery tertiary lymphoid organs
(ATLOs) in close proximity of the aortic lesions of aged (75-85
weeks) ApoE-/- mice (225, 226). ATLOs are lymphoid aggregates
that form in the adventitia which contain high numbers of B
cells, including B-1, GC and switched memory B cells (227).
However, these ATLOs have only been identified in ApoE-/- mice
and single cell RNA sequencing analysis has not been performed
on the atherosclerotic lesions of aged ApoE-/- or LDLr-/- mice to
profile local B cells. During atherosclerosis progression,
apoptotic and necrotic cells accumulate (228, 229) and
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enhance TLR7 and TLR9 ligands in the microenvironment.
Possibly, this could promote the development of age-associated
B cell subsets that contribute to atherosclerosis by the production
of autoreactive IgG2a antibodies and the secretion of cytokines,
such as IFN-g and IL-17. As aging studies in atherosclerosis are
limited, future research focusing on age-induced changes in B
cell numbers, subsets and function in atherosclerosis, as
indicated in Figure 2, will provide essential fundamental
knowledge regarding disease etiology and may lead to novel
targets to halt atherosclerosis progression.
FUTURE STRATEGIES TO TARGET THE
AGED B CELL IN CHRONIC
INFLAMMATORY DISEASE

Due to the demographic shift towards an older population and
the age-related increase in chronic inflammatory diseases, it has
Frontiers in Immunology | www.frontiersin.org 10
become a major public health priority to combat age-induced
maladaptive immunity. Since aging reduces the lymphoid output
of HSCs, HSC rejuvenation therapies, such as FOXOs and Cdc42
activity specific inhibitor (CASIN) (230), might be interesting
therapeutic strategies to restore the balance between the myeloid
and lymphoid pool. FOXOs are transcription factors which are
involved in longevity and aging by regulating cell survival and
growth (231). Specific deletion of FOXO1 and FOXO3a in HSCs
induced apoptosis (232, 233), suggesting that FOXO
overexpression might increase HSC survival. In addition to
FOXOs, high Cdc42 activity was associated with HSC aging
and treatment of aged HSCs with CASIN increased the common
lymphoid progenitor pool, restored B cell numbers and
elongated lifespan after transplant (234, 235). A more B cell-
specific targeting drug, rituximab, proved to be effective in
reducing RA and MS (236–238). Interestingly, Novikova et al.
showed that rituximab also reduced atherosclerosis development
in RA patients (239), indicating that B cell lymphopoiesis should
FIGURE 2 | Potential effects of aging on atherosclerosis development and future strategies for B cell-specific treatment against atherosclerosis. B cell aging leads to
reduced lymphoid output, reduced numbers of IgM-producing B cells and an increase in age-related B cell subsets, thereby resulting in both pro- and anti-
atherogenic effects. Further characterization of B cells in atherosclerosis via single-cell RNA sequencing, BCR sequencing and single-cell assay for transposase-
accessible chromatin sequencing should give further insights for the development of B cell-specific therapies against atherosclerosis, such as HSC rejuvenation and
anti-ABC treatments.
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be inhibited rather than stimulated in order to halt
atherosclerosis progression in this setting. Notably, rituximab
inhibits all CD20-positive B cells, including anti-inflammatory
B-1 cells. Therapeutic strategies specifically targeting pro-
inflammatory B cell subsets, such as ABCs and AABs, might
therefore be more attractive to combat age-related immune
diseases. NLRP3 inflammasome inhibition might be a potential
candidate for this approach. Activation of the NLRP3
inflammasome is an important signaling pathway for ABC and
AAB activation (126). Deficiency of this pathway in aged mice
significantly reduced ABC and AAB numbers compared to
wildtype aged mice (126). Notably, NLRP3 expression is not
exclusively expressed by ABCs and AABs, underlining the
urgency of the characterization of aged B cells in inflammatory
diseases to develop specific anti-ABC therapies. Future studies
identifying unique (age-associated) B cell subset markers, such as
transcription factors, growth and survival receptors and immune
checkpoints, are thus crucial to develop strategies to target ABCs
or other pro-inflammatory B cell subsets in age-related diseases.
Deep sequencing of the BCR could also provide important details
for such cell-specific therapies (240). Recent BCR sequencing in
young (20-45 years old) and old (60-80 years old) adults showed
decreased BCR diversity, increased BCR clonality and different
expression of BCR VHJ genes in aged patients (241), indicating
that the aged immune cell repertoire might respond differently to
pathogens and therapeutic agents. In addition, investigating
autoantibodies produced by aged B cells might result in the
identification of novel auto-antigens in chronic inflammatory
diseases (242). Moreover, epigenetic alterations affecting B cell
development, function and responses are observed with aging
(243–245) and might contribute to age-associated changes in the
B cell repertoire.
CONCLUSION

With a rapidly rising life expectancy and demographic shift
towards elderly, it is essential to enhance our understanding of
Frontiers in Immunology | www.frontiersin.org 11
age-associated immunity that causes disease susceptibility and
mortality. In this review, we focused on age-associated
alterations in B cell homeostasis in health and disease.
Collectively, aging negatively affects the production of B cells
in the bone marrow, resulting in decreased numbers of B-1 and
B-2 cells. Moreover, antibody affinity and diversity are reduced
upon aging, resulting in impaired antibody responses.
Furthermore, aging induces the expansion of age-associated
and adipose-resident age-related B cells, which contribute to
inflammaging by the activation of pro-inflammatory T cell
subsets and cytokine release. Although B cells are key drivers
of autoimmune diseases, such as atherosclerosis, data on B cell
aging in chronic inflammatory diseases is limited. Future studies
identifying the aged B cell repertoire, including age-associated
alterations in B cell numbers, subsets and antibody responses, are
urgently needed in order to develop innovative B cell-specific
therapies to combat chronic inflammatory diseases.
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142. Van Zelm MC, Szczepański T, van der Burg M, Van Dongen JJM.
Replication History of B Lymphocytes Reveals Homeostatic Proliferation
and Extensive Antigen-Induced B Cell Expansion. J Exp Med (2007) 204
(3):645–55. doi: 10.1084/jem.20060964

143. Du SW, Arkatkar T, Jacobs HM, Rawlings DJ, Jackson SW. Generation of
Functional Murine CD11c + Age-Associated B Cells in the Absence of B Cell
T-Bet Expression. Eur J Immunol (2019) 49(1):170–8. doi: 10.1002/
eji.201847641

144. Riley RL, Khomtchouk K, Blomberg BB. Age-Associated B Cells (ABC)
Inhibit B Lymphopoiesis and Alter Antibody Repertoires in Old Age. Cell
Immunol (2017) 321:61–7. doi: 10.1016/j.cellimm.2017.04.008

145. Peng SL, Szabo SJ, Glimcher LH. T-Bet Regulates IgG Class Switching and
Pathogenic Autoantibody Production. Proc Natl Acad Sci USA (2002) 99
(8):5545–50. doi: 10.1073/pnas.082114899

146. Barnett BE, Staupe RP, Odorizzi PM, Palko O, Tomov VT, Mahan AE, et al.
Cutting Edge: B Cell–Intrinsic T-Bet Expression Is Required To Control
Frontiers in Immunology | www.frontiersin.org 15
Chronic Viral Infection. J Immunol (2016) 197(4):1017–22. doi: 10.4049/
jimmunol.1500368

147. Ellebedy AH, Jackson KJL, Kissick HT, Nakaya HI, Davis CW, Roskin KM,
et al. Defining Antigen-Specific Plasmablast and Memory B Cell Subsets in
Human Blood After Viral Infection or Vaccination. Nat Immunol (2016) 17
(10):1226–34. doi: 10.1038/ni.3533

148. Wang S, Wang J, Kumar V, Karnell JL, Naiman B, Gross PS, et al. IL-21
Drives Expansion and Plasma Cell Differentiation of Autoreactive
CD11chiT-Bet+ B Cells in SLE. Nat Commun (2018) 9(1):1–14. doi:
10.1038/s41467-018-03750-7

149. Isnardi I, Ng YS, Menard L, Meyers G, Saadoun D, Srdanovic I, et al.
Complement Receptor 2/CD21- Human Naive B Cells Contain Mostly
Autoreactive Unresponsive Clones. Blood (2010) 115(24):5026–36. doi:
10.1182/blood-2009-09-243071

150. Rubtsov AV, Rubtsova K, Kappler JW, Jacobelli J, Friedman RS, Marrack P.
CD11c-Expressing B Cells Are Located at the T Cell/B Cell Border in Spleen and
Are Potent APCs. J Immunol (2015) 195(1):71–9. doi: 10.4049/jimmunol.1500055

151. Ouyang X, Yang Z, Zhang R, Arnaboldi P, Lu G, Li Q, et al. Potentiation of
Th17 Cytokines in Aging Process Contributes to the Development of Colitis.
Cell Immunol (2011) 266(2):208–17. doi: 10.1016/j.cellimm.2010.10.007

152. Griffin GK, Newton G, Tarrio ML, Bu D, Maganto-Garcia E, Azcutia V, et al.
IL-17 and TNF-a Sustain Neutrophil Recruitment During Inflammation
Through Synergistic Effects on Endothelial Activation. J Immunol (2012) 188
(12):6287–99. doi: 10.4049/jimmunol.1200385

153. Souyris M, Cenac C, Azar P, Daviaud D, Canivet A, Grunenwald S, et al.
TLR7 Escapes X Chromosome Inactivation in Immune Cells. Sci Immunol
(2018) 3(19):eaap8855. doi: 10.1126/sciimmunol.aap8855

154. Song N, Li T. Regulation of NLRP3 Inflammasome by Phosphorylation.
Front Immunol (2018) 9:2305. doi: 10.3389/fimmu.2018.02305

155. Khan S, Tsai S, Winer DA. Adipose Tissue B Cells Come of Age: The AABs
of Fat Inflammation. Cell Metab (2019) 30:997–9. doi: 10.1016/j.cmet.
2019.11.007

156. McDonnell ME, Ganley-Leal LM, Mehta A, Bigornia SJ, Mott M, Rehman Q,
et al. B Lymphocytes in Human Subcutaneous Adipose Crown-Like
Structures. Obesity (2012) 20(7):1372–8. doi: 10.1038/oby.2012.54

157. Dagdeviren S, Jung DY, Friedline RH, Noh HL, Kim JH, Patel PR, et al. IL-10
Prevents Aging-Associated Inflammation and Insulin Resistance in Skeletal
Muscle. FASEB J (2017) 31(2):701–10. doi: 10.1096/fj.201600832R

158. Garg SK, Delaney C, Toubai T, Ghosh A, Reddy P, Banerjee R, et al. Aging Is
Associated With Increased Regulatory T-Cell Function. Aging Cell (2014) 13
(3):441–8. doi: 10.1111/acel.12191

159. Lazuardi L, Jenewein B, Wolf AM, Pfister G, Tzankov A, Grubeck-
Loebenstein B. Age-Related Loss of Naïve T Cells and Dysregulation of T-
Cell/B-Cell Interactions in Human Lymph Nodes. Immunology (2005) 114
(1):37–43. doi: 10.1111/j.1365-2567.2004.02006.x

160. Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K,
et al. Tumor-Evoked Regulatory B Cells Promote Breast Cancer Metastasis
by Converting Resting CD4+ T Cells to T-Regulatory Cells. Cancer Res
(2011) 71(10):3505–15. doi: 10.1158/0008-5472.CAN-10-4316

161. Dang L, Willard Gallo K, Garaud S, Duvillier H, Lodewyckz JN, Solinas C,
et al. Aging and PD-1 & PD-L1 Gene Expression: Markers of
Immunosenescence. Blood (2016) 128(22):5983. doi: 10.11852/blood.
V128.22.5983.5983

162. Vadasz Z, Haj T, Kessel A, Toubi E. Age-Related Autoimmunity. BMC Med
(2013) 11:94. doi: 10.1186/1741-7015-11-94

163. Kline KA, Bowdish DME. Infection in an Aging Population. Curr Opin
Microbiol (2016) 29:63–7. doi: 10.1016/j.mib.2015.11.003

164. Yende S, Alvarez K, Loehr L, Folsom AR, Newman AB, Weissfeld LA, et al.
Epidemiology and Long-Term Clinical and Biologic Risk Factors for
Pneumonia in Community-Dwelling Older Americans Analysis of Three
Cohorts. Chest (2013) 144(3):1008–17. doi: 10.1378/chest.12-2818

165. Thompson WW, Shay DK, Weintraub E, Cox N, Anderson LJ, Fukuda K.
Mortality Associated With Influenza and Respiratory Syncytial Virus in the
United States. J Am Med Assoc (2003) 289(2):179–86. doi: 10.1001/
jama.289.2.179

166. Sakata-Kaneko S, Wakatsuki Y, Matsunaga Y, Usui T, Kita T. Altered Th1/
Th2 Commitment in Human CD4+ T Cells With Ageing. Clin Exp Immunol
(2000) 120(2):267–73. doi: 10.1046/j.1365-2249.2000.01224.x
October 2021 | Volume 12 | Article 733566

https://doi.org/10.1073/pnas.1107172108
https://doi.org/10.3389/fimmu.2019.00483
https://doi.org/10.1038/ni907
https://doi.org/10.1038/ni.3348
https://doi.org/10.1016/j.immuni.2006.02.003
https://doi.org/10.1002/eji.200838920
https://doi.org/10.1016/j.arr.2003.08.002
https://doi.org/10.4049/jimmunol.175.7.4180
https://doi.org/10.4049/jimmunol.177.12.8348
https://doi.org/10.1016/j.celrep.2015.06.015
https://doi.org/10.1016/j.celrep.2015.06.015
https://doi.org/10.1111/cei.12700
https://doi.org/10.1016/j.immuni.2004.05.010
https://doi.org/10.3892/ijmm.21.2.233/abstract
https://doi.org/10.4049/jimmunol.1601106
https://doi.org/10.1016/j.cellimm.2017.05.009
https://doi.org/10.1016/j.cellimm.2017.05.009
https://doi.org/10.1084/jem.20060964
https://doi.org/10.1002/eji.201847641
https://doi.org/10.1002/eji.201847641
https://doi.org/10.1016/j.cellimm.2017.04.008
https://doi.org/10.1073/pnas.082114899
https://doi.org/10.4049/jimmunol.1500368
https://doi.org/10.4049/jimmunol.1500368
https://doi.org/10.1038/ni.3533
https://doi.org/10.1038/s41467-018-03750-7
https://doi.org/10.1182/blood-2009-09-243071
https://doi.org/10.4049/jimmunol.1500055
https://doi.org/10.1016/j.cellimm.2010.10.007
https://doi.org/10.4049/jimmunol.1200385
https://doi.org/10.1126/sciimmunol.aap8855
https://doi.org/10.3389/fimmu.2018.02305
https://doi.org/10.1016/j.cmet.2019.11.007
https://doi.org/10.1016/j.cmet.2019.11.007
https://doi.org/10.1038/oby.2012.54
https://doi.org/10.1096/fj.201600832R
https://doi.org/10.1111/acel.12191
https://doi.org/10.1111/j.1365-2567.2004.02006.x
https://doi.org/10.1158/0008-5472.CAN-10-4316
https://doi.org/10.11852/blood.V128.22.5983.5983
https://doi.org/10.11852/blood.V128.22.5983.5983
https://doi.org/10.1186/1741-7015-11-94
https://doi.org/10.1016/j.mib.2015.11.003
https://doi.org/10.1378/chest.12-2818
https://doi.org/10.1001/jama.289.2.179
https://doi.org/10.1001/jama.289.2.179
https://doi.org/10.1046/j.1365-2249.2000.01224.x
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


de Mol et al. Aged B Cells in Disease
167. Saurwein-Teissl M, Lung TL, Marx F, Gschösser C, Asch E, Blasko I, et al.
Lack of Antibody Production Following Immunization in Old Age:
Association With CD8 + CD28 – T Cell Clonal Expansions and an
Imbalance in the Production of Th1 and Th2 Cytokines. J Immunol (2002)
168(11):5893–9. doi: 10.4049/jimmunol.168.11.5893

168. Frasca D, Diaz A, Romero M, Ferracci F, Blomberg BB. MicroRNAs miR-155
and miR-16 Decrease AID and E47 in B Cells From Elderly Individuals.
J Immunol (2015) 195(5):2134–40. doi: 10.4049/jimmunol.1500520

169. Nipper AJ, Smithey MJ, Shah RC, Canaday DH, Landay AL. Diminished
Antibody Response to Influenza Vaccination is Characterized by Expansion
of an Age-Associated B-Cell Population With Low PAX5. Clin Immunol
(2018) 193:80–7. doi: 10.1016/j.clim.2018.02.003

170. Henry C, Zheng NY, Huang M, Cabanov A, Rojas KT, Kaur K, et al.
Influenza Virus Vaccination Elicits Poorly Adapted B Cell Responses in
Elderly Individuals. Cell Host Microbe (2019) 25(3):357–66.e6. doi: 10.1016/
j.chom.2019.01.002

171. Gensous N, Franceschi C, Blomberg BB, Pirazzini C, Ravaioli F, Gentilini D,
et al. Responders and non-Responders to Influenza Vaccination: A DNA
Methylation Approach on Blood Cells. Exp Gerontol (2018) 105:94–100. doi:
10.1016/j.exger.2018.01.019

172. Zimmermann MT, Oberg AL, Grill DE, Ovsyannikova IG, Haralambieva IH,
Kennedy RB, et al. System-Wide Associations Between DNA-Methylation,
Gene Expression, and Humoral Immune Response to Influenza Vaccination.
PloS One (2016) 11(3):e0152034. doi: 10.1371/journal.pone.0152034

173. Frasca D, Diaz A, Romero M, Blomberg BB. Human Peripheral Late/
Exhausted Memory B Cells Express a Senescent-Associated Secretory
Phenotype and Preferentially Utilize Metabolic Signaling Pathways. Exp
Gerontol (2017) 87(Pt A):113–20. doi: 10.1016/j.exger.2016.12.001

174. Frasca D, Diaz A, Romero M, Thaller S, Blomberg BB. Metabolic
Requirements of Human Pro-Inflammatory B Cells in Aging and Obesity.
PloS One (2019) 14(7):e0219545. doi: 10.1371/journal.pone.0219545

175. Johnson JL, Rosenthal RL, Knox JJ, Myles A, Naradikian MS, Madej J, et al.
The Transcription Factor T-Bet Resolves Memory B Cell Subsets With
Distinct Tissue Distributions and Antibody Specificities in Mice and
Humans. Immunity (2020) 52(5):842–55.e6. doi: 10.1016/j.immuni.
2020.03.020
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