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Introduction: In hypertrophic cardiomyopathy (HCM), late gadolinium enhancement

(LGE) on cardiac magnetic resonance imaging (CMR) represents myocardial fibrosis and

is associated with sudden cardiac death. However, CMR requires particular expertise

and is expensive and time-consuming. Therefore, it is important to specify patients with

a high pre-test probability of having LGE as the utility of CMR is higher in such cases. The

objective was to determine whether plasma proteomics profiling can distinguish patients

with and without LGE on CMR in the HCM population.

Materials and Methods: We performed a multicenter case-control (LGE vs. no LGE)

study of 147 patients with HCM. We performed plasma proteomics profiling of 4,979

proteins. Using the 17 most discriminant proteins, we performed logistic regression

analysis with elastic net regularization to develop a discrimination model with data

from one institution (the training set; n = 111) and tested the discriminative ability in

independent samples from the other institution (the test set; n = 36). We calculated the

area under the receiver-operating-characteristic curve (AUC), sensitivity, and specificity.

Results: Overall, 82 of the 147 patients (56%) had LGE on CMR. The AUC

of the 17-protein model was 0.83 (95% confidence interval [CI], 0.75–0.90) in the

training set and 0.71 in the independent test set for validation (95% CI, 0.54–

0.88). The sensitivity of the training model was 0.72 (95% CI, 0.61–0.83) and the

specificity was 0.78 (95% CI, 0.66–0.90). The sensitivity was 0.71 (95% CI, 0.49–

0.92) and the specificity was 0.74 (95% CI, 0.54–0.93) in the test set. Based on the

discrimination model derived from the training set, patients in the test set who had

high probability of having LGE had a significantly higher odds of having LGE compared

to those who had low probability (odds ratio 29.6; 95% CI, 1.6–948.5; p = 0.03).
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Conclusions: In this multi-center case-control study of patients with HCM,

comprehensive proteomics profiling of 4,979 proteins demonstrated a high discriminative

ability to distinguish patients with and without LGE. By identifying patients with a high

pretest probability of having LGE, the present study serves as the first step to establishing

a panel of circulating protein biomarkers to better inform clinical decisions regarding

CMR utilization.

Keywords: hypertrophic cardiomyopathy, late gadolinium enhanced (LGE), myocardial fibrosis, proteomics,

cardiac magnetic resonance (MRI)

INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is among the most
common inherited cardiac diseases (1). The combined prevalence
of clinically expressed HCM and genetic carrier status is
approximately 1 in 200 individuals in the United States (1).
Patients with HCM are at risk of sudden cardiac death (SCD),
yet identifying the patients at highest risk of this feared outcome
remains a challenge (2–4).

Late gadolinium enhancement (LGE) on cardiac magnetic
resonance imaging (CMR) represents myocardial fibrosis (5–
7). In patients with HCM, LGE has been associated with an
increased risk of SCD from ventricular arrhythmias (8–11).
The appropriate use of implantable cardioverter-defibrillators
(ICD) has reduced disease-specific mortality (12–15). Therefore,
identifying LGE on CMR is critical to reducing HCM-
specific mortality by facilitating ICD implantation in high-risk
patients. Although CMR allows clinicians to identify LGE and
patients who are at higher risk of developing SCD, it is not
widely accessible, requires particular expertise for interpretation
and is relatively expensive and time-consuming compared
to other imaging modalities. Moreover, careful assessment
of the risk-benefit balance of CMR is required in patients
with claustrophobia or chronic kidney disease and pediatric
patients who may require sedation or intubation during CMR
(16). As a result, it is clinically indispensable to accurately
determine which patients with HCM would have high pre-test
probability of having LGE as the utility of CMR is higher in
such cases.

Proteomics profiling is a recently developed technology
that simultaneously measures the concentrations of thousands
of proteins with as little as 65 microliters of blood and
has been successfully used to discover biomarkers with high
discriminative value in identifying HCM (17). Small studies
have suggested that certain biomarkers may be associated
with LGE on CMR (18–29). However, a comprehensive
analysis with a high-throughput proteomics platform has not
yet been performed. Thus, the purpose of this study was
to test the hypothesis that plasma proteomics profiling can
distinguish patients with and without LGE on CMR and
identify signaling pathways associated with LGE in the HCM
population. Development of a small panel of circulating protein
biomarkers associated with LGE in HCM would help clinicians
more precisely identify which patients with HCM should
undergo CMR.

MATERIALS AND METHODS

Study Design and Sample
We designed a case-control study in the HCM population
between cases with LGE and controls without LGE. These
patients were enrolled from the HCM programs at Columbia
University Irving Medical Center (CUIMC) (New York, NY)
and Massachusetts General Hospital (MGH) (Boston, MA)
between October 13, 2015 and December 11, 2018 and were
consecutively included in this study if a cardiac MRI and plasma
proteomics profiling were performed. The diagnosis of HCMwas
established by echocardiographic evidence of left ventricular (LV)
hypertrophy (maximum LV wall thickness ≥ 15mm) that was
out of proportion to the degree of systemic loading conditions
and not explained by other diseases capable of producing similar
findings (i.e., HCM phenocopies such as Fabry disease or cardiac
amyloidosis). For patients with a family history of HCM, LV
wall thickness ≥ 13mm was considered diagnostic of HCM
(30). Genetic variants classified as “definitely pathogenic” or
“likely pathogenic” were considered a positive genotype whereas
“variant of uncertain significance,” “likely benign” and “benign”
were considered as negative genotype. We excluded patients
with conditions that could lead to LV remodeling that may
mimic HCM, such as aortic stenosis, subaortic membrane and
exercise induced cardiac remodeling. The training set to derive
the discrimination model consisted of patients from MGH. The
independent test set for validation was based on patient data
from CUIMC. The Mass General Brigham Institutional Review
Board and that of CUIMC approved the study protocol and all
participants provided written informed consent.

Blood Sample Processing and Proteomics
Profiling
Venous blood specimens were drawn at the time of an outpatient
clinic visit. Samples were collected in K2EDTA-treated tubes and
centrifuged for 10min at 3,100 rpm. The supernatant plasma was
aliquot and immediately frozen at−80 degree Celsius (17).

Proteomics profiling was performed using the SomaScan
assay (SOMALogic, Inc., Boulder, CO) (17, 31, 32). This is a tool
for proteomics profiling that is highly multiplexed, sensitive,
quantitative and reproducible. The assay measures plasma
protein concentrations, from femtomolar to micromolar,
with an excellent level of reproducibility – the median
coefficient of variation is 4.6% (17, 31, 32). The assay’s
performance is similar to that of sandwich enzyme linked
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immunosorbent assay and is especially useful to accurately
measure concentrations of low-abundance proteins that
conventional liquid chromatography/mass spectrometry cannot
detect (17, 31–33). Other details of the SomaScan assay have
been previously published (17, 31, 32).

Cardiac Imaging
Two-dimensional and Doppler echocardiographic studies were
performed with iE33 (Philips Medical Systems, Andover,
Massachusetts) to obtain the clinical parameters presented in
Table 1 using standard definitions (34, 35). Peak LV outflow tract
gradient was measured with continuous-wave Doppler.

CMR was ordered at the discretion of the treating physicians.
CMR studies were performed on a 1.5-T field strength scanner
(HDXt platform, General Electric Healthcare, Milwaukee,
Wisconsin) with a dedicated 8-channel cardiac-coil. The imaging
protocol included localizer images with cine-balanced steady-
state free precession imaging in the short axis, paraseptal
long axis, horizontal long axis and 3-chamber views. The
myocardial late enhancement sequences were performed in
LV short axis and radial long axis 8 to 15min after the 0.2
mmol/kg injection of intravenous gadopentetate demglumine
(Magnevist, Bater HealthCare Pharmaceuticals Inc., Wayne, New
Jersey). Short axis late enhancement views were obtained with
both 2-dimensional single slice per breath-hold imaging and
3-dimensional volumetric ventricular imaging. Inversion times
were determined on an individual basis to null the normal
myocardial signal.

The images were reviewed by expert readers using dedicated
CMR analysis software (cmr42, Circle Cardiovascular Imaging
Inc., Calgary, Alberta, Canada). Late myocardial enhancement
images were analyzed using 2-dimensional views and
coregistered 3-dimensional and long axis views for correlation
when indicated (36). The presence and absence of LGE was
determined by the reading cardiac radiologist. CMR readers
were blinded to the results of plasma proteomics.

Univariable Analysis
Wepresented continuous variables asmean± standard deviation
if normally distributed and as median [interquartile range] if not
normally distributed. To compare clinical characteristics between
patients with LGE and without LGE, we used the unpaired
Student’s t-test for normally distributed continuous variables, the
Mann-Whitney-Wilcoxon test for other continuous and ordinal
variables (e.g., degree of mitral regurgitation) and the χ

2 test for
categorical variables.

Development of a 17-Protein Model to
Distinguish Patients With and Without LGE
Logistic regression with elastic net regularization was used with
a plan to identify a set of 15 candidate proteins with the greatest
potential to discriminate patients with and without LGE (e.g., the
15 most discriminant proteins). This method was chosen due to
its advantage in addressing issues when the number of predictors
(4,979) is much larger than the number of observations (147)
(37, 38). The logistic regression with elastic net regularization was
trained using a 5-fold cross-validation methods in the training

TABLE 1 | Baseline clinical characteristics of the study sample.

Characteristics* LGE (+) LGE (-) P value

(n = 82) (n = 65)

Demographics

Age (year) 56 ± 15 58 ± 16 0.57

Male 60 (73) 39 (60) 0.13

Body mass index (kg/m2) 30 ± 6 31 ± 9 0.31

NYHA functional class ≥2 29 (35) 25 (39) 0.83

Race 0.67

European ancestry 70 (85) 54 (83)

African American 1 (1) 3 (5)

Asian 2 (2) 1 (2)

Other or unidentified 9 (11) 7 (11)

Medical history

Prior AF 23 (28) 13 (20) 0.35

Prior VT/VF 3 (4) 2 (3) >0.99

Prior non-sustained VT 21 (26) 7 (11) 0.03

Prior syncope 10 (12) 11 (17) 0.56

Family history of sudden

cardiac death

9 (11) 5 (8) 0.58

Family history of HCM 20 (24) 16 (25) >0.99

Obstructive HCM 39 (48) 33 (51) 0.83

Prior septal myectomy 12 (15) 15 (23) 0.27

Prior alcohol septal ablation 5 (6) 2 (3) 0.46

Medications

β-blocker 56 (68) 39 (60) 0.38

Calcium channel blocker 18 (22) 15 (23) >0.99

ACE inhibitor 9 (11) 5 (8) 0.58

ARB 12 (15) 14 (22) 0.38

Diuretic

Loop diuretic 6 (7) 2 (3) 0.30

Thiazide 6 (7) 5 (8) >0.99

Potassium sparing diuretic 4 (5) 2 (3) 0.69

Disopyramide 3 (4) 4 (6) 0.70

Amiodarone 4 (5) 2 (3) 0.69

Blood pressure

Systolic blood pressure

(mmHg)

124 ± 17 128 ± 17 0.24

Diastolic blood pressure

(mmHg)

74 ± 11 74 ± 11 0.96

Echocardiographic measurements

Left atrial diameter (mm) 35 ± 15 32 ± 17 0.29

Interventricular septum

thickness (mm)

13 ± 8 11 ± 6 0.03

Posterior wall thickness

(mm)

9 ± 5 9 ± 5 0.37

Maximal LV wall thickness

(mm)

22 ± 6 18 ± 4 <0.001

LV outflow tract gradient

(mmHg) at rest

0 [0–22] 12 [0–33] 0.24

LV outflow tract gradient

(mmHg) with Valsalva

maneuver

25 [1–73] 26 [0–72] 0.89

LV ejection fraction (%) 68 ± 11 68 ± 8 0.95

(Continued)
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TABLE 1 | Continued

Characteristics* LGE (+) LGE (-) P value

(n = 82) (n = 65)

LV end-diastolic diameter

(mm)

36 ± 17 31 ± 18 0.12

LV end-systolic diameter

(mm)

25 ± 7 24 ± 9 0.54

Systolic anterior motion of

mitral valve leaflet

26 (32) 25 (39) 0.50

Degree of mitral

regurgitation
†

1.5 [1–2] 1.5 [1–2] 0.41

Genetic testing (n = 84)

Pathogenic or likely

pathogenic

19 (23) 6 (9) 0.03

*Data are expressed as number (percentage), mean ± standard deviation, or median

[interquartile range].
†
Degree of mitral regurgitation was converted to numerical values

according to the following rule: none = 0, trace = 1, trace to mild = 1.5, mild = 2, mild to

moderate= 2.5, moderate= 3, moderate to severe= 3.5, severe= 4. ACE, angiotensin-

converting enzyme; AF, atrial fibrillation; ARB, angiotensin II receptor blocker; HCM,

hypertrophic cardiomyopathy; LGE, late gadolinium enhancement; LV, left ventricular;

NYHA, New York Heart Association; VT/VF, ventricular tachycardia or ventricular fibrillation.

FIGURE 1 | Three-dimensional score plot of proteomics profiling in patients

with and without late gadolinium enhancement in the hypertrophic

cardiomyopathy population. Each green circle represents the proteomic profile

of a patient with LGE. Each red circle corresponds to that of a patient without

LGE. HCM, hypertrophic cardiomyopathy; LGE, late gadolinium enhancement.

set (i.e., patients followed at MGH, 111 of 147 patients). To
preprocess the variables for the elastic net model, we performed
sample-wise normalization using the median of all protein
concentrations in each sample followed by protein-wise log
transformation and Pareto scaling in each protein concentration.
We then created a hyperparameter tuning grid to identify best
hidden component and threshold parameter using the R caret
and glmnet packages. Ultimately, 3 proteins were tied for the 15th

most discriminative protein, thus leading to the inclusion of a

total of 17 proteins in the model. We tested the discriminative
ability of the model in the independent test set (i.e., patients
followed at CUIMC, 36 of 147 patients) to test the performance
of the model developed from the training set. We calculated the
area under the receiver-operating-characteristic curve (AUC),
sensitivity, specificity, positive predictive value and negative
predictive value as indicators of themodel’s discriminative ability.

Pathway Analysis
We performed pathway analysis to identify canonical pathways
that are dysregulated (i.e., either upregulated or downregulated)
between patients with and without LGE. We used the 144
most discriminant proteins based on a p-value of < 0.05
with univariable analysis. We subsequently determined the
associations among the 144 most discriminant proteins and
canonical pathways in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (39). Significance was based on the
ratio of the number of proteins within the 144 most
discriminant proteins that map to a canonical pathway
divided by the number of proteins that belong to the
pathway (39). We considered a pathway as positive (i.e.,
dysregulated) if the false discovery rate (FDR) was <0.05
and there were at least 3 associated proteins (40). We
used STRING version 11.5 (String Consortium, Europe) for
the pathway analysis and conducted other analyses with R
version 4.1.0 (R Foundation for Statistical Computing, Vienna,
Austria) (39).

RESULTS

In total, the analysis included 147 patients with HCM (82 with
LGE and 65 without LGE). The training set used to develop the
discrimination model was comprised of 111 patients fromMGH,
of which 65 patients had LGE and 46 patients did not have LGE.
The independent test set used for validation was comprised of
36 patients from CUIMC, of which 17 patients had LGE and 19
patients did not have LGE.

Baseline characteristics are presented in Table 1. Patients
with LGE had a greater degree of both maximal LV wall
and interventricular septal wall thickness, were more likely to
have had prior non-sustained ventricular tachycardia (NSVT)
and a pathogenic or likely pathogenic genetic variant when
compared to patients without LGE. Other demographic and
clinical characteristics were similar between the 2 groups.

As shown in Figure 1, the proteomic profiles differed between
HCM patients with and without LGE. The discrimination model
to distinguish LGE positivity showed high discriminative ability
in the training set (AUC 0.83, 95% confidence interval [CI]
0.75–0.90; p < 0.001 compared to the null hypothesis of
AUC = 0.5; Figure 2). The sensitivity in the training set was
0.72 (95% CI, 0.61–0.83) and the specificity was 0.78 (95%
CI, 0.66–0.90). Furthermore, the discrimination model derived
from the training set maintained accuracy when applied to the
independent test set for validation (AUC 0.71, 95% CI 0.54–
0.88, p = 0.03; Figure 2). The sensitivity was 0.71 (95% CI,
0.49–0.92) and the specificity was 0.74 (95% CI, 0.54–0.93;
Table 2) in the test set. Based on the discrimination model
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FIGURE 2 | Receiver-operating-characteristic curves for the 17-protein model to distinguish patients with and without late gadolinium enhancement in the

hypertrophic cardiomyopathy population. (A) shows the receiver-operating-characteristic curve in the training set, whereas (B) displays that in the test set. AUC, area

under the receiver-operating-characteristic curve; CI, confidence interval.

TABLE 2 | Area under the receiver-operating-characteristic curve, sensitivity,

specificity, positive predictive value and negative predictive value of the 17-protein

model to distinguish patients with and without late gadolinium enhancement.

Cohort AUC

(95% CI)

Sensitivity

(%)

(95% CI)

Specificity

(%)

(95% CI)

PPV (%)

(95% CI)

NPV (%)

(95% CI)

Training

set

0.83

(0.75–0.90)

72

(61–83)

78

(66–90)

82

(73–92)

67

(54–79)

Test set 0.71

(0.54–0.88)

71

(49–92)

74

(54–93)

71

(49–92)

74

(54–94)

AUC, area under the receiver-operating-characteristic curve; CI, confidence interval; NPV,

negative predictive value; PPV, positive predictive value.

derived from the training set, patients in the test set who had
high probability of having LGE had significantly higher odds
of having LGE compared to those who had low probability
(odds ratio 29.6, 95% CI 1.6–948.5; p = 0.03). Figure 3 displays
the 17 most discriminant proteins that were included in the
discrimination model.

Pathway analysis using the 144 most discriminant proteins
demonstrated dysregulation in 15 pathways with FDR <

0.05 (Table 3). These included pathways that have been
recognized to be dysregulated in HCM, such as those
involved in inflammation (interleukin-17, cytokine-cytokine
receptor interaction) as well as sugar and amino acid
metabolism. Moreover, the list of dysregulated pathways
contained pathways that were previously unrecognized

to be dysregulated in HCM with LGE – e.g., the RIG-
I-like receptor signaling pathway and the PI3K-Akt
signaling pathway.

DISCUSSION

Summary of Findings
In the present multi-center case-control study of 82 cases
with LGE and 65 controls without LGE on CMR in the
HCM population, comprehensive proteomics profiling of
4,979 proteins demonstrated a good discriminative ability to
distinguish patients with and without LGE. Furthermore,
pathway analysis displayed previously recognized (e.g.,
inflammation, sugar and amino acid metabolism) and newly
recognized (e.g., RIG-I-like receptor signaling, PI3K-Akt
signaling) pathways that were dysregulated in patients with LGE.

Results in Context
LGE in HCM represents myocardial fibrosis (5–7) and has
been associated with an increased risk of SCD from ventricular
arrhythmias, which can be effectively aborted by ICD (8–11). By
subsequently facilitating ICD implantation, identifying high-risk
features such as LGE on CMR contributes to reduced disease-
specific mortality (12–15). However, in certain circumstances,
patients are unable to easily undergo CMR with gadolinium
enhancement for risk stratification due to accessibility and
expertise required to conduct and interpret the test and patient-
specific factors such as claustrophobia and chronic kidney disease
(41–43). Therefore, it is important to identify patients with HCM
who have a high pretest probability of LGE, because pursuing
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FIGURE 3 | The 17 most discriminant proteins to distinguish patients with and without late gadolinium enhancement in the hypertrophic cardiomyopathy population.

A red box indicates that the protein concentration was increased in patients with LGE, while a green box means that the concentration was decreased in patients with

LGE. P values were computed using the Mann-Whitney-Wilcoxon test. Fold change was calculated by dividing the median in the cases by the median in the controls.

HCM, hypertrophic cardiomyopathy; LGE, late gadolinium enhancement.

TABLE 3 | Pathways that are differentially regulated between patients with and

without late gadolinium enhancement in the hypertrophic cardiomyopathy

population.

Pathway description Number of

matching

proteins

Number of

proteins in

the pathway

False

discovery

rate

Glycolysis/gluconeogenesis 8 68 0.00001

Metabolic pathways 27 1,250 0.00003

Carbon metabolism 9 116 0.00003

Biosynthesis of amino acids 7 72 0.0001

Pentose phosphate

pathway

5 30 0.0002

Fructose and mannose

metabolism

5 33 0.0002

Phenylalanine metabolism 3 17 0.01

IL-17 signaling pathway 5 92 0.01

RIG-I-like receptor signaling

pathway

4 70 0.03

Tyrosine metabolism 3 36 0.03

Glycine, serine and

threonine metabolism

3 39 0.03

Cytokine-cytokine receptor

interaction

7 263 0.03

Hypertrophic

cardiomyopathy

4 81 0.03

PI3K-Akt signaling pathway 8 348 0.04

Dilated cardiomyopathy 4 88 0.04

IL, interleukin; PI3K, phosphoinositide 3-kinase; RIG-I, retinoic acid-inducible gene-I.

CMR, despite potential barriers, would be more likely to change
clinical management in this HCM subpopulation.

The prevalence of LGE in the present study is consistent
with prior studies that suggest a pooled prevalence of LGE
of approximately 60% (44). Prior studies have used various
methods to predict LGE on CMR. A prior study reported
that a clinical model including a history of NSVT, reduced
LV systolic function and maximal echocardiographic LV wall

thickness had a high discriminative ability to predict extensive
LGE. Nevertheless, the study’s exclusion of patients at high risk
for SCD limits the generalizability of the study (29). Thus far, 2
studies attempted to estimate the likelihood and extent of LGE
based on electrocardiographic findings (45, 46). However, 1 study
was limited by a small sample size (42 patients including controls)
and young age (7–31 years), making the inferences less applicable
to older patients seen in adult cardiology practices (45). The other
study used the Selvester QRS score and showed a high degree
of accuracy to determine the presence and extent of LGE but
was limited by an extensive scoring system and the need for
automated software (46).

In addition to these clinical and electrocardiogram-based
prediction models, the association between plasma circulating
biomarkers such as cardiac troponin, natriuretic peptides and
markers of collagen turnover have been studied in the context of
LGE in HCM (21, 23, 24, 47). Higher concentrations of cardiac
troponin have been associated with LGE (21, 22, 24, 25, 29, 47).
Other studies have shown elevated concentrations of midregional
pro-adrenomedullin (27) and matrix metalloproteinase 9 (18)
and lower levels of apelin to be associated with LGE (23).
Concentrations of serum N-terminal pro-B-type natriuretic
peptide and B-type natriuretic peptide have been associated with
LGE in some studies but not in others on multivariable analysis
(24, 47). Taken together, these prior studies collectively support
the importance of identifying protein biomarkers of LGE inHCM
that are easily obtained in a non-invasive manner (e.g., blood).
In this context, the present study serves as the first to apply
comprehensive proteomics approach to specify novel circulating
biomarkers of LGE in HCM.

Application of Proteomics Profiling to
Biomarker Discovery in Cardiovascular
Diseases
Proteomics profiling using the SomaScan assay has previously
been utilized to identify novel plasma circulating biomarkers
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associated with cardiovascular diseases and cardiometabolic
risk (e.g., the Framingham Heart Study) (48). Furthermore,
proteomics profiling has been applied to several cardiovascular
conditions including coronary artery disease (48–50),
hypertension (51), heart failure and cardiomyopathies (52–
56). Our group and others have previously demonstrated the
role of plasma proteomics profiling in distinguishing HCM
from healthy controls (57) and other cardiovascular conditions
(17, 58). A recent small study has also shown differences in
proteomics profiling among patients with HCM before and after
surgical myectomy (59). On the whole, these studies support
the role of proteomics profiling to identify novel biomarkers
in a variety of cardiovascular conditions. Our current study
of comprehensive proteomics profiling adds to the literature
by demonstrating that the discrimination model using a small
number (17 proteins) of plasma biomarkers has good accuracy to
detect LGE in the HCM population. The potential clinical utility
of such a small panel of plasma circulating biomarkers is further
underscored by the availability of rapid and low-cost methods to
determine plasma protein concentrations (e.g., sandwich enzyme
linked immunosorbent assay).

Signaling Pathways Associated With LGE
on CMR in HCM
Prior studies have demonstrated several dysregulated signaling
pathways associated with cardiac hypertrophy, including those
related to glycolysis (60–62), the pentose phosphate pathway
(60, 63), fructose and mannose metabolism (61, 62, 64, 65),
tyrosine metabolism (57) and glycine, serine and threonine
metabolism (66). Thesemetabolic pathways were also found to be
dysregulated in the present study, suggesting that these pathways
contribute not only to the development of LV hypertrophy but
also to the progression to LV fibrosis in HCM.

The present study also revealed dysregulation of previously
unrecognized pathways – e.g., the RIG-I-like receptor signaling,
the PI3K-Akt signaling pathway (67–70) – in patients with LGE
in the HCM population. The association between the PI3K-Akt
pathway and LGE in HCM is an interesting finding because this
pathway is upstream to the Ras-MAPK pathway, upregulation
of which has been shown to cause HCM-like cardiac changes
in RASopathies such as Noonan syndrome (71–75). Recent
proteomics studies have suggested that the Ras-MAPK pathway
is upregulated in patients with HCM and is associated with
larger left atrial diameters and more severe New York Heart
Association functional classes (17, 58). While the PI3K-Akt
pathway has been previously associated with physiologic cardiac
hypertrophy (67–69), the newly observed association with LGE in
HCM has particularly relevant clinical implications because the
downstream Ras-MAPK pathway is modifiable. Specifically, the
HCM-like cardiac phenotype in RASopathies can be mitigated by
Ras-MAPK inhibition (75–77). Moreover, this pathway has been
a drug target in cancer treatment development and such datamay
inform future applicability to cardiovascular disease (78). Taken
together with prior reports, the observation in the present study
indicates that the PI3K-Akt pathway and its downstream Ras-
MAPK pathway may play a role not only in HCM pathogenesis
but also in progression to LV fibrosis. Our findings also suggest
that targeting the upstream P13K-Akt pathway may be another

worthwhile focus for future drug development as it relates to LV
fibrosis in HCM and the availability of inhibitors specific to the
pathway further underscores the potential utility of such efforts
(78, 79).

Strengths of the Present Study
We took multiple measures to minimize false positive and
negative findings and to enhance the internal and external
validity of the study. First, we derived a proteomics-based
discriminationmodel from the training set of patients followed at
MGH and validated its discriminative ability in an independent
test set of patients followed at CUIMC. The observation that
the proteomics-based model to predict LGE maintained good
accuracy in the independent test set underscores the robustness
of the model and the external validity of the inferences from
the present study. Second, to reduce false positive declarations,
we used an FDR threshold of 0.05 to determine the significance
of pathway dysregulation. Using FDR restricts the study-wide
rate of false positives. An FDR threshold of 0.05 ensures
that <1 of 20 pathways that are declared positive are false
positives. Moreover, by using pathway analysis, we strengthen
the biological plausibility and reduce the risk of false positive
discovery given that the proteins are interconnected versus
isolated findings using a univariable analysis (40). Third, with
respect to false negative findings, our list of differentially
regulated proteins and pathways included those known to be
dysregulated in cardiac hypertrophy (e.g., the KEGG pathway
named “hypertrophic cardiomyopathy”) and other pathways
known to be involved in HCM pathogenesis (e.g., inflammation,
sugar and amino acid metabolism). These pathways serve
as “positive controls” in our study and further support the
robustness of plasma proteomics to identify signaling pathways
that are differentially regulated between patients with and
without LGE on CMR in the HCM population. Finally, our study
utilized the most comprehensive (∼5000 proteins) proteomics
profiling to date (17, 80), thus reducing the risk of false
negatives (ie: failure to identify important protein biomarkers
and pathways).

Potential Limitations
There are several potential limitations to the current study.
First, LGE was a binary variable and quantification was not
performed to identify the extent of LGE. Second, no association
with subsequent clinical outcomes (e.g., SCD) was evaluated.
Third, the study sample consisted of patients who were enrolled
at tertiary care centers and underwent CMR. Therefore, the
inferences may not be generalizable to populations with less
severe clinical manifestations or those who did not undergo
CMR. However, limiting enrollment to 2 centers enabled
strict control and standardization of the protocol which are
indispensable components of accurate proteomics profiling and
CMR. Fourth, temporality or causality between differentially
regulated pathways and LGE in HCM was not assessed. Fifth,
not all patients with HCM underwent genetic testing. Sixth,
myocardial samples were not available and as such, direct analysis
with tissue specimens could not be performed. Seventh, the
number of patients included in the test set was relatively small
and the negative predictive value was modest, and therefore
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negative prediction by proteomics profiling did not completely
rule out LGE on CMR. Nevertheless, the current analysis serves
as a proof-of-concept study for future investigations to further
improve the predictive ability. And finally, although the sample
size was larger than most prior studies and we used the
aforementioned methods to reduce the chance of false positive
discovery, the possibility of false positive discovery remains.

CONCLUSIONS

The present study demonstrated, for the first time, the role
of comprehensive proteomics profiling to distinguish patients
with and without LGE on CMR in the HCM population and
revealed signaling pathways associated with LGE. By identifying
patients with a high pretest probability of having LGE, the present
study would serve as the first step to establishing a panel of
circulating protein biomarkers to better inform clinical decisions
between patients and physicians regarding CMR utilization when
the risk-benefit calculation of CMR is balanced. Our work also
exhibited that multiple pathways, both known and novel, were
upregulated in patients with LGE. These findings should facilitate
further investigations into the underlying molecular mechanisms
through which genetic mutations lead to the development of LGE
in patients with HCM and pathways that may be targeted by
future pharmacotherapies.
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