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Abstract

The Drosophila shaggy gene (sgg, GSK-3) encodes multiple protein isoforms with serine/

threonine kinase activity and is a key player in diverse developmental signalling pathways.

Currently it is unclear whether different Sgg proteoforms are similarly involved in signalling

or if different proteoforms have distinct functions. We used CRISPR/Cas9 genome engi-

neering to tag eight different Sgg proteoform classes and determined their localization dur-

ing embryonic development. We performed proteomic analysis of the two major proteoform

classes and generated mutant lines for both of these for transcriptomic and phenotypic anal-

ysis. We uncovered distinct tissue-specific localization patterns for all of the tagged proteo-

forms we examined, most of which have not previously been characterised directly at the

protein level, including one proteoform initiating with a non-standard codon. Collectively, this

suggests complex developmentally regulated splicing of the sgg primary transcript. Further,

affinity purification followed by mass spectrometric analyses indicate a different repertoire of

interacting proteins for the two major proteoforms we examined, one with ubiquitous expres-

sion (Sgg-PB) and one with nervous system specific expression (Sgg-PA). Specific muta-

tion of these proteoforms shows that Sgg-PB performs the well characterised maternal and

zygotic segmentations functions of the sgg locus, while Sgg-PA mutants show adult lifespan

and locomotor defects consistent with its nervous system localisation. Our findings provide

new insights into the role of GSK-3 proteoforms and intriguing links with the GSK-3α and

GSK-3β proteins encoded by independent vertebrate genes. Our analysis suggests that dif-

ferent proteoforms generated by alternative splicing are likely to perform distinct functions.
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Introduction

Glycogen Synthase Kinase-3 (GSK-3) is a highly conserved protein kinase that has orthologs

in all metazoans, with proteins from distant species such as flies and humans displaying more

than 90% sequence similarity in the protein kinase domain [1, 2]. Initially identified as an

enzyme involved in the regulation of glycogen metabolism, a key role for the Drosophila ortho-

logue encoded by the shaggy (sgg) locus in embryonic segmentation [3] established GSK-3 at

the heart of the Wnt signalling pathway in flies and vertebrates [4]. In brief, GSK-3 kinase

activity acts to negatively regulate Wnt signalling by phosphorylating β-catenin, Armadillo

(Arm) in Drosophila, such that it is ubiquitinylated and subsequently degraded by the protea-

some. When Wnt signalling is active, GSK-3 is inactivated, Arm is stabilized and translocates

to the nucleus where it binds to the Tcf transcription factor to activate Wnt responsive genes

[5]. Considerable work from many laboratories has established that GSK-3 and Wnt signalling

is pivotal for cell differentiation and morphogenesis across the Metazoa [5, 6].

In vertebrates, there are two major isoforms of GSK-3, alpha and beta, each encoded by

independent paralogous genes. While these isoforms share considerable homology in the

kinase domain (85% overall identity, 98% within the kinase domains) [7], they show major dif-

ferences at their termini with GSK-3α containing a large glycine-rich N-terminal region that is

absent in GSK-3β [2]. Loss of GSK-3β in mice results in late embryonic lethality with liver, car-

diac and craniofacial defects [8–10], and in Xenopus, expression of a kinase dead version of

GSK-3β resulted in axis formation defects [11]. In addition, GSK-3β heterozygous mice exhibit

a range of phenotypes, particularly in aspects of metabolism, homeostasis and nervous system

function [12–15]. In contrast, loss of function GSK-3α mice are viable but show alterations in

glucose metabolism [16] and abnormalities in brain structure and behaviour [17, 18]. Interest-

ingly, there is evidence that the mammalian isoforms show both partially redundant and

antagonistic interactions [12, 19–21] with the current view that they act at least partially redun-

dantly in early embryonic Wnt signalling [22]. In contrast to vertebrates, the Drosophila
genome contains a single major GSK-3 locus, sgg, that shows considerable complexity, with 17

annotated transcripts encoding 10 different protein isoforms predicted (Fig 1A and 1B). A sec-

ond GSK-3 enzyme is encoded by the gasket locus, a retrotransposed gene whose expression is

largely restricted to the testis [23] and is not considered further here. Sgg proteoforms differ at

their N termini (5 alternatives), at internal exons and at the C terminus (3 alternatives). At the

C terminus, Sgg-PD is unique among the proteoforms and was previously identified as Sgg46

[24]. The remaining nine proteoforms containing either a short C terminus, typified by Sgg-

PB (Sgg10), or a longer C terminus typified by Sgg-PA (Sgg39). The longer isoform contains a

glycine-rich region that is analogous to the N-terminal domain of the vertebrate GSK-3α. The

role of this domain is currently not well understood but is predicted to contain an ANCHOR

binding region [25] and two short MATH domain interaction motifs, both thought to be

important in protein interactions [26] (Fig 1C).

In Drosophila, sgg is known to have a variety of developmental roles and interacts with a

number of signalling pathways including Wnt, Hedgehog, Notch and Insulin [27–29], as well

as being implicated in a variety of other cellular processes [30]. Null mutations in sgg exhibit a

maternal effect lethal phenotype with a strong segment polarity defect in embryos lacking

zygotic and maternal Sgg, as well as defects in the central and peripheral nervous systems [31].

In addition, analysis of a wide range of other alleles has reveal phenotypes in diverse tissues,

for example in the macrochaetes, mechanosensory bristles found on the adult thorax, where it

has been shown to phosphorylate key transcription factors [32]. However, despite the consid-

erable focus on the role of sgg in development, little is known about how particular proteo-

forms contribute to specific functions. Previous work indicates that Sgg-PB (Sgg10) is an
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important proteoform, maternally contributed and detected throughout development into

adults [33]. In contrast, Sgg-PA (Sgg39) has more limited expression, it does not appear to be

maternally contributed (Fig 1D). and is not detected in wing imaginal disks, where the adult

macrochaetes develop. A third major isoform, Sgg-PD (Sgg46), contains a C-terminal domain

that includes a caspase-cleavage site. It appears to be dispensable for viability but has a role in

sensory organ precursor development [24, 33]. Rescue experiments in Drosophila indicate that

expression of a Sgg-PB isoform can fully rescue sgg null phenotypes and that mammalian

GSK-3β but not GSK-3α can provide partial rescue of some, but not all null phenotypes,

Fig 1. A) simplified map of shaggy locus showing the major proteoforms (from FlyBase). Diamonds indicate the position of insertion sites tagged by CRISPR/Cas9 with

the colour representing the tag used. B) Length of each of the major Sgg proteoforms in amino acids and an indication of proteoforms sharing the same amino acid

sequence (from FlyBase). C) Amino acid sequence of the C terminal exon differentiating isoform A from isoform B. The underlined sequence is a predicted ANCHOR

binding region, lowercase letters indicate predicted MATH domain interaction motifs. D) modENCODE RNAseq timecourse of relative expression levels of transcripts

encoding the major Sgg-PA Sgg-PB isoforms. The X axis indicates the modENCODE samples collected with the first 12 representing 2hr intervals across embryogenesis.

Dotted line indicates the end of embryonic development.

https://doi.org/10.1371/journal.pone.0236679.g001
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emphasising the difference between the mammalian genes and pointing to functional differ-

ences between Sgg proteoforms [28].

The complexity of the sgg, locus in Drosophila with its multiple proteoforms and the appar-

ent differences between GSK-3 paralogs in vertebrates raises the question of how different

GSK-3 proteoforms contribute to the functions of this key kinase during development and in

homeostasis. In particular, there has been a general debate as to whether protein isoforms

encoded by the multiple splice forms of a particular gene are produced and functional. One

extreme, based on evidence from high throughput mass-spectrometry or literature curation of

verified proteoforms, contends that most genes encoding multiple alternatively spliced iso-

forms only produce a single functional proteoform [34, 35]. In contrast, an alternative view is

that alternatively spliced isoforms generate proteoforms with functionally distinct properties

in terms of spatial or temporal expression, or their interaction repertoires [36, 37]. To help

address the role of alternative Sgg proteoforms in Drosophila and the developmental roles

GSK-3 plays, as well as contributing to the debate surrounding the functionality of splice iso-

forms, we used a CRISPR-Cas9 based genome engineering strategy to tag specific Sgg proteo-

forms. We introduced fluorescent protein or affinity tags into the endogenous sgg locus in

Drosophila [38], altogether tagging eight different exons. This allowed us to follow the expres-

sion of Sgg proteoforms across embryonic development by immunohistochemistry and/or

fluorescence microscopy, revealing unique and specific expression for each of the tagged pro-

teoforms. Focusing on the major C terminal domains, we show that the short form (Sgg-PB) is

ubiquitously expressed across embryogenesis and is essential for viability. In contrast, the long

form (Sgg-PA) is specifically expressed in the developing nervous system and is not required

for viability. Furthermore, using the tagged lines to identify interacting proteins for each pro-

teoform class we found a different set of interactors. This agrees with an analysis of mamma-

lian GSK-3α and β interactions using a yeast 2-hybrid approach which found a different set of

interacting proteins for these closely related proteins [39]. We found that the loss of major pro-

teoforms is not always compensated by other isoforms and can lead to age-related pathologies

including accelerated senescence. Taken together, our work suggests that the transcript com-

plexity of the Drosophila sgg locus reflects functionally relevant differences in the spatial and

temporal expression of GSK-3 as well as functional differences between major proteoforms.

Results and discussion

In vivo tagging of major Sgg proteoforms

In order to determine the expression and localisation of specific Sgg proteoforms we used

CRISPR/Cas9 genome engineering to introduce different in-frame protein tags into specific

exons at the endogenous sgg locus [38]. We first focused on the major C terminal proteoforms

represented by Sgg-PA and Sgg-PB, constructing fly lines containing a 3xFLAG-StrepTagII-

mVenus-StrepTagII (FSVS) cassette just before the termination codon. We have previously

utilised this cassette in a large-scale protein trap screen [40] and found it was tolerated by a

wide range of different Drosophila proteins in vivo. In both cases the lines we generated were

homozygous or hemizygous viable and fertile. Using an antibody against the FLAG epitope we

first examined the expression of each tagged proteoform in the Drosophila embryo via immu-

nohistochemistry. With Sgg-PA we found little or no expression during early development but

by stage 9 (germband extension) we observed strong and specific expression in the developing

CNS of the trunk and then brain. As development proceeded expression became prominent in

the elaborating PNS and was particularly strong in the chordotonal organs, where it continued

to the end of embryogenesis (Fig 2E and 2H). Looking more closely we observed that in the

chordotonal organs staining was associated with the cell bodies and extended into the ciliated
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endings. (arrows in Fig 2M and 2P). Towards the end of embryogenesis, we observed specific

staining in a subset of cells in the developing brain and in the anterior commissural bundle (S1

Fig). In contrast, we found strong and ubiquitous staining in the Sgg-PB lines in the early

embryo, as expected from the strong maternal contribution detected by RNA-seq analysis (Fig

1D), that continued until germ band retraction (Fig 2C and 2F). Demonstrating that the ubiq-

uitous strong staining reflects Sgg-PA expression, we live imaged embryos carrying an

mCherry tagged Sgg-PA and observed similar ubiquitous expression in the blastoderm (S1F

Fig). At later stages expression was prominent in the hindgut, midgut and salivary glands (Fig

2I). At higher magnification in stage 11–13 embryos (germ band retraction), we observed

staining in the developing muscles (Fig 2N) and epidermis (Fig 2O).

Fig 2. Immunohistochemistry and live imaging of tagged Sgg-PA and -PB proteoforms. All stainings are with anti-

FLAG. (A, D and G) wild type embryos at stage 5–6 (blastoderm), 10–11 (extended germ band) and 16 (late

embryogenesis) respectively. (B, E and H) tagged Sgg-PA at similar stages showing expression in the developing CNS

(arrows in E), mature CNS and PNS (arrow and arrowhead in H). (C, F and I) tagged Sgg-PB at equivalent stages

showing ubiquitous expression at the blastoderm (C) and germband extension stages (F), followed by localised

expression in hindgut (arrow in I), midgut (arrowhead in I) and salivary glands (white arrow in I). (J-L) live confocal

images of late stage embryos. Wild type showing gut autofluorescence (J), Sgg-PAFSVS showing prominent CNS

expression (K), Sgg-PBFSVS showing mesoderm expression (L). (M) lateral view of abdominal chordotonal organs

from a stage 15 Sgg-PA embryo. (N and O) lateral view of the mesoderm (N) and epidermis (O) from a stage 14 Sgg-

PB embryo. P) lateral view of YFP expression in abdominal chordotonal organs of a stage 15 Sgg-PA embryo. (Q)

lateral view of YFP expression the epidermis of a stage 15 Sgg-PB embryo. All embryos are lateral views with anterior

to the left. Scale bar in A = 100μm (applies to A-L), Scale bar in M = 20μm (applies to M-Q).

https://doi.org/10.1371/journal.pone.0236679.g002
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To confirm the localisation observed with the immunohistochemistry, we examined the

FSVS tagged versions of Sgg-PA and Sgg-PB by confocal imaging unfixed samples. We found

very similar, if not identical, localisation to that obtained by immunohistochemistry (Fig 2K

and 2L). In particular the fluorescence allowed much clearer visualisation of Sgg-PA through-

out the chordotonal organs (Fig 2P) and Sgg-PB in the musculature (Fig 2Q). We also gener-

ated alternatively tagged versions of each proteoform by replacing the YFP tag with mCherry.

We generated embryos heterozygous for either Sgg-PAYFP/Sgg-PBmCh (Fig 3A and 3C) or Sgg-

PAmCh/Sgg-PBYFP (Fig 3B and 3D) and imaged these by confocal microscopy. While in general

the mCherry signal was significantly weaker that the YFP, we were able to confirm and extend

our immunohistochemistry observations. The fluorescent reporters confirmed the strong loca-

lisation of Sgg-PA to the central nervous system and prominently in the PNS as well as Sgg-PB

in the epidermis and mesoderm (Fig 3E and 3F), particularly in the epidermis, Sgg-PB

appeared to give a more punctate appearance (Figs 3E and S1G).

Tagging other Sgg proteoforms

We extended our analysis to examine other Sgg proteoforms, introducing exon specific

3xFLAG-StrepTagII tags into the endogenous sgg locus (Fig 1, S1 Table). We tagged the C-ter-

minus of the first exon of Sgg-PD (which also tags -PP and -PQ); the first coding exon of Sgg-

PG (also tags -PR), the unique terminal exon of Sgg-PO, a unique internal exon of Sgg-PP and

an internal exon of Sgg-PQ (shared with -PM, -PP and -PR). Finally, Sgg-PM is predicted to

initiate with a valine rather than a methionine and we tagged a unique exon in this proteoform

to confirm the translation from a non-standard initiation codon. All of the tagged lines we

generated were homozygous or hemizygous viable and fertile, and we again examined

Fig 3. Fluorescence imaging of tagged Sgg proteoforms. (A and C) heterozygous stage 17 female embryos carrying

Sgg-PA tagged with YFP and Sgg-PB tagged with mCherry showing Sgg-PA expression in CNS (A) and PNS (C) with

weaker ubiquitous expression of Sgg-PB. (B and D) stage 17 heterozygous female embryos carrying reciprocally tagged

lines (Sgg-PA-mCherry, Sgg-PB-YFP) highlighting Sgg-PA in the CNS (B) and PNS (D) and Sgg-PB in the mesoderm

(D). (E and F) close up view of Sgg-PA in chordotonal organs (YFP in E and mCherry in F) and punctate epidermal

Sgg-PB (mCherry in E) and mesodermal Sgg-PB (YFP in F). All embryos oriented anterior to the left, dorsal to the top.

Scalebar in B = 100μm (applies to A-D), Scale bar in E = 20μm (applies to E and F).

https://doi.org/10.1371/journal.pone.0236679.g003
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expression in fixed samples by immunohistochemistry with a monoclonal antibody recognis-

ing the FLAG epitope (S2 Fig). In contrast to the -PA and -PB tagged lines we noticed that,

apart from Sgg-PD, the expression levels of the other proteoforms was generally weaker and

mostly restricted to particular tissues.

Sgg-PD. This variant shows early expression that is largely restricted to mesoderm (S2D

Fig) and becomes more prominent at stage 9 (S2E Fig). At later stages the expression of Sgg-

PD is generally weak and ubiquitous with elevated levels found in the CNS, posterior spiracles,

Malpighian tubules, proventriculus and salivary glands (S2F and S2V Fig).

Sgg-PG and -PR. These proteoforms share a unique amino terminus and have either the

long (-PR) or short (-PG) C termini described above, they also differ in a short internal exon

but our tagging does not differentiate between these (S1 Table). We did not detect any strong

expression during early stages, but by mid-embryogenesis we observed transient mesoderm

expression (S2H Fig) followed by later expression in the hindgut (S2I Fig), foregut and the

anterior region of the pharynx (S2W Fig).

Sgg-PM. This proteoform is predicted to initiate with an unconventional start codon, a

valine rather than a methionine, and shares a C terminus with Sgg-PA. We found no early

expression of this proteoform. Late in development we observed expression in the pharynx,

proventriculus and weakly in the hindgut (S2L Fig).

Sgg-PO. This Sgg-PO proteoform has a unique C-terminus (Fig 1), and is not detected

during early stages but again shows detectable expression in the mesoderm (S2N Fig) from

stage 9 and at later stages in the hindgut, posterior spiracles and prominently in the proventric-

ulus (S2O and S2X Fig).

Sgg-PP. This proteoform shares the N-terminal exon of Sgg-PD and the short C-terminal

exon but has a short unique exon that we tagged. We did not find any expression during early

embryogenesis, although there appears to be faint staining in the mesoderm at stage 9 (S2Q

Fig), but we did observe expression in the hindgut and anterior midgut of late embryos (S2R

and S2Y Fig).

Sgg-PQ. We tagged this proteoform at an internal exon shared with–PR, -PP, and–PM.

These proteoforms were not detected during early embryogenesis but at later stages it was is

prominent in the salivary glands and proventriculus (S2U Fig).

Taken together, our tagging strategy has revealed dynamic and tissue-specific expression of

different Sgg proteoforms during embryogenesis. Our most striking finding is the clear differ-

ence in expression of the major C-terminus proteoforms exemplified by Sgg-PA and Sgg-PB,

which, as we describe above, may correspond to the GSK-3α and GSK-3β proteins encoded by

separate genes in vertebrate genomes. We therefore elected to generate specific loss of function

mutations in each of these major isoforms by separately deleting their specific C-terminal

exons. A further noticeable feature of the proteoform expression was the localisation of differ-

ent tagged proteoforms in the developing digestive system, particularly in the proventriculus

and hindgut. While it has been shown that sgg expression is enriched in particular regions of

the adult gut, particularly the crop and hindgut [41], there have been relatively few reports of

functional roles for sgg in the gut [42, 43] or other specific tissues in the embryo [44]. Finally,

the extensive early mesoderm expression shown by several proteoforms is consistent with the

previously established role for sgg and Wnt signalling in embryonic muscle cell progenitors

[45].

Proteoform specific mutations and transcriptomics

We used CRISPR-Cas9 genome engineering to generate in locus deletions to remove the C-

terminal exons specific for the Sgg-PA or Sgg-PB proteoform families. We completely
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removed the unique exons, replacing them with a 3Px3 driven DsRED marker, flanked by

LoxP sites, that was subsequently removed by the activity of Cre recombinase to leave the

remainder of the locus largely unaltered [46]. In this way we generated Sgg-PB mutations,

where the following upstream exon unique for isoform Sgg-PA was left intact. Similarly, we

removed the last unique exon for isoform Sgg-PA ensuring the flanking sequences were not

affected. Both of the exon deletions were confirmed by genotyping via PCR and sequencing.

Deletion of the Sgg-PA class proteoforms (sggisoA) resulted in flies that were viable and fer-

tile, whereas loss of the Sgg-PB class proteoforms (sggisoB) resulted in late embryo/early larval

lethality. We note that in the case of sggisoA, progeny from homozygous mothers lack both

maternal and zygotic contributions and are thus completely null, whereas progeny from hemi-

zygous sggisoB mothers have a maternal contribution of wild type transcript or protein.

We examined mutant lines by immunostaining to determine any effects on CNS and PNS

development and only observed minor defects in a small percentage of progeny (<5%). Exam-

ination of larval cuticles revealed a similar low frequency of defects, with the very occasional

appearance of animals resembling sgg loss of function phenotypes (<1%). We conclude that

the unique C-terminal extension defining the Sgg-PA class of proteoforms is dispensable for

normal development, a similar situation as seen in vertebrates with the loss of GSK-3α. We

presume that in this case, ubiquitous expression of the shorter Sgg-PB class of proteoforms is

able to provide sufficient Sgg function in the nervous system. In contrast, loss of the Sgg-PB

class terminal exon is lethal and either cannot be rescued by the longer C-terminus or selection

of the Sgg-PA terminal exon is tissue specific and unable to be spliced in some tissues.

To examine whether the loss or reduction of Sgg proteoforms had consequences for gene

expression, we performed RNA-seq analysis using RNA extracted from the isoform specific null

mutants (Fig 4A, S2 Table). In the case of sggisoA, embryos from homozygous mothers crossed to

hemizygous fathers are completely null for the proteoforms containing this exon and we com-

pared RNA from these embryos with stage matched embryos from the progenitor stock. We per-

formed triplicate biological replicates and after filtering (1.6-fold expression change, p<0.05) we

identified 100 genes with significantly changed expression (26 up and 74 down) with no signifi-

cant enrichment of any Gene Ontology terms apart from a down-regulation of 6 mitochondria-

encoded respiratory chain components (ATPase-6, Cyt-b and 4 ND subunits) along with 7 other

enzymes involved in respiration or redox reactions. Given that sggisoA null embryos are viable

and fertile the lack of any major effects on gene expression was not unexpected.

For the analysis of sggisoB we extracted RNA from null hemizygous male embryos derived

from heterozygous mothers, identifying these individuals by the lack of a GFP balancer, and

compared this with RNA from the progenitor stock. While we expect a rescue of the zygotic

mutation by the maternal component, we nevertheless identified 482 genes with significant

expression changes (94 up and 388 down) (S2 Table). In particular, we noted a strong upregu-

lation of Heat Shock Factor (Hsf) and a number of stress response and chaperone genes, but

down regulation of sets of genes implicated in cuticle development and proteolysis. Many of

these dysregulated genes form a highly connected network (p<10e-16, Fig 4B) indicating that

mutants are clearly perturbed at the transcriptional level. We presume these gene expression

changes reflect the gradual loss of sggisoB maternal product, however, and in line with the lack

of overt morphological phenotypes, we note that we found no apparent changes in any major

developmental or signalling pathways.

Proteoform-specific interactions

Since the two major Sgg proteoform classes are expressed in spatially different patterns it is

possible that they participate in different pathways, have different protein partners or
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preferentially act on a different spectrum of substrates. To gain insight into possible unique

roles we performed immunopurifications followed by mass spectrometry analysis to identify

Sgg-PA and Sgg-PB interactomes. Using our previously described IPAC approach [47], we

performed independent purifications using the StrepII, FLAG and YFP tags introduced into

the sgg locus to increase the reliability of the identified interacting partners. In parallel, we also

used a protein trap line we had previously generated (sggCPTI002603) that appears to tag the

majority of Sgg proteoforms [40], along with a w1118 negative control. We applied the QProt

pipeline, a tool for examining differential protein expression, with a p-value cut-off of 0.05 and

a requirement that putative interactors be identified in at least 2 out of the 3 independent pull

downs after correcting against the wild type control. We identified 20 co-purifying proteins

with SggCPTI002603, 26 with the Sgg-PA and 21 with Sgg-PB (Table 1).

We first determined whether the lists of potential interactors were enriched for any Gene

Ontology terms and found that the Sgg-PA and SggCPTI002603 lists were significantly enriched

for processes involved in ribosome assembly, cytoplasmic translation and protein folding

(adjusted p<2e-06), whereas the Sgg-PB list showed no significant enrichment. While these

enrichments may suggest that the presence of the YFP tag in the lines affects protein synthesis,

slowing it to allow the fluorescent protein to fold, we note that in mammalian systems GSK-3β
has been shown to complex with chaperones during maturation [48] and to colocalise with

chaperone complexes in a Huntington’s disease model [49]. Thus, whether these represent

noise or biologically relevant interactions remains to be determined, however, we note that no

Fig 4. RNA-seq of sgg isoform mutants. (A) heatmaps of significant expression changes in embryos maternally and zygotically null for sggisoA

and zygotically null for sggisoB with significant GO enrichments indicated. (B) String interaction map constructed from genes with significantly

changed expression in sggisoB zygotic nulls showing highly connected networks of peptidases, chaperone functions and cuticle biosynthesis

genes (p-values indicated corrected gene ontology enrichments for the indicated terms).

https://doi.org/10.1371/journal.pone.0236679.g004
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Table 1. Significant interacting proteins identified by IPAC-MS for Sgg-PA, Sgg-PB and the SggCPTI115553 protein trap line.

Sgg-PA Sgg-PB Sgg-CPTI

FlyBase ID Protein FDR FlyBase ID Protein FDR FlyBase ID Protein FDR

FBgn0035853 Ubiquitin conjugating

enzyme E2M

1.42E-

03

FBgn0035621 uncharacterized protein 6.50E-

05

FBgn0000181 Bicaudal 2.00E-

06

FBgn0035621 uncharacterized protein 1.45E-

03

FBgn0004649 Yolkless 2.44E-

04

FBgn0010774 RNA and export factor

binding protein 1

5.48E-

03

FBgn0033879 uncharacterized protein 3.67E-

03

FBgn0250848 26-29kD-proteinase 3.11E-

04

FBgn0035621 uncharacterized protein 2.29E-

02

FBgn0029969 uncharacterized protein 9.08E-

03

FBgn0285925 Fasciclin 1 3.53E-

04

FBgn0003391 Shotgun 2.84E-

02

FBgn0029785 Ribosomal protein L35 1.07E-

02

FBgn0285954 Cabeza 8.97E-

04

FBgn0010215 Alpha Catenin 2.94E-

02

FBgn0039857 Ribosomal protein L6 1.10E-

02

FBgn0035909 Ergic53 1.32E-

03

FBgn0030136 Ribosomal protein S28b 2.99E-

02

FBgn0020660 eukaryotic translation

initiation factor 4B

1.37E-

02

FBgn0028688 Regulatory particle non-

ATPase 7

1.93E-

03

FBgn0015778 Rasputin 3.14E-

02

FBgn0017579 Ribosomal protein L14 1.44E-

02

FBgn0000181 Bicaudal 1.95E-

03

FBgn0041775 Trailer hitch 3.16E-

02

FBgn0000181 Bicaudal 1.62E-

02

FBgn0035208 uncharacterized protein 4.15E-

03

FBgn0262743 Female sterile (2) Ketel 3.30E-

02

FBgn0000308 Chickadee 2.19E-

02

FBgn0261397 dilute class unconventional

myosin

7.41E-

03

FBgn0042134 Caprin 3.31E-

02

FBgn0003279 Ribosomal protein L4 2.56E-

02

FBgn0003371 Shaggy 9.11E-

03

FBgn0000117 Armadillo 3.31E-

02

FBgn0030086 Chaperonin containing TCP1

subunit 2

2.79E-

02

FBgn0013770 Cysteine proteinase-1 1.19E-

02

FBgn0259173 Cornetto 3.38E-

02

FBgn0266446 uncharacterized protein 2.83E-

02

FBgn0001122 G protein alpha o subunit 1.61E-

02

FBgn0003371 Shaggy 3.46E-

02

FBgn0020235 ATP synthase, gamma subunit 2.98E-

02

FBgn0029969 uncharacterized protein 1.64E-

02

FBgn0020279 lingerer 3.53E-

02

FBgn0260639 Gamma-Tubulin at 23C 3.34E-

02

FBgn0000117 Armadillo 2.64E-

02

FBgn0051716 CCR4-NOT transcription

complex subunit 4

3.56E-

02

FBgn0024733 Ribosomal protein L10 3.42E-

02

FBgn0010516 Walrus 2.77E-

02

FBgn0266557 Kismet 3.65E-

02

FBgn0011640 Lark 3.45E-

02

FBgn0027108 Innexin 2 3.31E-

02

FBgn0034181 uncharacterized protein 3.82E-

02

FBgn0039713 Ribosomal protein S8 3.90E-

02

FBgn0039704 Neyo 3.33E-

02

FBgn0005771 No ocelli 4.54E-

02

FBgn0001092 Glyceraldehyde 3 phosphate

dehydrogenase 2

3.92E-

02

FBgn0032773 Fondue 3.61E-

02

FBgn0283479 Alkaline phosphatase 1 4.79E-

02

FBgn0010078 Ribosomal protein L23 3.96E-

02

FBgn0030699 uncharacterized protein 3.70E-

02

FBgn0030699 uncharacterized protein 4.85E-

02

FBgn0038805 Mitochondrial transcription

factor A

4.13E-

02

FBgn0038914 Female-specific

independent of transformer

4.12E-

02

FBgn0260442 Rhea 4.18E-

02

FBgn0032444 Chaperonin containing TCP1

subunit 4

4.20E-

02

FBgn0034968 Ribosomal protein L12 4.50E-

02

FBgn0028697 Ribosomal protein L15 4.51E-

02

(Continued)
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such enrichments were observed with the Sgg-PB proteoform and loss of Sgg-PA proteoforms

does not lead to upregulation of the stress response in our RNA-seq analysis, suggesting there

is no general translational disruption in the Sgg-PA and CPTI lines.

In common to the 3 different tagged lines we detected significant enrichment of Bicaudal

and CG10591 proteins (red in Table 1). Along with its characterised maternal role in early seg-

mentation, Bicaudal is widely expressed during embryogenesis where it has a role in transla-

tion via binding nascent peptides. CG10591 is a protein of unknown function. Encouragingly,

with Sgg-PB and the CPTI lines we identified Armadillo (β-Catenin), a known Sgg substrate,

as an interacting partner but not with Sgg-PA. With the CPTI line we also identified Shotgun,

an E-Cadherin known to bind β-Catenin, and α-Catenin, which also interacts with Arm.

Finally, the G protein α o subunit, known to be involved in Wnt signalling, [50] was identified

with Sgg-PB. Thus for two of the lines we find evidence for predicted interactions. Specific to

the Sgg-PB line we identified the gap junction protein Innexin 2 [51], known to localise with

Sgg and E-Cadherin, along with the cell adhesion molecule Fasciclin 1 and Neyo, a component

of the zona pellucida complex [52]. We also detected the interaction with Regulatory particle

non-ATPase 7, which is involved in the ATP-dependent degradation of ubiquitinated proteins

including CACT, an important component for the degradation of NF-kappa-B inhibitor or

degradation of Cl that participates in the Hedgehog (Hh) signalling pathway. Together these

interactions are consistent with the enrichment of Sgg-PB isoform at the cell membrane and

also with known roles for Sgg in regulating aspects of cell junctions. In the case of Sgg-PA, we

identified the Talin protein Rhea, the actin binding profilin Chickadee and Gamma Tubulin

23C, cytoskeletal components known to be expressed in the nervous system. Among other

interactors of Sgg-PA associated with nervous system localisation we detected Lark [53], which

mediates aspects of circadian clock output [54] and two subunits of the Chaperonin TCP com-

plex (2 and 4) that are known to have roles in the nervous system. Together, these identified

interacting proteins are consistent with the localisation of Sgg-PA to the CNS. Interestingly,

the RNA-seq analysis of sggisoA mutants identified several misregulated components of the

mitochondrial ATP synthesis pathway and our IPAC analysis identified the gamma subunit of

ATP synthase along with the mitochondrial regulator TFAM, indicating a potential link with

neural energy homeostasis. Taken together, the iPAC analysis identified several known Sgg

interacting proteins, found little overlap between proteins enriched with the proteoform-spe-

cific pulldowns and indicates that Sgg is involved in diverse, tissue-specific processes in the

embryo.

Lifespan and locomotor dysfunction in sggisoA mutants

While GSK-3 is a recognized target for the treatment of age related pathologies and multiple

diseases, its role in the aging process remains unclear [55]. According to some studies, RNAi

knockdown of sgg in Drosophila shortens lifespan or causes lethality [56]. However, these

results are contradictory to expectations from earlier studies suggesting that lithium treatment

Table 1. (Continued)

Sgg-PA Sgg-PB Sgg-CPTI

FlyBase ID Protein FDR FlyBase ID Protein FDR FlyBase ID Protein FDR

FBgn0034654 Eukaryotic translation

initiation factor 3 subunit k

4.87E-

02

FlyBase ID represents the gene ID for the corresponding protein. FDR is the false discovery rate calculated by QProt. Red text indicates proteins common to all three

pull downs, bold indicates the known target Armadillo.

https://doi.org/10.1371/journal.pone.0236679.t001
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extends lifespan via GSK-3 inhibition, determined using specific RNAi to mediate reduction

in sgg expression [57]. In knock-out mice, loss of GSK-3β is embryonic lethal, whereas GSK-

3α null mice exhibit shortened lifespan and increased age-related pathologies [58]. Given the

apparent contradictory evidence of the role of sgg in lifespan, we investigated whether loss of

the Sgg-PA proteoform, which is viable and fertile, positively or negatively influences life span

in Drosophila.

We performed a standard survival analysis of sggisoA null males and females separately,

along with matched flies from the progenitor strain. We found that homozygous sggisoA

females showed significantly reduced survival (~15%, p<0.05) compared to controls and an

even more sever reduction (~25%, p<0.05) in hemizygous males (Fig 5A). These results indi-

cate that in flies as in mice, deletion of the Sgg-PA proteoform has a negative effect on

longevity.

Since Sgg-PA is extensively expressed in the developing nervous system and GSK-3α
mutant mice have nervous system phenotypes, we sought to determine whether the loss of this

proteoform has effects on neural function in flies by looking at impairment in locomotor activ-

ity via climbing assays (Fig 5B). In homozygous females the loss of Sgg-PA resulted in a 40%

decrease in locomotor activity across the lifespan with a similar reduction observed in hemizy-

gous males. The maximum climbing activity was observed in 10 days old flies and was just

over 75% for the control line and approximately 45% for the sggisoA null. The climbing activity

gradually decreased over time and in 40 days old flies was reduced to 55% for the control line

and 27% for sggisoA null flies (Fig 5B). These observations indicate that loss of the predomi-

nantly nervous system expressed Sgg-PA proteoform impairs motor function.

Taken together, our results indicate that although conditional modulation of GSK-3 levels

may prolong lifespan or can mitigate the negative age-associated symptoms observed with dis-

eases such as Alzheimer’s or diabetes [55], the isoform specific knockout of a nervous system-

specific proteoform results in reduced lifespan and locomotor defects. Given the positive

impact of GSK-3 inhibition on multiple diseases ranging from neurological disorders to can-

cer, as well widespread therapeutic interventions targeting GSK-3, further studies are required

to assess long-term effects on the aging process and the risks associated with nervous system

impairment.

Taken together, our studies indicate that GSK3 performs complex functions mediated by

multiple different spliced isoforms that generate functionally distinct proteins. At the level of

proteoform expression we provide evidence of complex temporal and tissue specific protein

localisation that presumably results from highly regulated tissue-specific splicing as well as evi-

dence for the use of non-canonical transcriptional initiation. Our most striking finding is the

major functional differences observed between the two most abundant 3’ coding exons, with

the short form mediating the well established essential roles for Sgg in development, whereas

the long form has nervous specific expression and measurable functional roles in nervous sys-

tem function. This situation is reminiscent of the divergent roles apparently played by GSK-3α
and GSK-3β in mammalian systems. The identification of a different repertoire of interacting

proteins for the major Drosophila GSK3 proteoforms may provide clues as to the differing

roles played by the vertebrate orthologues and opens a route to understanding how this critical

kinase can be deployed in different biological contexts.

Materials and methods

Cloning gRNAs

To generate the transgenic fly lines carrying the tagged isoforms, we used CRISPR/Cas9 tech-

nology as previously described [38]. We initially designed the insertion sites as indicated (Fig
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1) and choose appropriate gRNAs (S3 Table) for cloning into pCDF3 or pCDF4 vectors [59].

Briefly, target specific sequences were synthesized and either 50-phosphorylated annealed, and

ligated into the BbsI sites of pCDF3 or amplified by PCR for cloning into pCDF4 pre-cut with

BbsI.

Generation of donor vectors

Unless otherwise noted, cloning of donor vectors was performed with the Gibson Assembly

Master Mix (New England Biolabs). PCR products were produced with the Q5 High-Fidelity

2X Master Mix (New England Biolabs). All inserts were verified by sequencing. Primers used

for plasmid construction are listed in S4 Table.

Drosophila methods

Embryos were injected using standard procedures into the THattP40 line expressing nos-Cas9

[60, 61]. 500 ng/μl of donor DNA in sterile dH2O was injected together with 100 ng/μl of

gRNA plasmid. Individually selected surviving adults were crossed to w1118 and the progeny

screened for fluorescence: positive flies were balanced and homozygous stocks established

where possible (Primers used for genotyping are listed in S5 Table). Injections were performed

by the Department of Genetics Fly Facility (https://www.flyfacility.gen.cam.ac.uk). All fly

stocks were maintained at 25˚C on standard cornmeal medium. Embryos were collected from

small cages on yeasted grape juice agar plates.

Immunostaining

Localization of tagged proteoforms in embryos was visualized by immunohistochemistry

using Mouse Anti-FLAG M2 (F1804 Sigma), followed by biotinylated goat anti-Mouse IgG

(BA-9200, Vector Laboratories) and the Vectastain ABC HRP Kit (PK-4000, Vector Laborato-

ries) using standard protocols [62]. Embryos were mounted in glycerol and imaged using a

Zeiss Axiphot.

Confocal microscopy

For fluorescence imaging, embryos were collected, dechorionated and quickly fixed to avoid

bleaching then mounted in glycerol. For live imaging, embryos were dechorionated and

mounted in halocarbon oil. Images were acquired using a Leica SP8 confocal microscope

(Leica microsystems) with appropriate spectral windows for mVenus and mCherry. images

were processed with the Fiji software [63].

RNA-seq

10-15hr embryos from a homozygous sggisoA stock and a control line were collected and pro-

cessed for RNA-seq as described below. In the case of sggisoB, non-fluorescent embryos from a

cross between sggisoB/FM7-GFP X FM7-GFP/Y were collected. In parallel, non-fluorescent

embryos from a +/FM7-GFP X FM7-GFP/Y cross were also collected (FM7-GFP: FM7c, P

{GAL4-twi.G}108.4, P{UAS-2xEGFP}AX).

Tissue was homogenised in 300 μl TRIzol with a motorised pellet pestle for 30 seconds. The

sample volume was then increased to 1 ml, then 200 μl of Chloroform was added and vortexed.

Fig 5. sggisoA phenotypic assays. (A) Graph of lifespan from replicate lines of progenitor controls, sggisoA null females and males as indicated. Error bars

represent standard deviation. (B) Graph of locomotor activity as measured by climbing assays with replicate lines of progenitor controls, sggisoA null females

and males as indicated. Error bars represent standard deviation.

https://doi.org/10.1371/journal.pone.0236679.g005
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Samples were centrifuged at max speed for 15 minutes at room temperature and the upper phase

transferred to a new 1.5 ml tube. The RNA was then precipitated with 0.8 volumes of Isopropanol

and incubated at -20˚C for 2 hours. The samples were then centrifuged at 4˚C at maximum

speed for 30 minutes to pellet the RNA. The pellet was then washed with 1 ml 70% ethanol and

centrifuged cold for another 5 minutes. After complete removal of the ethanol the RNA was

dried for 5 minutes and re-suspended in 20 μl DEPC-treated water. The concentration of samples

was determined with the Qubit RNA HS Assay Kit and sample quality assessed with the Bioanaly-

zer and on 1% agarose gels. Sequencing libraries were prepared using the NEBNext1Ultra™ II

Directional RNA Library Prep Kit for Illumina. For each sample 100 ng total RNA were pro-

cessed with the NEBNext Poly(A) mRNA Magnetic Isolation Module. For all reactions, half vol-

umes were used throughout the protocol, with the exception of the AMPure bead clean-up step

where washes were performed used the standard 200 μl 80% fresh Ethanol. Samples were bar-

coded and PCR amplifications were performed for 12 cycles. After Bioanalyzer quality control

equal amount of sample libraries were pooled and submitted for Illumina single-end sequencing.

Fastq reads were aligned using tophat (v2.1.1) with Bowtie (version: 2.3.4.0) using the

default parameters. Gene counts tables across samples were created with Rsubread (1.22.3)

using dmel_r6.20.gtf and options GTF.featureType = "exon" and GTF.attrType = "gene_id"

and default parameters. Read counts per experiment (sggisoA and sggisoB experiments were pro-

cessed independently) were imported into edgeR (3.14.0) and filtered using the filterByExpr

function with the default parameters (10397 genes were retained for sggisoA and 10693 genes

for sggisoB). The data was then normalised in limma (3.28.21) using limma-voom. Significant

genes were identified fitting a linear model (lmFit) and empirical Bayes method (eBayes) [64–

67]. Genes were considered significant differential expressed with fdr < = 0.05 and logFC > =

|0.7|. RNA-seq data are available from GEO (GSE139040).

iPAC-MS

Embryos from 8–20 hr collections were washed from agar plates with tap water, collected in

100 μm sieves, rinsed in the same solution to remove any yeast, dechorionated in 50% bleach

for 1 min, rinsed again and placed on ice. Where necessary, washed embryos were frozen at

−80˚C until a sufficient quantity was collected. For each purification, ~200 μl wet-volume of

embryos were manually homogenized with a 2 ml Dounce homogenizer in 1 ml of extraction

buffer (50 mM Tris, pH 7.5, 125 mM NaCl, 1.5 mM MgCl2, 1 mM EDTA, 5% Glycerol, 0.4%

Igepal CA-630, 0.5% digitonin and 0.1% Tween 20) and processed essentially as previously

described [47]. Samples were independently immunopurified using StrepII, FLAG and YFP.

ANTI-FLAG1M2 affinity gel (Sigma) and Strep-Tactin1 Superflow1 resin (IBA) were

used to capture each FLAG-tagged or StrepII-tagged bait and its binding partners, respectively

[47]. For pulldown of fluorescently tagged proteins (YFP), anti-GFP mAb agarose resin (MBL

International) was used. Briefly, protein concentration estimation in the embryo lysate was

performed using a DC assay (Bio-Rad). The lysate was divided equally into three parts (6 mg

total protein per pulldown), to which each resin, pre-washed in extraction buffer, was added.

Following 2 h of incubation at 4˚C on a rotating wheel, the resin was washed three times in

extraction buffer. Immunoprecipitates were eluted twice each, using 100 μg/ml 3xFLAG pep-

tide (Sigma) in lysis buffer for FLAG immunoprecipitates and 10 mM desthiobiotin in lysis

buffer for Strep-Tactin immunoprecipitates; each for 10 minutes at 4˚C. Anti-GFP resin

immunoprecipitates were eluted in 100 mM glycine-HCl, pH 2.5 with gentle agitation for 30

seconds, followed by immediate neutralization in 1 M Tris-HCl, pH 10.4.

Purification of the baits was confirmed via immunoblots (data not shown) and samples

were prepared for mass spectrometric analysis using in-gel digestion, allowing the sample to
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enter 2 cm into an SDS-PAGE gel. Gels were fixed and stained with colloidal Coomassie stain,

after which the protein-containing band was excised and cut into two equally sized parts. Each

band was destained, reduced with dithiothreitol, alkylated with iodoacetamide and subjected

to tryptic digest for 16 hours at 37˚C. Approximately 1 μg of peptides from each digested band

was analysed using LC-MS/MS on a Q Exactive mass spectrometer (ThermoFisher Scientific),

as previously described [68].

For label-free quantification (LFQ), data were processed using MaxQuant (version 1.6.3.4)

[69]. Raw data were searched against protein sequences contained in the all translation data-

base obtained from FlyBase release FB2017_06 dmel_r6.19 at (ftp://ftp.flybase.net/releases/

FB2017_06/dmel_r6.19/fasta/). The database was customised with the addition of the Uniprot

proteome for Wolbachia pipientis wMel (https://www.uniprot.org/uniprot/?query=proteome:

UP000008215). Within MaxQuant, searches were performed against a reversed decoy dataset

and a set of known contaminants. Default search parameters were used with digestion using

trypsin allowing two missed cleavages and minimum peptide lengths of six. Carbamidomethyl

Cysteine was specified as a fixed modification. Oxidation of Methionine, N-term protein Acet-

ylation and Phosphorylation of Serine, Threonine and Tyrosine were specified as variable

modifications. Additionally, “match between runs” was enabled with fractions specified to

limit matching to occur only between replicates of the same bait and tag combination.

Identification of interacting partners was performed with QProt [70]. Input for QProt was

created from the MaxQuant “proteinGroups.txt” output file. Individually for each bait and tag

combination, proteins that were not reverse decoys or potential contaminants were extracted

where there was an LFQ reported for at least one tagged replicate. The LFQ values for proteins

detected in the tagged bait pulldowns were matched with the corresponding tag in the wild

type pulldown. Enrichment analysis was then performed for each bait and tag combination

against the corresponding wild type using qprot-param with burn-in set to 10,000 and number

of iterations set to 100,000. The QProt tool getfdr was used to calculate the FDR of enrichment.

Any proteins enriched in pulldowns using at least two of the three tags with an FDR of less

than 0.05 were classed as enriched and the highest FDR from the replicates is reported.

Lifespan determination

Adult female and male flies were collected shortly after eclosion and separated into 5 cohorts

of 100 flies (500 total) for each genotype. Flies were maintained at 25˚C and transferred to

fresh food every 2 days at which time the number of surviving flies was recorded.

Locomotor behaviour

Adult female and male flies were collected shortly after eclosion and separated into 10 cohorts

consisting of 10 flies (100 total) for each genotype. Flies were maintained at 25˚C and trans-

ferred to fresh food every 3 days. For the climbing assay, each cohort was transferred to an

empty glass cylinder (diameter, 2.5 cm; height, 20 cm), and allowed to acclimatize for 5 min.

For each trial, flies were tapped down to the bottom of the vial, and the percentage of flies able

to cross an 8-cm mark successfully within 10 s was recorded as the climbing index. Five trials

were performed for each cohort, with a 1-min recovery period between each trial. Climbing

assays were performed 1, 5, 10, 30 and 40 days after eclosion.

Supporting information

S1 Fig. (A-C) anti-FLAG immunohistochemistry of Sgg-PA expression in the ventral neu-

roectoderm of a stage 10 embryo (A), the brain from a stage 16 embryo (B) and the head

region showing various sensory organs (C). Scale = 20μm. (D and E) dorsal view of a stage 16
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Sgg-PB embryo showing expression in the gut (arrows) and mesoderm (arrowheads),

Scale = 100μm, and lateral view of hindgut (E) Scale = 20μm. (F) blastoderm embryo express-

ing mCherry tagged Sgg-PB and YFP tagged Sgg-PA, demonstrating ubiquitous Sgg-PB, the

YFP signal represents yolk cell autofluorescence, Scale = 100μm. (G) close up of punctate epi-

dermal expression in a Sgg-PB mCherry stage 16 embryo, Scale = 20μm.

(PDF)

S2 Fig. Immunohistochemistry of tagged Sgg proteoforms. A-U) Anti-flag staining of

embryos with the indicated tagged proteoforms at stage 5–6 (blastoderm, left column), 10–11

(germband extension, middle column) and 16 (late embryogenesis, right column). All embryos

oriented anterior to the left dorsal to the top except U, which is a dorsal view. See text for full

details of expression. (D and E), arrows = meseoderm; (F) arrow = salivary gland,

arrowheads = malphigian tubules, asterisk = posterior spiracles; (H) arrow = mesoderm; (I)

arrow = hindgut; (L) arrow = hindgut, arrowhead = foregut, white arrowhead = pharynx; (N)

arrow = mesoderm; (O) arrow = hindgut, arrowhead = proventriculus; (Q)

arrow = mesoderm; (R) arrow = hindgut, arrowhead = anterior midgut; (U) arrow = salivary

gland, arrowhead = proventriculus. Scale bar in A = 100μm. (V-Y) Close up dorsal views

highlighting: (V) Sgg-PD expression in the salivary gland (arrow) and proventriculus (arrow-

head); (W) Sgg-PG in the foregut (arrowhead) and anterior region of the pharynx (arrow); (X)

prominent Sgg-PO expression in the proventriculus (arrow) and (Y) Sgg-PP in the hindgut

(arrow). Scale bar in V = 20μm applies to V-Y.

(PDF)

S1 Table. Protein and transcript isoforms encoded by the D. melanogaster sgg locus.

(TXT)

S2 Table. Transcripts with significant expression changes in sggisoA and sggisoB embryos

compared with stage matched progenitors.

(TXT)

S3 Table. List of gRNAs used to generate CRISPR/Cas9 mediated HDR and transgenic fly

lines.

(XLSX)

S4 Table. List of primers used to generate donor vectors for homology mediated recombi-

nation via CRISPR/Cas9.

(TXT)

S5 Table. List of primers used for genotyping engineered flies.

(TXT)
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