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Single-Cell RNA Sequencing Reveals the Tissue
Architecture in Human High-Grade Serous Ovarian
Cancer
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ABSTRACT
◥

Purpose: The heterogeneity of high-grade serous ovarian cancer
(HGSOC) is not well studied, which severely hinders clinical
treatment of HGSOC. Thus, it is necessary to characterize the
heterogeneity of HGSOC within its tumor microenvironment
(TME).

Experimental Design: The tumors of 7 treatment-na€�ve patients
with HGSOC at early or late stages and five age-matched nonma-
lignant ovarian samples were analyzed by deep single-cell RNA
sequencing (scRNA-seq).

Results: A total of 59,324 single cells obtained from HGSOC
and nonmalignant ovarian tissues were sequenced by scRNA-seq.
Among those cells, tumor cells were characterized by a set of
epithelial-to-mesenchymal transition (EMT)-associated gene sig-
natures, in which a combination of NOTCH1, SNAI2, TGFBR1,
and WNT11 was further selected as a genetic panel to predict
the poor outcomes of patients with HGSOC. Matrix cancer-

associated fibroblasts (mCAF) expressing a-SMA, vimentin,
COL3A, COL10A, and MMP11 were the dominant CAFs in
HGSOC tumors and could induce EMT properties of ovarian
cancer cells in the coculture system. Specific immune cell subsets
such as C7-APOBEC3A M1 macrophages, CD8þ TRM, and TEX

cells were preferentially enriched in early-stage tumors. In addi-
tion, an immune coinhibitory receptor TIGIT was highly
expressed on CD8þ TEX cells and TIGIT blockade could signif-
icantly reduce ovarian cancer tumor growth in mouse models.

Conclusions:Our transcriptomic results analyzed by scRNA-seq
delineate an ecosystemic landscape of HGSOC at early or late stages
with a focus on its heterogeneity with TME. The major applications
of our findings are a four–EMT gene model for prediction of
HGSOCpatient outcomes, mCAFs’ capability of enhancing ovarian
cancer cell invasion and potential therapeutic value of anti-TIGIT
treatment.

Introduction
Ovarian cancer is the most lethal gynecologic malignancy, with

184,799 female deaths annually worldwide (1, 2). Among all ovarian
cancer subtypes, high-grade serous ovarian cancer (HGSOC) is the
most common phenotype, which is responsible for approximately 80%
of all ovarian cancer deaths (3). Because of the ambiguous symptoms,
only 20% cases of this malignancy can be identified at the early stages

for successful treatment. Most HGSOC progresses into the later
advanced stages with poor patient outcomes, which reflects the
aggressive nature of this disease (4, 5). Even after therapy, HGSOC
often recurs due to the development of chemoresistance, with an
overall 5-year survival probability of 31% (6, 7). Therefore, develop-
ment of effective treatments for patients withHGSOC is imperative for
better prognosis and overall survival (OS).

HGSOC appears several features. One of them is the epithelial-to-
mesenchymal transition (EMT) process (7, 8), which is a major
mechanism underlying ovarian cancer invasion and metastasis, as
well as chemoresistance (9, 10). Patients with HGSOC with activated
EMT transcriptional program exhibited worse outcomes (11). EMT
inhibition by simvastatin suppresses cancer cell metastasis and inva-
sion (12). Another hallmark is the tumor heterogeneity (13), charac-
terized by its tumor microenvironment (TME; ref. 14). The single-cell
RNA sequencing (scRNA-seq) is a powerful analysis tool to disclose
TME information of HGSOCs. For instance, a previous study using
scRNA-seq showed that the inhibition of the JAK/STAT pathway had
potent antitumor activities (15). Another work provided broad char-
acterization of the cellular composition associated with three tumor
immune phenotypes (i.e., infiltrated, excluded, or desert; ref. 16). A
recent report characterized certain stromal cell phenotypes in TME
regulation in high-grade serous tubo-ovarian cancers, such as TGFb-
driven cancer-associated fibroblasts (CAF), lymphatic endothelial
cells, and mesothelial cells (17).

One approach to regulate TME is via mediating immune cell
behaviors and programmed cell death protein 1 ligand (PD-L1), which
is pivotal checkpoint element of T-cell suppression (18), have been
studied for immunotherapies against ovarian cancer but with limited
impacts. One major reason is that PD-L1 was upregulated in only
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approximately 1.3% (14/1,052) of patients with ovarian epithelial
carcinoma, indicating that this approach could not account for most
of ovarian cancer cases (19). Thus, it is significantly beneficial to
disclose cellular features at different HGSOC stages by scRNA-seq,
which provides more precise information for developing appropriate
immunotherapies targeting specific disease stages.

Here, we characterized in detail the comprehensive single-cell
transcriptomic landscape of primary HGSOC tumors at early and
advanced clinical stages. The epithelial cell developmental hierar-
chies were described by pseudotime analysis at different tumor
stages, and properties of EMT were identified. Particularly, in the
majority of CAFs in HGSOC tissues, matrix CAFs (mCAF) signif-
icantly enhanced invasive ability of ovarian cancer cells. Other
immune cells, including C7-APOBEC3A M1 macrophages, CD8þ

TRM cells, and CD8þ TEX cells, were mainly expressed in early-stage
tumors. In addition, immune coinhibitory receptor TIGTI blockade
suppressed tumor growth of ID8-derived C57BL/6 mice models.
Taken together, our study reported the unique TME aspects of
HGSOC and tumor cell features associated with tumor stages,
which will help to develop new clinical strategies for the HGSOC
treatment.

Materials and Methods
Human specimens and ethical approval

HGSOC tumor samples were collected from patients who had
undergone bilateral salpingo-oophorectomy (BSO)/hysterectomy þ
comprehensive staging or debulking atWomen’s Hospital of Zhejiang
University. Nonmalignant ovarian samples were collected from
patients who underwent unilateral salpingo-oophorectomy or BSO,
respectively and/or hysterectomy because of benign gynecologic dis-
eases at Women’s Hospital of Zhejiang University. We obtained the
normal part of the nonmalignant ovaries. Fresh tissues were imme-
diately dissected into fractions for enzymatic digestion into single cells
and fixed in 4% paraformaldehyde solution followed by paraffin
embedding.

This study was conducted in accordance with Declaration of
Helsinki and approved by the Institutional Review Board (IRB) of
Women’s Hospital of Zhejiang University (IRB-20200186-R).Written
informed consent was obtained from each patient.

Single-cell dissociation
scRNA-seq experiments were performed by experimental personnel

in the laboratory of Novel Bio Co, Ltd. The tissues were surgically
removed and kept in MACS Tissue Storage Solution (Miltenyi Biotec)
until processing. Tissue samples were processed as described below.
Briefly, samples were first washed with PBS, minced into small pieces
(�1 mm3) on ice, and enzymatically digested with 125 U/mL colla-
genase IV (Sigma), 25 U/mL collagenase I (Sigma), and 25 U/mL
DNase I (Worthington) for 30 minutes at 37�C, with agitation.
After digestion, samples were sieved through a 40-mm cell strainer,
and then centrifuged at 300 � g for 5 minutes. The supernatant
was removed and the pelleted cells were suspended in red blood cell
lysis buffer (Solarbio) to lyse the red blood cells. The cells were
resuspended in RPMI1640 medium containing 10% FBS and refil-
tered through a 35-mm cell strainer. Dissociated single cells were
then stained with acridine orange/propidium iodide for viability
assessment using a Countstar Fluorescence Cell Analyzer. The
single-cell suspension was further enriched with a MACS dead cell
removal kit (Miltenyi Biotec).

Single-cell sequencing
The scRNA-seq libraries were generated using the 10� Genomics

Chromium Controller Instrument and Chromium Single Cell 30 V3
Reagent Kits (10�Genomics). Briefly, cells were concentrated to 1,000
cells/mL and approximately 8,000–10,000 cells were loaded into each
channel to generate single-cell gel bead-in-emulsions (GEM), which
resulted in the expected mRNA barcoding of 3,000–8,000 single cells
for each sample. After the reverse transcription step, GEMs were
broken and barcoded cDNA was purified and amplified. The
amplified barcoded cDNA was fragmented, A-tailed, ligated with
adaptors and index PCR amplified. The final libraries were quan-
tified using a Qubit High Sensitivity DNA assay (Thermo Fisher
Scientific) and the size distribution of these libraries was determined
by a High Sensitivity DNA chip on a Bioanalyzer 2200 (Agilent). All
libraries were then sequenced by an Illumina sequencer (Illumina)
on a 150 bp paired-end run.

Single-cell RNA statistical analysis
scRNA-seq data analysis was performed by NovelBio Co. Ltd.

with the NovelBrain Cloud Analysis Platform (www.novelbrain.
com). We applied fastp with default parameter filtering of the
adaptor sequence and removed the low-quality reads and short
reads to obtain clean data (20). Then, feature-barcode matrices were
obtained by aligning reads to the human genome (GRCh38 Ensem-
ble: version 91) using CellRanger v3.1.0 and determining the real
cell parameters expect for those with cell counts equal to 10,000 by
considering the UMI and Cell-UMI Slope. Furthermore, to solve the
bias caused by unbalanced sequencing, we applied the downsample
analysis by the CellRanger Aggr function among samples sequenced
according to the mapped barcoded reads per cell of each sample and
finally achieved the aggregated matrix. Cells containing over 200
expressed genes and a tissue specific mitochondrial UMI rate (below
40%) passed cell quality filtering, and mitochondrial genes were
removed from the expression table. The Seurat package (version:
3.1.4, https://satijalab.org/seurat/) was used for cell normalization
and regression based on the expression table according to the UMI

Translational Relevance

High-grade serous ovarian cancer (HGSOC) accounts for
approximately 80% of ovarian cancer total deaths. Currently, there
is still a lack of effective clinical strategies for treatment of HGSOC.
Our studies focus on the genetic expression features of different cell
populations of HGSOC in its various tumor stages, which will
contribute to develop novel treatment strategies. In the current
study, deep single-cell RNA sequencing (scRNA-seq) was per-
formed to analyze tumors from 7 treatment-na€�ve patients with
HGSOC at different stages and five age-matched nonmalignant
ovarian samples. Among the differentially expressed genes
being identified by scRNA-seq, a combination of epithelial-to-
mesenchymal transition (EMT) markers NOTCH1, SNAI2,
TGFBR1, andWNT11 was selected and this panel could be applied
to predict the poor patient outcomes. Moreover, the effects of
primary cancer-associated fibroblasts were confirmed to induce
tumor cell EMT. In addition, we examined the effects of immune
coinhibitory receptor TIGIT on ovarian cancer and found that
TIGIT blockade could alleviate tumor burden in ID8 tumor-
bearing mice, suggesting a potential immunotherapy target for
HGSOC treatment.
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counts of each sample and the percentage of mitochondria to obtain
the scaled data. Principal component analysis was constructed on
the basis of the scaled data with the top 2,000 highly variable genes,
and the top 10 principals were used for uniform manifold approx-
imation and projection (UMAP) construction. Canonical correla-
tion analysis (CCA) in the Seurat package was applied for batch
effect removal and primary clustering. Utilizing the graph-based
cluster method, we acquired the unsupervised cell cluster result
based on the CCA top 10 principal and we calculated the marker
genes by the FindAllMarkers function with Wilcoxon rank-sum test
algorithm under the following criteria: (i) logFC > 0.25; (ii) P < 0.05;
and (iii) min.PCT > 0.1. Cell type was defined by knowledge-based
biomarkers. For the subclustering of each cell type, considering that
the CCA algorithm performed worse among the batch effect algo-
rithms caused by overcorrection, we applied the MNN algorithm
from the scran package (http://www.bioconductor.org/packages/
release/bioc/html/scran.html) for subclustering batch effect analysis
with a k-value equal to 5. On the basis of the MNN results, graph-
based clustering with optimal parameters and marker analysis as
above was utilized for cell clustering and identification. We applied
GSVA (1.32.0; ref. 21) for immune-related scoring analysis, and
utilized the Wilcox rank-sum test to calculate the significance
between early-stage and later-stage tumors. Padj values <0.01 were
selected as statistically significant.

CAFs and ovarian cancer cells transwell coculture analysis
The human ovarian cancer cell lineOVCAR3was obtained from the

ATCC, and A2780 was obtained from Sigma. These cell lines were
verified by short tandem repeat and without Mycoplasma contami-
nation. OVCAR3 cells were grown inDMEM containing 10% FBS and
1% penicillin/streptomycin. A2780 cells were grown in RPMI1640
medium supplemented with 10% FBS and 1% penicillin/streptomycin.

To determine the effect of CAFs on ovarian cancer cell EMT via a
Transwell coculture system (Corning, 3460), 5� 104CAFswere placed
in the upper insert with 0.4-mm pore size polycarbonate membranes,
and the same amount of ovarian cancer cells was seeded beneath the
transwell insert of the 12-well plates. Cellswere cocultured for 48hours.
The ovarian cancer cells were further examined by Western blot
analysis for the expression of ZEB1 (Cell Signaling Technology,
3396, 1:1,000), vimentin (Cell Signaling Technology, 5741, 1:5,000),
snail (Cell Signaling Technology, 3879, 1:1,000), and GAPDH (Santa
Cruz Biotechnology, sc47727, 1:4,000). The protein bands on the blots
were quantified byQuantity One software (Bio-Rad Laboratories, Inc).
The data represent three independent experiments (mean � SD).

For the transwell assay, 5� 104 CAFs were first cultured for
24 hours. The same amount of ovarian cancer cells was seeded into
the upper well of 8-mm pore size PET track-etched membranes
(FALCON, 353097) coated with Matrigel (Corning, 356234). After
coincubation for 24 hours, the cells that invaded to the opposite side of
the filter were stained with 0.5% crystal violet, and counted under the
macroscope (LeicaDMI 4000B). The data represent three independent
experiments (mean � SD).

Survival analysis in The Cancer Genome Atlas and Gene
Expression Omnibus datasets

To assess the prognostic effect of individual genes or each set of
signature genes derived from specific clusters, TCGA-OV data,
GSE26712 (22), GSE13876 (23), and GSE9891 (24) were employed.
The TCGA-OV gene expression data and survival data were down-
loaded from UCSC Xena (https://xenabrowser.net/datapages/). While
evaluating the effect of each set of signature genes on survival, themean

expression of signature genes was scaled by zscores to represent the
relative expression level of signature genes. For all survival analyses,
patients were grouped into high and low expression groups by the
optimal cutoff. Kaplan–Meier survival curves were drawn in R-4.0.3
with the R package survminer (25).

Animal study
All experimental mice were housed in specific pathogen-free con-

ditions and all animal procedures were approved by the Institutional
Animal Care and Use Committee of Zhejiang Chinese Medical
University (20211129-21). Six to eight weeks old female C57BL/6
mice were inoculated subcutaneously with 5� 106 ID8 cells. The ID8
cells were gifted from the laboratory of Prof. Chen Dong (Qinghua
University, Beijing, P.R. China). Tumor growth was measured with
calipers regularly and the volume was calculated as 0.5 � length �
width2. On day 56 (average tumors reached 100 mm3), mice were
randomized into treatment group and treated with anti-TIGIT
(200 mg, clone:1B4, Absolute Antibody) or isotype-matched control
antibody (200 mg) by intraperitoneal injection five times (once every
3 days). On day 76, mice were sacrificed for downstream analyses.
Tumor tissues were minced, and digested with collagenase IV
(1 mg/mL, Sigma) and DNase I (1 mg/mL, Roche) in RPMI1640
(Gibco) for 1 hour at 37�C. The resulting cell suspensions were
filtered through a 70-mm cell strainer prior to centrifugation on a
discontinuous Percoll gradient (GE Healthcare Life Sciences). Iso-
lated cells were then used in flow cytometry.

Data availability
scRNA-seq data that support the findings of this study have been

deposited on Gene Expression Omnibus (GEO) platform under the
accession code “GSE184880.”

Statistical analyses
For cellular experiments and animal study, statistical analysis was

performed using GraphPad Prism 9.2. Comparisons were assessed
using Student t test or one-way ANOVA. Two-way ANOVAwas used
to compare the tumor growth curves. Data are presented as mean �
SD. P < 0.05 was considered as statistically significant.

Results
Single-cell profiling of nonmalignant ovarian and primary
HGSOC tumor ecosystems

To systematically interrogate the intratumoral heterogeneity of
HGSOC, we performed deep scRNA-seq on individual ovarian cells
from 12 treatment-na€�ve patients, including 7 patients with HGSOC
and 5 age-matched patients with nonmalignant ovaries (Supplemen-
tary Table S1). The nonmalignant ovaries analyzed here were from
perimenopausal or postmenopausal women as suitable age-matched
HGSOC controls. A total of 59,324 cells were acquired from these
samples following standard procedures (Materials and Methods). Of
these, 33,264 cells (56%) were fromHGSOC tumors and 26,060 (44%)
were from nonmalignant ovaries (Fig. 1A; Supplementary Fig. S1A
and S1B; Supplementary Table S2). These cells were then clustered
(Materials and Methods) and annotated according to the established
genemarker list. Visualization of the cells was performed usingUMAP
approaches, as shown in Fig. 1B. Furthermore, Fig. 1C demonstrates
the identification of ecosystematic cell types, including T-cell lineages
(marked by CD3D, CD3E, and CD8A), epithelial cells (marked by
KRT18, EPCAM, CD24, and KRT19), monocytes (CD14 and C1QA),
endothelial cell types (PECAM1 and CLDN5), cell-cycle cells (MKI67
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and TOP2A), fibroblast cells (DCN and OGN), B cell and plasma cell
types (CD79A and JCHAIN), and smooth muscle cells/myofibroblasts
(featuring as ACTA2, MYH11, and TAGLN).

The cell subset types are similar in HGSOC tumors and nonma-
lignant ovaries (Supplementary Fig. S1C), while the cellular distribu-
tion was quite different. For instance, the nonmalignant ovaries had a

predominance of fibroblasts, consistent with the increased ovarian
fibrosis in aged ovaries (26). In contrast, the tumors contained more
T cells or epithelial cells. The Kyoto Encyclopedia of Genes and
Genomes pathway analysis was then applied to reveal the features
for each cell subset (Fig. 1D). For the epithelial cells of HGSOC
tumors, the analysis showed an enrichment of genes involved in

Figure 1.

Diverse cell types in HGSOC and nonmalignant ovarian tissues delineated by single-cell transcriptomic analysis.A,Workflow depicting the collection and processing
of specimens of HGSOC tumors and nonmalignant ovarian tissues for scRNA-seq. B, The UMAP plot demonstrates the main cell types in HGSOC and control ovarian
tissues.C,Dot plots showing the expression levels of specificmarker genes in each cell type. The size of dots indicates the proportion of cells expressing the particular
marker gene. The spectrum of color represents the mean expression levels of the marker genes. D, Heatmap showing differentially activated pathways of each cell
type in the HGSOC and nonmalignant groups. E, Cell composition distribution for each group with different clinical stages.

Landscape of HGSOC by Single-Cell RNA Sequencing
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ferroptosis, which is consistent with previous findings (27, 28). For
those in nonmalignant ovarian tissues, our work showed gene
enrichment in ovarian steroidogenesis.

Next, we correlated cell clusters with tumor features such as clinical
stages. The proportion of T-cell cluster was decreased as the tumor
stage went along (Fig. 1E; Supplementary Fig. S1D). To verify this, we
examined the expression levels of T-cell marker CD3 in 40 cases of
tissues from nonmalignant ovary and HGSOC tumor stage 1, stage 2,
and stage 3 (n ¼ 10 in each group) using IHC. Our results confirmed
that the proportions of CD3-positive immune cells were decreased
from early to late tumor stages (Supplementary Fig. S1E).

Ecosystematic epithelial cell features in different tumor
stages

We next characterized the features of tumor epithelial cells.
Somatic copy-number variations (CNV) for each cell type were
analyzed using the R package infercnv (v0.8.2), and malignant
epithelial cells were determined with CNV signals above 0.05
and CNV correlations above 0.5 (Supplementary Fig. S2). A total
of 14,636 ovarian epithelial cells were collected across all tissues
and divided into a diverse set of 12 clusters, including 8,192
cells from HGSOC tumors and 6,444 cells from nonmalignant
ovarian tissues (Fig. 2A and B). CytoTRACE (29) was then applied
to predict the differentiation states of these epithelial cells and to
identify quiescent stem cells in HGSOC (Fig. 2C; Supplementary
Table S3). To further explore the protumor immune signaling
network for these cells, we performed immune-related scoring in
early and late tumor stages (Supplementary Table S4; Supplemen-
tary Fig. S3A). Strikingly, most of ligand genes responsible for
immune checkpoint inhibition were strongly enriched at early
tumor stage 1 but significantly less at the late tumor stage. The
levels of the PD-1 and CTAL-4 ligand genes CD274 (PD-L1) and
CD80/86 (B7-1/2) were fairly low in all stages of HGSOC, which is
consistent with previous clinical reports of low therapeutic
response when blockade against PD-1 or CTLA-4 was applied in
ovarian cancer (30, 31). Differently, VTCN1 expression was sig-
nificantly increased in the late tumor stage 3 (Supplementary
Fig. S3A).

To better understand the roles of epithelial cells in tumor devel-
opment, theMonocle algorithmwas applied in pseudotime analysis for
malignant epithelial cells to project their developmental trajectories.
Eleven clusters of the cells were aggregated on the basis of gene
expression similarities, and were projected into a pseudotime process
defined as HGSOC basic, stage 2, and stage 3 tumors (Fig. 2D). Along
the trajectory, the gene signature of cluster 1 cells at stage 3 was
characterized as certain functional pathways, including focal adhesion,
the estrogen signaling pathway, the PI3K-AKT signaling pathway, the
relaxin signaling pathway, apoptosis, and the rap1 signaling pathway
(Fig. 2E). This cluster also expressed a set of EMT-associated genes,
such as IGF2 (32),WNT7A (33), and HBEGF (ref. 34; Supplementary
Fig. S3B), suggesting an induction of EMT. Interestingly, the gene
signature of cluster 3 with HGSOC basic tumor stage demonstrated a
strong association of metabolic pathways as shown in Fig. 2E. The
beam genes in this cluster included SOX9, CXCL10, and WNT6
(Supplementary Fig. S3C).

We further examined the expression of genes related to EMT in
HGSOC tumor cells at different stages. Thirty-eight EMT markers
were differentially expressed in HGSOC cells compared with non-
malignant control cells (Supplementary Fig. S4A). To check the
association of these EMT markers with patient survival, TCGA
HGSOC dataset, GEO HGSOC dataset (GSE no. 26712), and two

serous ovarian cancer datasets (GSE no. 13876 and no. 9891) were
assessed using TCGA and GEO online analyses with available OS
results, in which 1,202 tumor samples were evaluated. Our analysis
showed that four genes, including NOTCH1, SNAI2, WNT11, and
TGFBR1, were significantly associated with poor outcome in at least
three cohorts of these four bulk expression datasets (Supplementary
Fig. S4B–S4S4E). Of note, the combination of these four genes was
associated with worse OS in all these four datasets (Fig. 2F).
Moreover, other EMT marker genes CDH1 and VIM were further
validated in HGSOC tissues by immunofluorescence (IF) analysis,
and the results suggested that a robust group of cells carry potential
EMT functions (Fig. 2G).

Diversity of stromal mesenchymal stem cells and features of
CAFs

We continued to study the features of stromal fibroblasts. Of the
13,201 fibroblasts, 14 cellular clusters emerged (Fig. 3A). The prop-
erties of mesenchymal stem cells (MSC) were observed in many
nonmalignant ovary-specific fibroblasts (Fig. 3A). Three subclusters
of nonmalignant fibroblasts were grouped on the basis of each gene
expression features. MSC subclusters 1, 2, and 3 were referred to as
NT5E/THY1/ENGþ MSCs, NT5E/ENGþ MSC-like cells, and ENGþ
MSC-like cells, respectively (Fig. 3A and B).

Among malignant fibroblasts, mCAFs with a strong extracellular
matrix signature, such as PTHLH, FGF1, WNT7B, WNT2, and
TGFB3, were the dominant CAFs in HGSOC tumors (Fig. 3C). In
addition to those,mCAFs, largely fromCancer 6, exhibited remarkably
high levels of MMP11, THRC1, POSTN, VCAN, and COL10A1
(Fig. 3D). Consistently, Fig. 3E showed a correlation between high
expression of these top marker genes and worse patient prognosis,
evaluated by survival analysis using TCGAHGSOCdata. The presence
of mCAFs was also confirmed in ascites of 5 patients with late-stage
HGSOC. IF staining demonstrated that mCAFs at late-stage HGSOC
were positive for the canonical CAF markers a-SMA, vimentin, and
COL3A, as well as themCAFmarkers COL10A andMMP11 (Fig. 3F).
These mCAFs possessed certain pro-EMT properties, evidenced by
upregulation ofmesenchymal biomarkers such as ZEB1, vimentin, and
snail at protein levels and an increase of tumor cell invasion in a CAF/
ovarian cancer cell (A2780 or OVCAR3) transwell coculture system
(Fig. 3G and H).

Enrichment of M1 macrophages indicates a favorable prognosis
in the early stage of HGSOC

We rearranged the macrophage clusters into 10 clusters by the
MNN clustering method to deeply analyze the cell features (Fig. 4A).
The gene expression pattern of these clusters were further compared
with the classical ones for M1, myeloid-derived suppressor cell
(MDSC), and M2 macrophages (Fig. 4B). Our results showed that
the cluster C7-APOBEC3A cells highly expressed M1 macrophage-
related genes, including IFI6, ISG20, LY6E, IFIT3,CXCL10, and IL1RN
(Fig. 4B; Supplementary S5A). The cluster C0-OLFML3 cells have all
three macrophage subtypes characteristics, suggesting the dynamic
transformation among M1, MDSC, and M2 macrophages in the TME
of HGSOC tumors (Fig. 4B).

The capabilities of macrophages interact with other immune cell
types were then examined in the HGSOC tissues. The extent of the
migration of monocytes, B cells, T cells, and natural killer cells were
weakened at late tumor stages, suggesting that macrophages lose their
attraction to other immune cells (Fig. 4C). Instead, many genes
representing growth factor secretion in macrophages were significant-
ly induced at the late tumor stages (Fig. 4C). These results indicated
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that macrophages undergo malignant transformation during this
process, althoughmacrophages appear antitumor behaviors at stage 1.

In early stage 1, macrophages had a strong ability to recruit immune
cells, suggesting that stage 1 is more suitable for the regulation of the

tumor immune response (Fig. 4C). The cluster C7-APOBEC3A cells
have been shown M1 macrophage possessing antitumor activities
(Fig. 4D). Figure 4E shows that cluster C7-APOBEC3A displayed
enhanced secretion of chemokines including CCL8, CXCL10,

Figure 2.

Differential gene expression signatures and impact of EMT-associated genes on HGSOC tumors. A, UMAP plot with clusters demarcated by colors demonstrating 12
distinct clusters based on gene expression differences for 14,636 epithelial cells passing quality control. B, The UMAP plot demarcated by colors showing the two
groups of HGSOC tumors (malignant) and nonmalignant ovarian tissues.C,CytoTRACE analysis of epithelial cells.D,Pseudotime analysis ofmalignant epithelial cells
inferred by Monocle2. Each point corresponds to a single cell. Cluster and stage information is shown. E, The differentially expressed genes (rows)
along the pseudotime (columns) were hierarchically clustered into three subclusters. The representative annotated pathways of each subcluster are provided.
F, The combination of NOTCH1, SNAI2, WNT11, and TGFBR1 expression was associated with worse patient OS in TCGA HGSOC cohort, GSE26712 HGSOC cohort,
GES9891 serous ovarian cancer cohort, and GSE13876 serous ovarian cancer cohort, respectively. P values were calculated by a log-rank test. G, IF staining with
anti–E-cadherin and vimentin antibodies in HGSOC tissue sections.
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Figure 3.

Fibroblast clusters in nonmalignant ovarian tissues and HGSOC tumors.A,UMAP plot with clusters demarcated by colors demonstrating 14 distinct clusters based on
gene expression differences for 13,201 fibroblasts. B, UMAP plot color coded for the expression (blue to purple) of marker genes for the clusters of nonmalignant
fibroblasts as indicated.C,Dot plot of the cross-compartment chemokine ligand and corresponding chemokine receptor expression by the cell type of themCAF and
TME. The color intensity of each dot represents the mean scran-normalized expression across all patients. The size of dots indicates the proportion of cells
that express a gene relative to the total number of cells in that cell type. D, UMAP plot color coded for the expression (blue to purple) of marker genes for the
mCAFs. E, Kaplan–Meier OS curves of patients with TCGA HGSOC grouped by the top 10–gene signature of mCAF markers. P values were calculated by a log-
rank test. F, IF staining of a-SMA, vimentin, COL3A, COL10A, and MMP11 in primary CAFs derived from HGSOC ascites. G, Protein expression levels of
mesenchymal biomarkers including ZEB1, vimentin, and snail were analyzed in ovarian cancer A2780 and OVCAR3 cells alone or transwell cocultured with
primary CAFs by Western blot analysis. The protein expression levels were normalized with GAPDH. The normalized value of the control group was set to 1,
and the relative protein levels of the sample group are shown as mean � SD. The results were averaged from three independent experiments.
H, Representative images for the invasion analysis of A2780 and OVCAR3 cells alone or transwell cocultured with primary CAFs. Data are mean � SD
from three independent experiments. �, P < 0.05; �� , P < 0.01; ��� , P < 0.001.
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CXCL11, and TNFSF10. This cluster also specifically expressed high
levels of IDO1 (Supplementary Fig. S5B). Consistently, IDO1 expres-
sion levels were much higher in early tumor stage 1 than stages 2 or 3
(Supplementary Fig. S5C). The induction of SAA1, APP, and ANXA1,
as well as FPR2 was observed in C7-APOBEC3A macrophages, which
represented macrophage activation (Fig. 4F). This activation could be

strengthened by CCL2, CCL7, and CCL8, which are produced by other
cell types in the TME, such as myofibroblasts, fibroblast-C2 cells, and
macrophages themselves (Supplementary Fig. S5D). The gene signa-
ture of cluster C7-APOBEC3A was associated with a better prognosis
(Fig. 4G), while the one for cluster C1-TCOF1 was associated with a
poor prognosis (Fig. 4H).

Figure 4.

Characteristics of macrophages in different tumor stages. A, UMAPs of macrophages from all patients, colored by the identified cell subpopulations. B, Heatmap
depicting thegeneenrichment for classical cell typesM1,M2, andMDSCs in comparisonwith themacrophage subclusters.C,Heatmapshowingdifferentially activated
pathways of each clinical stage in the HGSOC and nonmalignant groups.D,Macrophage cell-type fractions relative to the total macrophage cell count in each clinical
stage group. Each stacked bar represents a cluster for which the total macrophage cell count was scaled to 1. E, Dot plots showing the expression levels of specific
chemokine genes in eachmacrophage cluster. F,Model of the cross-compartment chemokine ligand-receptor interactions betweenmacrophage_7 and the TME. OS
for patients further stratified according to macrophage_7 (G) and macrophage_1 (H) signature expression. Log-rank P values are shown.
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Figure 5.

Cell clustering and functional annotation of CD8þ T cells in HGSOC and nonmalignant ovarian tissues. A, Detection of CD3 (green) in T cells by IF staining in HGSOC
and nonmalignant ovarian tissues. Nuclei were stainedwith DAPI (gray). The validation of CD3was also confirmed by IHC.B,Detection of CD8 (green) in T cells by IF
staining in HGSOC and nonmalignant ovarian tissues. Nuclei were stained with DAPI (gray). C, UMAPs of CD8þ T cells from all patients, colored by the identified cell
subpopulations. D, Dot plot of the average expression of CTLA4, HAVCR2, LAG3, PDCD1, SIRPA, and TIGIT in CD8þ T-cell subpopulations. E, Bar plots showing the
fraction of CD8þTEX cells relative to the total CD8

þT count grouped by tumor stage.F,PAGApseudospatial trajectory analysis of six coloredCD8þT-cell subclusters.
G,Dot plot of the cross-compartment chemokine ligand and corresponding receptor expression by cell type of the CD8þ TRM /TEX and TME.H,Kaplan–Meier survival
curves for OS from n ¼ 373 primary HGSOCs showing significant prognostic separation according to the CD8þ TRM marker gene signature derived from single-cell
data. Log-rank P values are shown.
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Infiltrated CD8þ T-cell states are shaped by cross-compartment
interactions in the HGSOC TME

In addition to the ones of macrophages, the features and distribu-
tion of lymphocytes were characterized in HGSOC tumors compared
with nonmalignant tissues. The presence of infiltrating lymphocytes in
HGSOC and nonmalignant ovarian tissues was confirmed by IHC and
IF with CD3 antibody (Fig. 5A). Because the T-cell lineage carried
CD8A gene enrichment (Fig. 1C), we confirmed its presence in
HGSOC tumors by IF analysis with CD8A antibody (Fig. 5B). The
CD8Aþ T cells were regrouped by MNN clustering method into nine
clusters (Fig. 5C; Supplementary S6A), which appeared to be distrib-
uted in different tissues (Fig. 5C; Supplementary S6B). For example,
tissue residentmemoryCD8þT cells (CD8þTRM cells), represented by
the CD8-C1-IFIT3 signature, were more localized in tumor tissues.
Central memory CD8þ T cells (CD8þ TCM cells), characterized by a
CD8-C5-DNAJB1 gene pattern, were mainly from nonmalignant
ovarian cells (Fig. 5C; Supplementary S6B). Notably, exhausted T
cells (CD8þ TEX cells), marked by CD8-C0-CXCL13 or CD8-C7-
TNFRSF4, populated with cells from tumors.

We next focused on the two cell types enriched in HGSOC
tissues, including CD8þ TRM and CD8þ TEX cells. To better
understand the roles of CD8þ TEX cells in HGSOC, the gene
expression pattern of CD8þ TEX cells was deeply explored (Sup-
plementary Table S5). Among these exhaustion markers, CTLA4,
HAVCR2, LAG3, PDCD1, SIRPA, and TIGIT were among the top-
ranked genes (Fig. 5D). Of note, the coinhibitory receptor TIGIT
was expressed at higher levels in HGSOC tissues. Figure 5E showed
that the numbers of CD8þ TEX cells were high at early stage 1 but
decreased at late stages. Interestingly, the PAGA pseudospatial
trajectory analysis showed that the preferential enrichment of
exhausted T cells (CD8þ TEX cells), also named CD8þ TRM-
CXCL13 cells, was located at the end of CD8þ TRM and TEM cell
differentiation (Fig. 5F).

CD8þ TRM cells contributed to local immune protection in early-
stage HGSOC tumors. To explain how CD8þ TRM cells form
in early-stage HGSOC tumors, we checked the expression of
survival factors, such as IL15, IL17, and NOTCH ligands, which
are known to determine TRM cell formation and persistence (35–37).
One of them, IL15 was expressed in HGSOC-derived malignant
epithelial cells and induced the formation of CD8þ TRM cells and
CD8þ TEX cells (Fig. 5G). In addition to epithelial cells, M1
macrophages in HGSOC tumors predominantly expressed CXCL9
and CXCL10 to recruit CD8þ TRM cells via the CXCL9/CXCL10–
CXCR3 interaction (Fig. 5G). We also checked the association of the
gene signature of CD8þ TRM cells with patient survival, and
demonstrated that the signature of CD8þ TRM cells was significantly
associated with improved patient survival (Fig. 5H; Supplementary
S6C). Overall, our findings strongly suggested a potential interactive
mechanism among CD8þ TRM/TEX cells and epithelial cells as well
as macrophages in early-stage HGSOC tumors.

The roles of TIGIT blockade to ovarian cancer tumorigenesis
The immune coinhibitory receptor TIGIT is known to regulate

antitumor CD8þ T cells responses (38, 39), which was also highly
expressed on CD8þ TEX cells in our study. Next, we tested whether
TIGIT blockade could contribute to ovarian cancer growth, ID8 cells
were subcutaneously injected into 8 female C57BL/6 mice. The ID8
tumor-bearing mice were treated with anti-TIGIT or isotype-matched
control antibody after 8 weeks (Fig. 6A). As expected, anti–TIGIT-
treated mice showed reduced tumor burden (Fig. 6B), as shown by
retarded tumor growth (Fig. 6C), lower tumor volume and tumor

weight at the endpoint (Fig. 6D and E). TIGIT blockade significantly
suppressed the frequency of TIGITþ-CD8þ T cells in tumors (Fig. 6F
and G). These results demonstrated that the TIGIT neutralization by
anti-TIGIT antibody on CD8þ T cells alleviated the tumor burden in
ID8 tumor-bearing mice.

Discussion
Our scRNA-seq study presented a high-resolution depiction of the

cellular interaction network in early- or late-stageHGSOC tumors and
nonmalignant ovarian tissues. The clinical stage-specific features of the
HGSOC cellular ecosystem summarized in Supplementary Fig. S7.
Within the early-stage of HGSOC ecosystem, C7-APOBEC3A tumor-
associatedmacrophages (TAM)were activated to produce chemokines
to activate CD8_TEX cells and to express high levels of immune
checkpoint ligand genes to suppress effector T cells. In contrast, the
numbers of C7-APOBEC3A TAMs as well as CXCL13-TRM cells were
reduced in late-stage tumors. mCAFs derived from late-stage HGSOC
ascites induced the EMTproperties of ovarian cancer cells. In addition,
we confirmed the suppressive effects of TIGIT blockade on ovarian
cancer tumor growth in mouse models.

The transcriptome-wide ecosystematic zonation of HGSOC tumors
suggests that different TME cell types cooperate to carry out essential
functions. One of our key observations is the identification of an EMT
programme with 38 genes differentially expressed in HGSOC tumor
cells compared with nonmalignant ovarian cells. Consistent with our
studies, previous studies reported that EMT promoted ovarian cancer
cell invasion and metastasis (8, 9, 11). Moreover, we determined the
association of these EMT markers with patient survival using four
TCGA and GEO datasets. The expression levels of NOTCH1, SNAI2,
TGFBR1, and WNT11 were associated with poor survival in at least
three cohorts. This four-gene combination was significantly associated
with worse patient OS in all TCGA and GEO serous ovarian cancer
cohorts, which may reflect a novel therapeutic opportunity for the
treatment of ovarian cancer.

Immunosuppressive nature of TMEs is likely due to induction of
inhibitory immune checkpoints and T-cell exhaustion. Inhibition of
this induction by blockade of key coinhibitory receptors such as PD1 or
CTLA4, reactivated exhausted antitumor immune responses (40, 41).
However, these treatments did not work for HGSOC. In our study,
CD8þ T cells were the major effector cells. However, we observed a
highly immunosuppressive microenvironment of HGSOC in which
most infiltrating tumor-specific CD8þ T cells became exhausted and
the effector function was severely impaired. We identified CTLA4,
HAVCR2, LAG3, PDCD1, SIRPA, and TIGIT as the main T-cell
coinhibitory receptors. Among them, TIGIT was the most highly
expressed coinhibitory receptor on CD8þ TEX cells. TIGIT has been
described previously as an inhibitor of CD4þ regulatory T cells
(Treg) (42). It was reported that antibody targeting TIGIT reduced
the proportion of CD4þTregs and improve the survival rate of ovarian
cancer mice (43). In recent years, TIGIT has emerged as a critical
regulator of antitumor CD8þ T-cell responses in a set of tumors,
such as hepatocellular carcinoma, head and neck squamous cell
carcinoma, and gastric cancer (38, 39, 44). It has been shown that
antibody coblockade of TIGIT and PD-L1 could synergistically
enhance CD8þ T-cell effector function (45). Consistent with these
recent findings, we showed that TIGIT blockade could inhibit
ovarian cancer tumor growth in mouse models and significantly
suppressed the frequency of TIGITþ-CD8þ T cells in tumors.
Our results will provide valuable insights for developing novel
immunotherapies in HGSOC.
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Our macrophage data showed that the macrophage capabilities
of immune cell attractionwere gradually weakened, whereas the effects
of growth factor secretion were significantly increased when the stages
go along, indicating that the malignant transformation of macro-
phages occurred in this process. Notably, C7-APOBEC3AM1 macro-
phages were mainly in early stage 1 and displayed enhanced chemo-
kine secretion activities. Consistently, C7-APOBEC3A M1 macro-

phages were associated with better survival outcomes. These findings
uncovered an enrichment of C7-APOBEC3AM1 macrophages in the
early stage of HGSOC with a favorable prognosis.

Finally, we investigated the interaction among the cellular compo-
nents of the tumor, immune, and stromal cells to shape the tumor
continuum.One important findingwas thatmalignant cells potentially
mediate TRM cell recruitment via the IL15-IL15R axis, which is

Figure 6.

Blockade of TIGIT inhibits tumor growth in syngeneic mice. A, Workflow showing the experimental process of the animal study. B, C57BL/6 mice were
subcutaneously injected with ID8 cells (5 � 106 per mouse) and treated with 200 mg anti-TIGIT or isotype-matched control antibody via intraperitoneal
injection as indicated. Tumor growth curves (C), tumor volume (D), and tumor weight (E) at the endpoint were measured. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001.
F and G, Frequency of TIGITþ-CD8þ T cells from tumors in anti-TIGIT or isotype-matched control antibody-treated mice by flow cytometry. Data are mean �
SD (n ¼ 4 mice/group). ��� , P < 0.001.
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required for the formation and persistence of TRM cells (35, 46).
Another way to recruit CD8þTRM cells was via the CXCL9/
CXCL10–CXCR3 interaction, while the predominant source ofCXCL9
and CXCL10 was M1 macrophages in HGSOC tumors. Thus, our
findings showed that both malignant and M1 macrophages contrib-
uted to the presence of CD8þ TRM cells in the HGSOC TME. In
addition to immune cells, we confirmed that primary mCAFs could
also interact with tumor cells to promote EMT. Our observations
further support the hypothesis that specific CAFs contribute to the
malignant progression of ovarian cancers (15, 47, 48).

In conclusion, our work provides important insights into HGSOC
biology and an atlas of tumor, immune, and stromal cells that discloses
the complexity of the HGSOC TME in different tumor stages. Such
complexity can be reflected by our findings of an EMT programme,
mCAF-induced tumor EMT, early stage–related M1 macrophages,
and CD8þ TRM and TEX infiltration, and the cross compartment
interaction, which can help to guide future treatment therapies.
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