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Introduction
At the end of 2019, a large number of human pneumonia cases 
were reported in the Chinese city of Wuhan.1 The causative agent 
of this disease was later identified as virus, and it was named as 
coronavirus disease 2019 (COVID-19).2 Whole genome sequenc-
ing of the virus revealed the resemblance of its RNA genome with 
previously discovered coronavirus SARS-CoV in 2003; hence, it 
was officially designated as SARS-CoV-2.3 Over the time, differ-
ent variants of SARS-CoV-2 has been identified, such as alpha 
variant (B.1.1.7; first detected in United Kingdom), gamma vari-
ant (P.1; first detected in Brazil), and omicron variant (B.1.529; 
first detected in South Africa) (Figure 2). A large number of 
genome sequences have been submitted in the National Center 
for Biotechnology Information (NCBI; https://www.ncbi.nlm.
nih.gov/) database. With a huge deposition of genomic data, it 
becomes imperative to use them to explore the molecular- and 
genomic-level changes in different variants.

The generated genomic information (ie, WGS/WES infor-
mation) incorporates tremendous measures of data of expected 
significance for an individual. The wide accessibility of genomic 
information likewise offers opportunities for reuse for extra 
clinical, well-being, research, or sporting purposes. Establishment 
of a proper pipeline reassures how the process can be stream-
lined. Exploratory data analysis (EDA) of genomic sequences 
can lay the foundation to identify a good quality genomic 
sequence, explore the genomic variability with reference 
sequence and identify potential variants.

A large amount of effort has been put forward for the devel-
opment of vaccines against SARS-CoV-2 but a preliminary 
analysis of the genomic sequence might reveal the minute 
genomic changes in different emerging variants that is necessary 
for drug development. The current work focuses on the usage of 
EDA to establish a pipeline (Figure 1) for initial assessment of 
the genomic sequence and explore the wide range of genomic 
variability. Our work establishes a workflow which can be used 
for any viral/bacterial genome sequencing to identify evolution-
ary changes throughout the population growth time, mutational 
changes, variability with respect to the reference genome. Taking 
SARS-CoV-2 as an example, we explored the genomic instabil-
ity of 3 variants of concern (VOCs; alpha, gamma, and omicron). 
The results obtained suggest a clear advantage of the EDA usage 
for preliminary examination of genomic data. The proposed 
pipeline offers an advantage to the user to perform the EDA of 
a given genomic sequence and explore the potential viability of 
the sequence being generated by a particular sequencing device. 
This further allows the user to analyze whether to continue the 
analysis with the given sequence or not as performing the bio-
logical examination on a poorly produced sequence from the 
device can result in an unreliable result.

Methodology
Data procurement

The whole genome sequence data of SARS-CoV-2 (wild-type 
Wuhan sequence, NC_045512), alpha variant (B.1.1.7; first 
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detected in United Kingdom, SRR13453793), gamma variant 
(P.1; first detected in Brazil, SRX12693832), and omicron vari-
ant (B.1.1.529; first detected in South Africa, SRX13632861) 
were downloaded from the Sequence Read Archive (SRA) 
database of NCBI (https://www.ncbi.nlm.nih.gov/sra/). Only 
those WGS that were produced using Oxford Nanopore 
MinION were taken.

EDA of whole genome sequences

The downloaded data for the respective variants were ana-
lyzed to understand the sequencing data quality. The length 
of the sequence reads and the Phred score (Q) were calculated 
to analyze quality in terms of the base call error probability 
(P). Phred scores are resolved using different indicators of 
conceivable mistakes, for example, peak spacing, uncalled/
called peak proportion, and peak resolution. The Phred score 
(Q) is normally defined in terms of the base error call proba-
bility (P) as

Q P= − log10  (1)

So, Q = 10 corresponds to a 10% probability of a base to be 
placed at a wrong position. Subsequently, a high sequencing 

profundity, for example, an enormous number of coverings 
peruses at each arrangement position, is expected to accom-
plish precise outcomes.

Read mapping

The respective variant reads were then mapped with the corre-
sponding reference genome to explore the homologous regions 
between the reference and the variant. For the homologous 
regions between the read and the genome, all matches ought to 
be roughly on a similar diagonal. Little deviations might emerge 
from insertions/deletions (indels). Tyler and group4 have dem-
onstrated an indel error rate for MinION where insertion rate 
pi = 0.03 and deletion rate pd = 0.05. Based on these values, a band 
can be defined that approximately covers the read indels5:

σ = + − −( )4 2 2N p p p pi d i d  (2)

where sigma gives the standard deviation from the correct 
diagonal and N corresponds to the read length.

Variant calling

Variation calling is the most common way of distinguishing 
replacements and indels in the sequencing information 

Figure 1. Process overflow of the proposed pipeline. The flowchart represents the steps involved in performing the exploratory data analysis for a given 

sequence. The details of each step have been further discussed in the methodology section. NCBI indicates National Center for Biotechnology 

Information; SRA, Sequence Read Archive; WGS, whole genome sequencing.

https://www.ncbi.nlm.nih.gov/sra/


Sangeet and Khan 3

contrasted with a reference genome. For the most part, this 
errand is not guaranteed to be straight-advanced: For instance, 
the sequencing information could start from a diploid 
genome, so there may be 2 variations for each situation 
because of heterozygosity. For our situation, we dissect a viral 
genome, so we expect just a single variation, which makes the 
test a lot more straightforward. Sophisticated variation call-
ing techniques might consider a ton of variables, for example, 
expected GC content and error rates, to handle the issue of 
incorrect base calls from the sequencer. Considering a solitary 
grouping area on the genome, we are keen on tracking down 
the most plausible base from the sequencing information, or 
as such the base that is least the consequence of a sequencing 
mistake. For a symbol (base) s ϵ {A, C, G, T}, the likelihood 
P of having a genotype G ≠ s reliant upon all base calls ci is 
relative to the result of the error probabilities for each base 
call on the grounds that each base call is viewed as an autono-
mous occasion:

P G s c c p G s cn
i c s

i
i

≠( ) ∝ ≠( )
=
∏| |1, ,
:

  (3)

The proportionality rather than uniformity applies here, as 
this equation disregards base calls where ci ≠ s, as these cases do 
not affect which base is generally likely.

As we consider the base that is least the consequence of a 
sequencing mistake as most plausible genotype, we really want 
to find sG, where
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We can replace the base call error probability p(G ≠ s|ci), as 
it is given by the Phred score:
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To simplify this equation, we can take the logarithm of the 
product on the right expression, as the logarithm is a mono-
tonic function:

sG s
i c s

Q

i

i

=


























=

−

∑argmin log
:

10
1010  (6)

s Q
G s

i c s

i

i

= −














=
∑argmin
: 10

 (7)

s QG s
i c s

i
i

= −














=
∑argmin
:

 (8)

s QG s
i c s

i
i

=














=
∑argmax
:

 (9)

Results
Analyzing the whole genome sequences has a very promi-
nent role in bioinformatics. But understanding the quality 
of data being generated by different sequencing techniques 
is important to exploit the data for information. Exploratory 
data analysis of the genome sequences of different variants 
of SARS-CoV-2 revealed the quality, read mapping, and 
variant calling qualities for alpha (B.1.1.7), gamma (P.1), 
and omicron (B.1.1.529) variants (Figure 2).

Phred score

Analyzing the quality of the sequence reads shows that 
majority of the read length is longer than 1 kb (Figure 3A 
and B). But in the case of gamma variant (Figure 3C), the 
sequence read length varies greatly as compared with the 
other 2 variants. This is great advantage of the sequencing 
technology especially for the de novo genome assembly 
because longer read sequences facilitate the process. But if we 
look at the Phred score for the sequences, majority of them 
shows a value higher than 15 to 20 depicting that the base 
call error probability is higher for these sequences (Figure 3A 
to C). This becomes more evident if we plot the histogram 
for the Phred score. The low accuracy turns out to be much 
more noticeable, while making a histogram over quality 
scores of individual bases, rather than averaging the scores 
over each perused (Figure 3A to C right panel). Alternatively, 
we could avoid or manage peruses with extraordinarily low 
Phred scores.6 In any case, rather we depend on a high 
sequencing profundity to sift through mistaken base calls.

Read mapping

Mapping each read to its position with respect to the reference 
genome shows the accurate mapping of all the variant sequence 
with reference genome (Figure 4A, C, and E). There are certain 
reads that fall apart from the diagonal depicting a wrong posi-
tioning of the read. This activity is very pronounced in omicron 
variant as compared with other variants (Figure 4E). Once the 
mapping is finished, we visualize the output reads. The output 
shows a very clear mapping of the variant genome with respect 
to the reference genome (Figure 5A to C).

Variant calling

Once the analysis was done, the Phred score sum was over-
lapped with the sequencing depth to further confirm the 
sequencing quality and the output generated by the 
sequencer (Figure 4B, D, and F). For alpha and omicron 
variants, the analysis revealed the sequencing to be more or 
less stable (Figure 4B and F) and equal to the Phred score 
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sum. But for the gamma variant, the sequencing depth was 
erroneous as is evident from Figure 4D. This pattern sug-
gests the number of nucleotide participation for a particular 

region is more equalized for alpha and omicron variants. But 
for the gamma variant, this participation of nucleotides is 
highly fluctuating.

Figure 2. 3D representation of SARS-CoV-2. The upper panel (A) shows the trimeric structure of the viral surface glycoprotein with 3 chains. The lower 

panel (B) shows the single chain of the 3 variants with key characteristic mutations (highlighted in magenta color). SARS-CoV-2 indicates severe acute 

respiratory syndrome coronavirus 2.
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Sequence identity and mutation localization

The final aspect of sequence analysis involves finding the 
sequence identity and mutation localization. The alpha, 
gamma, and omicron variants showed 99.76%, 96.72%, and 
98.47% sequence similarity, respectively (Figure 6E). Harboring 
nearly 40 mutations in the surface glycoprotein sequence, the 
omicron variant had a sequence identity which was more than 
the gamma variant. This might be possible due to the high 
variability in other regions of the gamma variants such as 
open reading frames (ORFs) and non-structural proteins 
(NSPs). To analyze the lower sequence identity in the gamma 
variant, we calculated the mutational localization with respect 
to reference genome. The result showed the high amount of 
variability in the gamma variant sequence with respect to the 
reference genome (Figure 6B). This high variability occurs 

throughout the different proteins of the virus. But the amount 
of variability is more or less conserved in alpha and omicron 
variants (Figure 6A and C). This result can be account for the 
less virulence of the gamma variant as it was too diverged from 
its ancestor SARS-CoV-2. On the contrary, the alpha variant 
shows a very high conservation of the regions with slight vari-
ations arising in the surface glycoprotein (S protein) and nucle-
ocapsid protein (N protein) regions (Figure 6A). This analysis 
can prove beneficial to identify the regions being extremely 
diverged or conserved to design the drug and identify drug tar-
gets. Omicron variant showed an intermediate divergence with 
respect to reference genome with a high amount of divergence 
occurring in the S and N proteins making up for the near 40 
mutations occurring in the surface glycoprotein.

To further understand the variability of these variants with 
respect to the reference genome, we calculated the amino acid 

Figure 3. Sequence quality analysis. The upper panel in A, B, and C represents the read length vs the number of reads showing that majority of reads 

are above 1 kb size in case of alpha and omicron. The lower panel in A, B, and C shows the Phred score vs number of reads showing that for all the 3 

variants the Phred score is not the optimal value. The right panel represents the histogram of Phred score showing that for all the 3 variants the base call 

accuracy is low. We rely on high sequencing depth to filter out the erroneous base calls.
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Figure 4. Mapping the variants with respect to reference genome. (A, C, and E) The diagonal shows the reference genome and the blue patches show 

the read maps of the respective variants with reference genome. The blue patches in the empty space are the reads that are characterized to be at the 

wrong place. (B, D, and F) The pattern of sequencing depth shows that in alpha and omicron variant, the range of nucleotides is more or less stable. But 

for gamma variant, the number of nucleotides contribution fluctuates.

Figure 5. Visualizing the read maps. Read mapping of (A) alpha variant, (B) gamma variant, and (C) omicron variant. (A, B, and C) The read mapping 

shows the gamma and omicron variants’ mapping to be more curated than the alpha variant’s mapping.
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frequency and compared it with reference genome (Figure 6D). 
Gamma variant shows a higher variability in leucine frequency 
compared with other variants. Leucine and serine comprises a 
large amount in protein sequence. Further investigation into 
specific proteins might reveal the changes in the structural 
integrity of the protein with accumulation of mutations.

Conclusions
With the advent of genome sequencing technologies, we are 
surrounded by the huge data set available for different species, 
from bacteria to virus to humans. But we need a pipeline to 
analyze the data generated by the sequencers to use the data for 
predictive modeling and conclusion. We demonstrated the 
need for an EDA of the whole genome sequences of SARS-
CoV-2 and its different VOCs available. The analysis revealed 
the quality of the sequencing reads generated by the sequenc-
ers. The genome sequences of all variants possess a Phred score 

which depicts that the read sequences have an average rate of 
classification of the correct positions. Moreover, the read map-
ping and sequencing depth reveals the role of nucleotide posi-
tioning in certain regions being important for the virulence of 
the virus. The higher genomic-level variability in the gamma 
variant as compared with other VOCs necessitates the impor-
tance of an EDA in viral genome analysis to analyze sequence 
variability and evolutionary divergence of the viral sequences 
with respect to the reference genome. With a higher variability 
in the gamma variant, we analyzed the frequency of the amino 
acid and mutational localization which shows the higher abun-
dance of certain amino acids in gamma variants than other 
VOCs. This analysis can be further explored to understand the 
role of specific amino acids in certain regions, such as surface 
glycoprotein and nucleocapsid regions, to understand the 
importance of mutations in the virulence and structural stabil-
ity of the viral proteins.

Figure 6. Sequence divergence/similarity and mutational localization. (A) to (C) represent the mutational localization in different regions of the 

respective variants. The high amount of variability can be observed in the gamma variant as compared with the alpha and omicron variants. The alpha 

and omicron variants show divergence mainly in the surface glycoprotein and the nucleocapsid protein region. (D) Frequency plot of amino acids for 

different variants with respect to reference sequence. The amino acid frequency is almost similar for both alpha and omicron variants. But, on the 

contrary, for the gamma variant, the frequency of leucine is very high compared with the reference genome. (E) The alpha, gamma, and omicron 

variants showed 99.76%, 96.72%, and 98.47% sequence similarity, respectively, with the reference genome. SARS-CoV-2 indicates severe acute 

respiratory syndrome coronavirus 2.
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The current pipeline, presenting a simplistic way to perform 
EDA for biological sequences, also has a minor drawback. The 
read mapping step in the pipeline requires a good computational 
power for sequence which are more complex and larger in data 
size. One solution that we propose to deal with this drawback is 
to use the multiprocessing architecture and submit the job on 
multiple cores to speed up the process. Even having a computa-
tional drawback, the current pipeline allows the user to explore 
and analyze the different sequences for biological explorations.
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