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Pulmonary fibrosis represents the end stage of a number of heterogeneous conditions and is, to a greater or lesser degree,
the hallmark of the interstitial lung diseases. It is characterized by the excessive deposition of extracellular matrix proteins
within the pulmonary interstitium leading to the obliteration of functional alveolar units and in many cases, respiratory failure.
While a small number of interstitial lung diseases have known aetiologies, most are idiopathic in nature, and of these,
idiopathic pulmonary fibrosis is the most common and carries with it an appalling prognosis – median survival from the time
of diagnosis is less than 3 years. This reflects the lack of any effective therapy to modify the course of the disease, which in
turn is indicative of our incomplete understanding of the pathogenesis of this condition. Current prevailing hypotheses focus
on dysregulated epithelial–mesenchymal interactions promoting a cycle of continued epithelial cell injury and fibroblast
activation leading to progressive fibrosis. However, it is likely that multiple abnormalities in a myriad of biological pathways
affecting inflammation and wound repair – including matrix regulation, epithelial reconstitution, the coagulation cascade,
neovascularization and antioxidant pathways – modulate this defective crosstalk and promote fibrogenesis. This review aims to
offer a pathogenetic rationale behind current therapies, briefly outlining previous and ongoing clinical trials, but will focus on
recent and exciting advancements in our understanding of the pathogenesis of idiopathic pulmonary fibrosis, which may
ultimately lead to the development of novel and effective therapeutic interventions for this devastating condition.
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Introduction

Pulmonary fibrosis represents the end stage of several inter-
stitial lung diseases, including the idiopathic interstitial
pneumonias, and is characterized by the excessive deposition
of extracellular matrix (ECM) within the pulmonary intersti-
tium. Among the idiopathic interstitial pneumonias, idio-
pathic pulmonary fibrosis (IPF) represents the commonest
and most fatal condition with a median survival of 3–5 years
following diagnosis. Fibrosis in IPF is generally progressive,
refractory to current pharmacological intervention and
inexorably leads to respiratory failure due to obliteration of
functional alveolar units. IPF affects approximately 500 000
people in the USA and Europe (Coultas et al., 1994). This
condition therefore represents a major unmet medical need
for which novel therapeutic approaches are urgently
required. This review will focus on IPF, although the para-
digms and potential molecular targets described here may be
relevant to a number of other fibrotic conditions, including
sarcoidosis and systemic sclerosis.

IPF – incidence/aetiology/pathogenesis

Idiopathic pulmonary fibrosis has a reported incidence of 4.6
per 100 000 people in the UK, but between 1991 and 2003
the incidence increased annually by 11% (Gribbin et al.,
2006). Around 4000 new cases are now diagnosed each year
in the UK (Gribbin et al., 2006), a disease burden that is

currently comparable with that of small cell lung cancer.
Clinically, patients generally present with increasing dysp-
noea, which may be associated with a dry cough and non-
specific systemic upset. A diagnosis of IPF can be made
following clinical, radiographic and histological evaluation
paying particular attention to exclude secondary causes of
pulmonary fibrosis.

The aetiology of IPF remains unknown, although a
number of risk factors have been identified. For example,
cigarette smoking has been associated with an increased risk
of developing IPF, as have certain latent viral infections,
including Epstein-Barr virus and herpesvirus (Kelly et al.,
2002; Tang et al., 2003). Three per cent of IPF patients
appear to have a familial form, and gene polymorphisms of
tumour necrosis factor (TNF)-a and transforming growth
factor (TGF)-b1, as well as mutations in surfactant protein C,
appear to confer an increased risk of developing IPF (Whyte
et al., 2000; Xaubet et al., 2003; Lawson et al., 2004).
However, as only a small number of those individuals
exposed to known risk factors develop IPF, the aetiology is
likely to be multifactorial.

The classical histopathological pattern of IPF is one of
usual interstitial pneumonia characterized by evidence of
patchy epithelial damage including type II pneumocyte
hyperplasia, together with abnormal proliferation of mesen-
chymal cells, varying degrees of fibrosis and overproduction
and disorganized deposition of collagen and ECM – this
results in significant distortion of pulmonary architecture
and honeycombing (Figure 1). Fibrotic foci are often
observed within the mura of microscopic honeycomb lesions

Figure 1
Fibrotic foci – a histological hallmark of idiopathic pulmonary fibrosis. (A) Histological analysis of human IPF tissue reveals the presence of dense
collagen deposition within the interstitium (Martius Scarlet Blue staining; original magnification ¥10). Fibroblastic foci are revealed as accumu-
lations of fibroblasts and alpha-SMA+ myofibroblasts, which are highly synthetic for collagen and have a contractile phenotype (B: Martius Scarlet
Blue staining; C: immunohistochemistry for alpha-SMA. Original magnification ¥20). The overlying epithelium is often hyperplastic, with frequent
apoptosis and areas of denudation. The presence and distribution of fibrotic foci, together with the spatial and temporal heterogeneity of the
pathology is crucial to defining a UIP pattern.
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underlying injured and reparative epithelium, as well as
within the interstitium – these fibrotic (or fibroblastic foci)
represent accumulations of fibroblasts and myofibroblasts
within organizing ECM, and their presence and distribution,
together with the spatial and temporal heterogeneity of the
pathology, is crucial to defining a usual interstitial pneumo-
nia pattern (Katzenstein and Myers, 1998).

Although significant advances have been made in under-
standing the pathogenesis of pulmonary fibrosis, the specific
cellular and molecular mechanisms that contribute to disease
progression remain unclear. This article will briefly review
the current status of IPF clinical trials (summarized in Table 1)
but will focus on novel therapeutic approaches that are
emerging from exciting recent advances in our understand-
ing of pathogenetic mechanisms (see Figure 2).

Inflammation in IPF: clinically, an
unresolved issue

Early hypotheses embraced the concept that pulmonary
fibrosis represents the end stage of an inflammatory cascade
initiated following alveolar injury, and that fibrogenesis fol-
lowing such alveolitis was mediated by a number of inflam-
matory and fibrogenic mediators derived from recruited
inflammatory cells. However, the lack of efficacy of anti-
inflammatory/immunosuppressive therapy in concert with
experimental evidence suggesting that inflammation is not
necessary for the progression to fibrosis has brought this
hypothesis into question. Crucially, overexpression of the
potent pro-fibrotic mediator, TGF-b1, leads to progressive
fibrosis in mice, without any significant inflammatory com-
ponent (Sime et al., 1997). Conversely, it has been argued that
despite the lack of clinical benefit observed following anti-
inflammatory treatment in established disease, a pathogenic
role for inflammation cannot be excluded in the early initi-
ating (subclinical) stages of the disease (Strieter, 2005). In fact,
the forced vital capacity (FVC) of most patients is already
significantly reduced by the time of presentation (King et al.,
2001) indicating that fibrosis is already present. Recent work
has demonstrated a potential role for the adaptive immune
response to injury in fibrogenesis: peripheral CD4+ cells from
IPF patients have increased effector functions (Feghali-
Bostwick et al., 2007), and CD4+ cells from the lymph nodes
of IPF patients proliferate in co-culture with autologous lung
extract, suggesting an autoimmune component to the patho-
genesis of IPF (Feghali-Bostwick et al., 2007). Indeed, interac-
tions between T cells and antigen-presenting dendritic cells,
critical to the development of an adaptive immune response,
have recently been observed in IPF lung, in the form of
tertiary lymphoid follicles, composed of reactivated T cells, B
cells and locally maturing dendritic cells (Marchal-Somme
et al., 2007). Finally, recent gene microarray studies have
demonstrated that, in addition to the expected increase in
gene expression of proteins associated with ECM turnover,
expression of genes traditionally associated with inflamma-
tory processes such as cytokines and chemokines (Zuo et al.,
2002) is increased in IPF. These recent data have reinvigorated
the argument that perhaps a more focused anti-inflammatory
strategy may be of benefit in IPF.

In reality, the question of whether or not current anti-
inflammatory/immunosuppressive therapy is of benefit to IPF
patients remains unanswered. To date, there has only been a
single completed randomized, double-blinded placebo-
controlled trial evaluating the efficacy of such treatment
(Raghu et al., 1991), which demonstrated a marginal long-
term survival benefit over a 9 year follow up in patients
treated with azathioprine and prednisolone, compared with
prednisolone alone. Beneficial responses to such therapy have
been reported in a number of prospective non-randomized
trials (Selman et al., 1998; Zisman et al., 2000; Flaherty et al.,
2001; Kondoh et al., 2005), as well as several retrospective case
series (Turner-Warwick et al., 1980; Douglas et al., 1997; 2000;
Kolb et al., 1998; Collard et al., 2004). However, difficulty in
interpreting such data is further compounded by low patient
numbers and diagnostic heterogeneity. With these crucial
caveats in mind, and given the lack of any detrimental
effect on survival or lung function, the American Thoracic
Society (ATS)/European Respiratory Society (ERS) consensus
statement on the management of IPF published in 2000 (ATS/
ERS, 2000) suggested combined anti-inflammatory therapy
with prednisolone plus azathioprine in patients with active
disease. Considering the lack of strong data to wholeheartedly
support this statement, two trials are currently recruiting
patients to hopefully clarify this issue. The AZAPRED trial
(Thorax National Institute, Chile) is a randomized double-
blinded placebo-controlled trial evaluating the efficacy of
azathioprine/prednisolone, while the PANTHER trial (NHLBI,
USA) will assess the efficacy of the current recommended
‘gold-standard triple therapy’ of azathioprine/prednisolone/
N-acetylcysteine (NAC) as compared with NAC alone or
placebo. While such therapy may not represent a novel
advance in therapeutics in the true sense, data derived from
these trials will go someway to advancing our understanding
of whether the current therapy is beneficial.

The observation that steroid use may actually en-
hance alveolar epithelial damage by promoting apoptosis
(Dorscheid et al., 2001) highlights the greater importance of
identifying disequilibrium in particular molecular pathways
over broadly classifying IPF as a purely inflammatory condi-
tion. To this end, recent work has highlighted the potential
importance of inflammasome activation, by danger signals
released following lung injury, in promoting lung fibrosis. In
a murine model of lung injury, mice deficient in the NALP-3
inflammasome develop an attenuated early inflammatory
response to bleomycin, as well as a reduction in subsequent
fibrosis, compared with wild-type controls (Gasse et al.,
2009); a major role for uric acid as the danger signal to the
NALP-3 inflammasome following experimental lung injury
has been described and the prophylactic administration of
allopurinol or uricase, strategies aimed at reducing uric acid
levels, attenuated bleomycin-induced fibrosis in this model
(Gasse et al., 2009). Moreover, the potential importance of
this pathway in human disease is supported by the observa-
tion of elevated levels of uric acid in IPF lung compared with
non-fibrotic control lung (Markart et al., 2009). As such, selec-
tive modulation of key inflammatory pathways, such as
targeting inflammasome activation by endogenous injury-
induced danger signals, may be worth consideration for
therapeutic development in IPF rather than a broad-based
anti-inflammatory strategy.

BJPPulmonary fibrosis
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Figure 2
Key mediators in the pathogenesis of IPF. The pathobiological mechanisms underlying the development of IPF are highly complex. Recurring
damage to the epithelium (possibly due to reactive oxygen species, endoplasmic reticulum stress or viral infection) results in an abnormal wound
healing response characterized by dysregulated epithelial–mesenchymal crosstalk and the accumulation of myofibroblasts (the key effector cells
in IPF fibrogenesis). The proposed cellular origin of these cells includes resident fibroblasts, epithelial/endothelial–mesenchymal transition or the
recruitment of circulating fibrocytes. The fibrotic micro-environment may be skewed towards a pro-angiogenic and Th2-oriented profile, where
multiple cytokines, growth factors and signalling pathways mediate the pro-fibrotic responses. Some of the potential anti-fibrotic strategies
(shown in red) are highlighted and these are described further in the text.
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Dysregulated epithelial – mesenchymal
crosstalk in IPF

Irrespective of the current uncertainty regarding the precise
contribution of inflammation to the initiation and/or pro-
gression of IPF, the more recent hypothesis that IPF arises
as a result of a highly aberrant wound healing response fol-
lowing repetitive epithelial injury in susceptible individuals
(Selman and Pardo, 2002) is gaining increasing recognition.
According to this hypothesis, IPF is an ‘epithelial-fibroblastic
disease’, that is, a fibroproliferative disorder preceded by
alveolar epithelial injury and activation, with fibrotic foci
representing the primary sites of injury and aberrant repair.
The underlying mechanisms leading to the emergence
of fibrotic foci are still unclear; current evidence suggests
roles for local proliferation and differentiation of resident
fibroblasts, recruitment of circulating stem cells and
epithelial–mesenchymal transition (EMT), with a prominent
role identified for the overlying, highly reactive and hyper-
plastic epithelium. These notions will be explored in greater
detail below. Myofibroblasts in turn provoke basement
membrane disruption and alveolar epithelial cell (AEC) apo-
ptosis, perpetuating the damage and preventing appropriate
re-epithelialization. The final result is the excessive deposi-
tion of ECM proteins with the destruction of the alveolar-
capillary units and the formation of cystic fibrotic spaces or
honeycombing. Unravelling the molecular basis for this aber-
rant epithelial–mesenchymal crosstalk in IPF is currently an
area of intense investigation. This effort has heralded major
advances in disease understanding with much current inter-
est focused on elucidating the pathways involved in myofi-
broblast accumulation and differentiation in the hope that
this might lead to the identification of novel molecular
targets for therapeutic intervention.

The epithelium in IPF

Crucial to normal wound healing following injury is the
re-establishment of an intact epithelium. Recruitment and
activation of mesenchymal cells to the site of injury initiates
limited deposition of ECM into the wound space – this provi-
sional matrix acts as a scaffold for normal tissue repair. Subse-
quent contraction of activated fibroblasts/myofibroblasts
within this matrix approximates the epithelial margins to
allow re-epithelialization and wound closure.

An early and consistent feature of pulmonary fibrosis
in humans is a change in the phenotype of the AEC, suggest-
ing that ongoing AEC injury is a critical step in the
pathogenesis of pulmonary fibrosis (Kasper and Haroske,
1996; Chilosi et al., 2002). These changes include apoptosis
(Kuwano et al., 1996; Plataki et al., 2005), regenerative hyper-
plasia (Corrin et al., 1985), bronchiolarization (Sutinen et al.,
1980; Kawanami et al., 1982) and proliferation (Katzenstein,
1985). AEC apoptosis is a well-recognized histological finding
in IPF (Kuwano et al., 1996; Uhal et al., 1998; Barbas-Filho
et al., 2001; Maeyama et al., 2001; Plataki et al., 2005). The
underlying mechanisms involved are unclear, but numerous
mediators/mechanisms have been proposed, including TGF-b
(Lee et al., 2004), Fas activation (Maeyama et al., 2001), angio-

tensin II (ANGII) and reactive oxygen species (Waghray et al.,
2005). More recently, the alveolar epithelium of patients with
IPF has been shown to express markers of endoplasmic reticu-
lum stress and the unfolded protein response (Korfei et al.,
2008; Lawson et al., 2008). Activation of these pathways may
result from altered surfactant protein processing or chronic
herpesvirus infection. The persistent apoptosis and dysregu-
lated proliferation of epithelial cells impairs adequate epithe-
lial reconstitution, and also drives the inappropriate crosstalk
between the epithelium and mesenchyme. For instance, the
injured epithelium can contribute to fibrogenesis through the
generation of pro-fibrotic cytokines such as TGF-b (Xu et al.,
2003), and the targeting of such epithelial-derived mediators
as potential therapeutic strategies in IPF will be discussed in
later sections.

The myofibroblast response in IPF

The myofibroblast has long been regarded as a major cell type
involved in normal wound healing, and as the key effector
cell in fibrogenesis. Myofibroblasts are highly synthetic for
collagen and other ECM components, and are characterized
by the de novo expression of a-smooth muscle actin (a-SMA)
[reviewed in (Scotton and Chambers, 2007)]. The presence of
myofibroblasts in fibrotic lesions in animal models of fibrosis
correlates with the development of active fibrosis, and their
persistence and localization to fibrotic foci in human disease
is associated with disease progression (Kuhn and McDonald,
1991; Zhang et al., 1994a). Myofibroblasts isolated from the
lungs of IPF patients also exhibit an enhanced migratory
phenotype (Suganuma et al., 1995) and are capable of releas-
ing numerous pro-fibrotic mediators (Moodley et al., 2003).
In addition, when cultured ex vivo they are more resistant to
apoptosis (Ramos et al., 2001; Moodley et al., 2004) – this
failure of apoptosis may explain the persistence of these
highly activated cells at sites of injury.

Originally thought to be derived from the local prolifera-
tion and differentiation of resident fibroblasts in the presence
of a highly pro-fibrotic cytokine milieu (Zhang et al., 1994b;
Phan, 2002), recent pioneering research demonstrated that
myofibroblasts in pulmonary fibrosis can be derived from
several other cellular sources. First, there is now growing
evidence that myofibroblasts can be derived from the epithe-
lium via EMT. During this process, epithelial cells lose their
characteristic markers (e.g. E-cadherin and zona occludens-1)
and acquire mesenchymal markers (e.g. fibroblast-specific
protein-1 and a-SMA) (Grunert et al., 2003). The concept of
EMT has been recognized for over 20 years, and evidence is
now accumulating to support a role for EMT in IPF. AECs in
vitro undergo EMT in response to prolonged exposure to
major fibrogenic mediators (e.g. TGF-b1) when cultured on a
provisional wound matrix (Willis et al., 2005). Elegant lineage
tracing studies have also provided strong support for EMT as
a potential source of myofibroblasts during lung fibrogenesis
(Kim et al., 2006; 2009). In terms of human disease evidence,
the notion of EMT is supported by the observation that cells
in IPF biopsy samples co-express epithelial and mesenchymal
markers (Kim et al., 2009) although this was not a universal
finding (Yamada et al., 2008). The molecular pathways under-
lying the development of EMT are coming to light and may

BJPPulmonary fibrosis

British Journal of Pharmacology (2011) 163 141–172 153



present novel avenues for therapeutic intervention. Current
evidence suggests key roles for TGF-b1, Wnt and Notch sig-
nalling pathways. This will be explored in greater detail in
future sections.

A second hypothesis regarding the origin of (myo)fibro-
blasts in lung fibrosis proposes that these cells may be derived
from circulating fibrocytes (Lama and Phan, 2006). Fibrocytes
were originally identified as collagen I + /CD34+/CD45RO+
cells that are likely derived from hematopoietic stem cells
(Bucala et al., 1994). Support for a pathogenic role for fibro-
cytes in lung fibrosis has been provided from studies showing
that blockade of fibrocyte recruitment is protective following
experimental lung injury in rodents (Phillips et al., 2004;
Moore et al., 2005). A major role has been identified for
the CXCR4/CXCL12 axis in the recruitment of fibrocytes
(Phillips et al., 2004) although several chemokines have been
shown to be capable of recruiting fibrocytes in vivo. Whether
fibrocyte-derived fibroblasts are capable of differentiating
into fully activated myofibroblasts, especially in patients with
IPF, remains the subject of an interesting debate, although
recent evidence suggests that about 10% of fibrocytes express
a-SMA in the bleomycin model (Mehrad et al., 2009). More-
over, CXCL12 levels are increased in both plasma and bron-
choalveolar lavage fluid (BALF) from patients with IPF and
CXCR4/fibrocyte/mesenchymal marker co-expression studies
support the notion that circulating fibrocytes may contribute
to the expansion of the fibroblast/myofibroblast population
in IPF (Andersson-Sjoland et al., 2008) Finally, a recent report
has shown that a >5% blood fibrocyte count is associated
with poor survival in IPF (Moeller et al., 2009).

In addition to the above cellular sources, there is very
recent experimental evidence that lung capillary endothelial
cells may also give rise to fibroblasts through endothelial–
mesenchymal transition in a bleomycin-induced lung fibrosis
model (Hashimoto et al., 2010). Finally, myofibroblasts can
also be derived from pericytes. In the liver, pericytes, or
hepatic stellate cells, are the principal collagen-producing cell
in hepatic fibrosis [reviewed in (Gressner and Weiskirchen,
2006)]. In animal studies of skin and kidney fibrosis (Hum-
phreys et al., 2010; Liu et al., 2010b), pericytes have also been
shown to represent a source of myofibroblasts. However,
despite the suggestion that the pericyte may contribute to the
myofibroblast population in lung fibrosis (Adler et al., 1989),
the role of this cell type in IPF remains uncertain.

Although the relative contribution of each of these poten-
tial cellular sources of fibroblasts/myofibroblasts to fibrogen-
esis in IPF remains unclear, the realization that fibrogenic
cells may be derived from multiple cellular sources, in addi-
tion to resident fibroblasts, has opened up a myriad of new
possibilities for therapeutic intervention. Molecules felt to be
important in this regard will be addressed in subsequent
sections.

Recently completed major
placebo-controlled phase III
trials in IPF

IFNg1b
Interferon (IFN)-g is an immunoregulatory cytokine that is
crucial in both the innate and acquired immune responses. It

is predominantly generated by natural killer cells and acti-
vated T-helper (Th) 1 cells (Murphy et al., 2000), which led to
the suggestion that it may have a therapeutic benefit in IPF by
redressing the perceived dominance of Th2 cytokines in this
disease (Wynn, 2004). However, IFN-g also plays a role in
counter-regulating TGF-b expression and signalling responses
(Ulloa et al., 1999). Moreover, IFN-g limits fibroblast prolifera-
tion and collagen synthesis directly (Rosenbloom et al., 1986;
Elias et al., 1987; 1990) and IFN-g administration attenuates
bleomycin-induced fibrosis in mice (Gurujeyalakshmi and
Giri, 1995). IFN-g has been extensively investigated as a novel
therapy for IPF following an initial preliminary trial suggest-
ing that lung function improved in patients with IPF treated
with IFN-g (Ziesche et al., 1999). Post hoc analysis of a second,
similarly designed trial (Raghu et al., 2004), suggested that
patients with relatively well-preserved lung function may
have a survival benefit with IFN-g treatment. The most recent
trial investigating the efficacy of IFN-g (Intermune, USA) used
overall survival time from randomization as its primary end
point (King et al., 2009). However, this study was terminated
prematurely at a planned interim analysis stage. Results
showed that overall survival had crossed the predefined
boundary for lack of benefit; in fact, among the randomized
patients, there was no significant difference between treat-
ment arms in overall mortality. Interest persists in IFN-g as a
potential therapeutic agent in IPF. To this end, a phase I pilot
study is currently recruiting patients to evaluate the safety
and efficacy of nebulized IFN-g in IPF, which may help address
concerns about the most appropriate mode of administration
of this cytokine in this condition.

Pirfenidone
Pirfenidone is an orally available pyridine derivative that
has recently received much interest in IPF in view
of its anti-fibrotic (Gurujeyalakshmi et al., 1999; Iyer et al.,
1999; Hewitson et al., 2001; Di Sario et al., 2002), anti-
inflammatory (Iyer et al., 2000; Hale et al., 2002; Nakazato
et al., 2002; Oku et al., 2002) and antioxidant properties (Giri
et al., 1999). Its potential role in this disease is the subject of
an excellent review by Maher (Maher, 2010). Briefly, pirfeni-
done has been shown to inhibit fibroblast proliferation and
collagen synthesis in vitro (Hewitson et al., 2001; Di Sario
et al., 2002) as well as inhibiting TGF-b induced heat shock
protein HSP47 expression, a molecular chaperone of collagen,
the synthesis of which is known to correlate with fibroblast
ECM deposition. In vivo pirfenidone attenuates bleomycin-
induced lung fibrosis when dosed either prophylactically or
therapeutically (Iyer et al., 1995; Kakugawa et al., 2004), and
this attenuation is associated with a reduction in lung platelet
derived growth factor (PDGF) and TGF-b levels (Gurujeyalak-
shmi et al., 1999; Iyer et al., 1999). Its anti-inflammatory
properties are manifested by an attenuation in TNF-a and
IFN-g levels in experimental models of inflammation (Iyer
et al., 2000; Nakazato et al., 2002; Oku et al., 2002). However,
the precise molecular mechanism of action of pirfenidone
remains unknown. Nonetheless, in light of promising data
derived from animal models of fibrosis, pirfenidone has been
the subject of a number of trials in IPF. The most recently
published of these, a randomized double-blinded, placebo-
controlled trial (Shionogi, Japan) demonstrated a significant
reduction in decline in vital capacity in the treatment arm
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compared with the placebo arm (Taniguchi et al., 2010).
However, the change in end point during the course of the
trial has been highlighted as problematic in terms of drawing
any firm conclusions regarding the use of pirfenidone in IPF
patients (Collard, 2010). The results of two other Phase III
trials (Intermune, USA) have, to date, been presented in
abstract form only at international meetings and as such the
results have yet to be subjected to rigorous peer review.
Briefly, however, it appears from the presented data that pir-
fenidone treatment resulted in a significant reduction in FVC
decline compared with placebo in the CAPACITY 2 trial at 72
weeks, although no such significance was reached in the
CAPACITY 1 trial. Clearly, pirfenidone represents a poten-
tially important advance in IPF therapy, and we look forward
to the publication of data derived from these studies.

Etanercept
The long-standing interest in TNF-a as a target in IPF reflects
no shortage of evidence indicating that expression of this
master cytokine is increased in the lungs of patients with lung
fibrosis (Nash et al., 1993; Piguet et al., 1993; Ziegenhagen
et al., 1998), with expression localizing in particular to epi-
thelial cells and macrophages. Moreover, functional polymor-
phisms of TNF-a are associated with an increased risk of
developing IPF (Whyte et al., 2000). A causative role for
TNF-a in the pathogenesis of pulmonary fibrosis is suggested
by observations that blocking TNF-a signalling attenuates
bleomycin-induced fibrosis (Piguet et al., 1989; Zhang et al.,
1997; Ortiz et al., 1998; Oikonomou et al., 2006). Further-
more, local pulmonary overexpression of TNF-a results in
fibroblast accumulation and increased deposition of ECM
proteins in the pulmonary interstitium (Miyazaki et al., 1995;
Sime et al., 1998). More recently, the importance of soluble
TNF-a in mediating the transition from bleomycin-induced
inflammation to fibrosis, a transition accompanied by
lymphocyte recruitment, has been demonstrated in mice
(Oikonomou et al., 2006). This latter observation highlights
the potential importance of TNF-a in influencing the adap-
tive immune system [reviewed in (Kollias et al., 1999)] and
potentially, the polarization of the Th immune response
to lung injury. However, in contrast to these promising pre-
clinical studies, the soluble TNF-a receptor antagonist Etan-
ercept proved disappointing in a subsequent randomized,
double-blinded, placebo-controlled trial (Wyeth, USA) in IPF
patients with no significant improvement in lung function
parameters observed (Raghu et al., 2008). However, a non-
significant trend towards improvement in a composite of
these indices was noted following secondary analysis.

Imatinib
There has been long-standing interest in the potent fibroblast
mitogen and chemoattractant, PDGF, as a target in fibrosis,
including lung fibrosis (Antoniades et al., 1990). Although
PDGF has been shown to induce procollagen production by
fibroblasts in vitro (Lepisto et al., 1995), it may play a greater
role in expanding the fibroblast accumulation at sites of
injury (Clark et al., 1993). Most attention has been focused on
the two PDGF isoforms, PDGF-A and –B, which homo- and
heterodimerize, and stimulate tyrosine kinase signalling via
interaction with the PDGF-a or -b receptors. The tyrosine

kinase inhibitor, Imatinib mesylate (Novartis, Switzerland)
has activity against the PDGF receptor, but the anti-fibrotic
potential of this drug may reflect multiple potential modes of
action. For example, imatinib inhibits signalling pathways
directly downstream of TGF-b, in part through inhibition of
c-Abl tyrosine phosphorylation (Daniels et al., 2004). It also
inhibits the stem cell factor/c-kit axis (Wang et al., 2000b)
and collagen-induced Discoidin Domain Receptor-1 activa-
tion (Day et al., 2008), two pathways recently implicated in
the development of bleomycin-induced fibrosis in mice
(Avivi-Green et al., 2006; Ding et al., 2010).

Preclinical studies demonstrated that imatinib reduces
collagen deposition and mesenchymal cell proliferation in
the bleomycin model when dosed prophylactically (Daniels
et al., 2004; Aono et al., 2005), but this was not the case when
imatinib was administered in a therapeutic schedule (day 14
post bleomycin onwards) (Aono et al., 2005). In a recent
multi-centre, randomized, placebo-controlled trial (Novartis,
Switzerland) of patients with mild to moderate IPF followed
for 96 weeks (Daniels et al., 2010) imatinib did not affect
survival or lung function. The use of other tyrosine kinase
inhibitors will be discussed in brief in later sections.

Endothelin receptor antagonists
Endothelin-1 (ET-1) expression is up-regulated in IPF (Giaid
et al., 1993; Saleh et al., 1997b). Aside from promoting fibro-
blast proliferation (Peacock et al., 1992; Shahar et al., 1999),
collagen synthesis (Xu et al., 1998) and differentiation into
myofibroblasts (Shahar et al., 1999; Shi-Wen et al., 2004), it is
an extremely potent mitogen for endothelial cells (Pedram
et al., 1997) and vascular smooth muscle cells (Komuro et al.,
1988), thus potentially contributing to neovascularization.
In a rodent model of fibrosis, the administration of bosentan,
a non-selective ET-1(A) and ET-1(B) receptor antagonist,
attenuates bleomycin-induced fibrosis (Park et al., 1997),
although this was not a universal finding (Mutsaers et al.,
1998). The BUILD-1 trial (Actelion, Switzerland) evaluated
the effect of bosentan administration in patients with IPF but
no evidence of severe pulmonary hypertension (PHT) (King
et al., 2008). Although no significant difference between the
bosentan and placebo arms was observed in the primary end
point of 6 minute walk test distance, a trend in favour of
bosentan was observed in the secondary end point of time to
death or disease progression. Post hoc analysis of data pertain-
ing to these secondary end points, however, did demonstrate
a significant benefit in the bosentan arm in those IPF patients
who had undergone a lung biopsy to reach a diagnosis of IPF.
The BUILD-3 trial (Actelion, Switzerland), which has finished
recruiting patients, is a randomized double-blinded placebo-
controlled trial, designed to explore the effect of bosentan on
disease progression in this subset of patients. The ET-1(A)
receptor antagonist, ambrisentan, is Food and Drug Admin-
istration approved for the treatment of PHT, and its potential
in delaying disease progression in IPF patients without PHT
was recently the subject of a prospective, double-blinded
randomized placebo-controlled trial (ARTEMIS-IPF; Gilead,
USA). Unfortunately, this trial was terminated at an interim
analysis stage due to lack of efficacy. An additional trial inves-
tigating the efficacy of endothelin antagonists in IPF is cur-
rently ongoing: the MUSIC trial (Actelion, Switzerland) is a
randomized double-blinded placebo-controlled trial designed
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to examine the effect of the dual endothelin receptor anta-
gonist, macicentan, on FVC, and has finished recruiting
patients.

NAC
Under normal conditions, lung epithelial cells are protected
from damage by reactive oxidative species (ROS) by antioxi-
dants, such as glutathione (Reddy et al., 2007). However,
these defences may be inadequate in the face of excessive
ROS generation. Oxidative stress is a feature of the IPF lung
(Jack et al., 1996; Montuschi et al., 1998) and extracellular
(Cantin et al., 1989; Behr et al., 1995; Beeh et al., 2002;
Montaldo et al., 2002) and intracellular (Behr et al., 2002)
glutathione levels are reduced in IPF. Aside from being
directly injurious to epithelial cell macromolecules and DNA,
excess ROS can influence several pro-fibrotic cellular pro-
cesses; for instance, myofibroblasts derived from IPF lung
generate hydrogen peroxide (H2O2), which may serve as a
paracrine signal inducing apoptosis in the overlying epithe-
lial cells (Waghray et al., 2005).

NAC, a derivative of cysteine, augments the synthesis of
glutathione both in vitro (Phelps et al., 1992) and in vivo
(Borok et al., 1991a), thus contributing to the replenishment
of glutathione stores and bolstering epithelial cell antioxi-
dant defence. NAC is one of the few agents whose success in
attenuating experimentally-induced fibrosis in animal
models (Shahzeidi et al., 1991) has been translated, to some
degree at least, into a clinical benefit in IPF (Demedts et al.,
2005). The IFIGENIA trial (ZambonSpA, Italy) demonstrated a
significant reduction in the rate of decline of FVC and trans-
fer factor (DLco) in the NAC treatment arm, although this
effect did not translate into increased survival at one year.
These data have supported the recent addition of NAC to
standard therapy in IPF, despite a number of concerns regard-
ing the trial that have been highlighted elsewhere (Behr and
Noble, 2009). In particular, as the treatment and placebo
arms of the trial were add-on therapies to prednisolone and
azathioprine, it is difficult to be sure that the beneficial effect
of NAC is only observed in those patients on such therapy.
The results of the PANTHER trial, outlined earlier, should help
clarify these questions.

Current drug targets in IPF

TGFb1
TGF-b exists as one of three isoforms in humans, TGF-b1–3,
and there continues to be overwhelming evidence that, of
these isoforms, TGF-b1 plays a major mechanistic role in
fibrogenesis in numerous fibrotic disorders, including IPF.
Although all isoforms are potent stimulators of lung fibro-
blast procollagen production in vitro, only TGF-b1 gene
expression is increased in murine lung following bleomycin
challenge (Coker et al., 1997), and immunohistochemical
analysis of lungs from patients with pulmonary fibrosis dem-
onstrates strong immunoreactivity for TGF-b1, but not for
TGF-b2/3 (Khalil et al., 1996). Transient overexpression of
TGF-b3 in rat lungs is capable of inducing a fibrotic response,
but this is less severe and progressive than that which results
from TGF-b1 overexpression (Ask et al., 2008). Paradoxically,

in other models of fibrosis, including dermal and liver fibro-
sis, TGF-b3 appears to be anti-fibrotic (Shah et al., 1995;
Zhang et al., 2010), and recombinant TGF-b3 is currently
being evaluated in Phase II trials as a tool to promote scar-free
healing following skin injury. The exact mechanism of action
remains unclear, although modulation of macrophage infil-
tration (Shah et al., 1995) and the promotion of an MMP-
dominant microenvironment (Zhang et al., 2010) have
been postulated. However, no such data currently exist to
demonstrate a similar effect in lung fibrosis, and the remain-
der of this section will focus on strategies targeting TGF-b1
signalling.

TGF-b1 is the most potent inducer of fibroblast ECM
production characterized to date (Raghow et al., 1987; Overall
et al., 1989; McAnulty et al., 1991), and promotes fibroblast to
myofibroblast differentiation (Chambers et al., 2003; Subra-
manian et al., 2004). Overexpression of TGF-b1 is sufficient to
drive progressive fibrosis in mice (Sime et al., 1997) and
TGF-b1 has more recently been shown to drive either epithe-
lial cell apoptosis (Yanagisawa et al., 1998) or EMT (Kim et al.,
2009) (Willis et al., 2005), depending on the composition of
the ECM. A number of strategies aimed at interfering with
TGF-b1-induced cellular responses have been developed,
although there remains concern that TGF-b1 plays essential
roles in regulating inflammation and acts as a tumour sup-
pressor in certain contexts. If these strategies interfere with
TGF-b1’s homeostatic roles, this may carry the liability of
highly undesirable side effects; especially in light of the fact
that many IPF patients will have a previous smoking history
and will already be at heightened risk of developing lung
cancer (Ozawa et al., 2009).

TGF-b inhibition
Both pan-TGF-b and TGF-b1, -b2 and -b3 isoform-specific
antibodies are in development for multiple indications,
including IPF. Cambridge Antibody Technology (UK) and
Genzyme (UK) have recently completed a Phase I clinical trial
in IPF patients with GC1008 – a neutralizing antibody that
targets all three mammalian isoforms. We await the publica-
tion of the results of this study with interest.

Inhibition of TGF-b signalling
Approaches aimed at inhibiting active TGF-b signalling have
also been intensely investigated in several disease indications
with much of this effort focused on the development
of inhibitors of the high-affinity serine/threonine kinase
receptor TGF-bRI (activin-like kinase receptor-5). Orally active
activin-like kinase receptor-5 kinase inhibitors, e.g. SB-525334
(GlaxoSmithKline, UK) have been shown to attenuate
bleomycin-induced pulmonary fibrosis (Higashiyama et al.,
2007) and have also been shown to be effective in blocking
fibrotic progression in TGF-b1 lung overexpression studies
(SD-208; Scios Inc., USA) (Bonniaud et al., 2005).

Blockade of TGF-b activation
As mentioned above, direct TGF-b blocking strategies may
carry high liabilities with respect to interfering with key
homeostatic functions of TGF-b. Another approach that has
gained much favour is to develop strategies aimed at blocking
TGF-b at the level of activation. TGF-b bioactivity is con-
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trolled on a number of levels, with latent TGF-b activation
representing one of the key rate-limiting steps. This is depen-
dent on the dissociation of TGF-b from the TGF-b latency-
associated peptide (LAP). Depending on cell type, TGF-b
activation is mediated by proteolytic cleavage or by the
proteolytic-independent interaction of LAP with integrins or
the matrix glycoprotein thrombospondin-1 (reviewed in
[Murphy-Ullrich and Poczatek, 2000; Wipff and Hinz, 2008)].
In the context of lung fibrosis, integrin-dependent mecha-
nisms are felt to be particularly important. Integrins avb6,
avb5, avb3, and an as yet unidentified b1 integrin have been
shown to activate latent TGF-b1 independently from any
proteolytic activity – they all recognize the RGD sequence of
LAP-TGF-b1 as part of the ECM-bound large latent complex.
When the large latent complex is covalently bound to a
mechanically resistant ECM (as would be the case in fibrosis),
cell traction forces exerted on LAP-TGFb1 result in a confor-
mational change of the latent complex and liberates active
TGF-b1 [reviewed in (Wipff and Hinz, 2008)]. There is strong
in vitro, experimental animal and IPF patient immunohis-
tochemistry data to support a key role for the epithelial-
restricted integrin, avb6, in the activation of TGF-b1 (Munger
et al., 1999; Jenkins et al., 2006). Expression of this integrin is
low in normal epithelial tissues and is significantly
up-regulated in injured and inflamed epithelia (Breuss et al.,
1995) including the activated epithelium in IPF (Horan et al.,
2008). Targeting this integrin therefore reduces the theoreti-
cal possibility of interfering with wider TGF-b homeostatic
roles. Partial inhibition of the avb6 integrin by antibody
blockade has been shown to prevent pulmonary fibrosis
without exacerbating inflammation (Horan et al., 2008). A
humanized monoclonal antibody (STX-100) has recently
been evaluated in a completed Phase I clinical trial (Strome-
dix, USA) – phase II trials are planned and this molecule has
recently been granted orphan drug status in the USA.

In addition to the epithelial integrin avb6, the more
widely expressed avb5 integrin has also received much recent
attention in the context of TGF-b activation by myofibro-
blasts in fibrosis [reviewed in (Wipff and Hinz, 2008)]. We
have recently shown that this integrin is co-expressed by
a-SMA positive myofibroblasts within IPF fibrotic foci
(Scotton et al., 2009) but avb5 staining was weak or absent on
hyperplastic epithelial cells within the same tissue samples.
This raises the possibility that this integrin may play a role in
the activation of TGF-b within fibrotic foci while the avb6
integrin is involved in the activation of TGF-b by the acti-
vated epithelium. Although dual b3 and b5 integrin deficient
mice have recently been reported not to be protected from
developing bleomycin-induced lung fibrosis (Atabai et al.,
2009) it is worth bearing in mind that this model does not
usually lead to the development of the typical fibrotic foci
seen in patients with IPF.

Other strategies to inhibit TGF-b signalling
Of the three known human isoforms of TGF-b, TGF-b1 is
thought to be the most important in human fibrotic lung
disease (Khalil et al., 1996), and strategies to modulate TGF-
b-mediated process have reflected this. However, therapies to
influence TGF-b2 activity have resulted in clinical benefits to
patients with pathologies in which this isoform is perhaps
more dominant. These include the use of antisense oligo-

nucleotides to block TGF-b2 expression in patients with high
grade gliomas (Schlingensiepen et al., 2008) and it is conceiv-
able that such strategies may be applicable to the TGF-b1
isoform in the future. Synthetically derived peptides have
also been used to inhibit the TGF-b pathway. P144 (DigNA
Biotech, Spain) is one such 14 mer peptide derived from the
TGF-b1R3 sequence, which blocks binding of TGF-b1 to TGF-
bR1 and has been demonstrated to attenuate experimentally
induced liver fibrosis in rats (Ezquerro et al., 2003). A Phase II
clinical study for the treatment of skin fibrosis in systemic
sclerosis with topical application of P144 is currently recruit-
ing patients.

Connective tissue growth factor (CTGF)
There has been a long-standing interest in the role of CTGF, a
prototypic member of the CCN protein family, as a potential
target in fibrosis, including lung fibrosis. CTGF was originally
thought to be a specific downstream mediator of the pro-
fibrotic effects of TGF-b, with a particular role in stimulating
fibroblast matrix production and myofibroblast differentia-
tion (Leask and Abraham, 2003). Its cell surface receptor and
downstream signalling pathways have yet to be fully deter-
mined and there is now increasing support for the notion that
CTGF may not act as a classical autocrine growth factor. In
addition, it is now clear that CTGF is induced by a number of
other pro-fibrotic mediators, including thrombin (Chambers
et al., 2000). Despite the uncertainties about mechanisms of
action, CTGF remains an interesting target in the context of a
number of fibrotic disorders, including systemic sclerosis and
IPF [reviewed in (Leask, 2009)]. CTGF expression is increased
in IPF (Allen et al., 1999), and although adenoviral overexpres-
sion induces only mild and transient fibrosis in rats (Bonniaud
et al., 2003), overexpression in mice confers susceptibility to
bleomycin-induced fibrosis in the fibrosis-resistant Balb/c
mouse strain (Bonniaud et al., 2004). Moreover, selective
expression of CTGF in fibroblasts in vivo has recently been
shown to promote systemic tissue fibrosis, including in the
lung (Sonnylal et al., 2010). A Phase I clinical trial assessing
a neutralizing antibody directed against CTGF (FG-3019;
FibroGen, USA) was recently completed; the results demon-
strate that this antibody is safe and well-tolerated. Further
studies are required to assess potential therapeutic benefits of
this antibody in IPF.

IL-13
There is growing evidence that the cytokine and chemokine
response to an inciting agent determines whether the injury
response is resolved or progresses to fibrosis. The Th hypoth-
esis of fibrosis proposes that progressive pulmonary fibrosis
results from a maladaptive immune response, dominated by
Th2 cytokines, such as interleukin (IL)-13, to a persistent
inciting agent [reviewed in (Wynn, 2004)]. Therapies aimed
at redressing this imbalance may represent attractive anti-
fibrotic strategies.

IL-13 is the most extensively studied Th2 cytokine in the
context of several fibroproliferative diseases, including IPF.
IL-13 levels are increased in BALF from patients with pulmo-
nary fibrosis (Hancock et al., 1998) and IL-13 promotes fibro-
blast collagen production (Oriente et al., 2000; Saito et al.,
2003) and fibroblast to myofibroblast differentiation (Saito
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et al., 2003) in vitro. These effects may be direct or dependent
on secondary mediators such as TGF-b (Fichtner-Feigl et al.,
2006) and/or Found in Inflammatory Zone-1 (Liu et al.,
2004). Mice deficient for IL-13 are protected from fluorescein
isothiocyanate-induced lung fibrosis (Kolodsick et al., 2004)
and IL-13 targeted therapies have proved successful in attenu-
ating bleomycin-induced fibrosis in mice (Belperio et al.,
2002; Jakubzick et al., 2003). More recently, IL-13 has also
been shown to promote epithelial cell apoptosis in vitro
(Borowski et al., 2008) and may therefore play a role in the
abnormal epithelial–mesenchymal crosstalk in IPF. Taken
together, these observations support the notion that IL-13
may represent an attractive target for therapeutic interven-
tion in IPF and other fibrotic lung diseases. An open label,
non-randomized phase II trial investigating the effect of an
anti-IL13 antibody (QAX576; Novartis, Switzerland) on IL-13
production in IPF has recently been concluded. Publication of
the results is eagerly anticipated.

CCL2
There has long-standing interest in the major monocyte
chemoattractant, CCL2/MCP-1, in pulmonary fibrosis based
on the observation that this chemokine is elevated in BALF
from IPF patients (Baran et al., 2007). Moreover, serum CCL2
levels may correlate with the clinical course of IPF (Suga et al.,
1999). CCR2 knockout mouse studies (Moore et al., 2005) and
CCL12 neutralizing antibody studies (Moore et al., 2006) in
wild-type mice support a causal role for this chemokine axis
in animal models of fibrosis. As well as being a potent
chemoattractant for T cells, immature dendritic cells, mono-
nuclear cells (Rose et al., 2003) and fibrocytes (Moore et al.,
2005), CCL2 signalling may also promote fibrosis by inducing
the expression of TGF-b (Gharaee-Kermani et al., 1996). In
terms of the immune response to injury, CCL2 also exerts
immunomodulatory effects, which in turn may contribute to
the development of a Th2 cytokine dominated phenotype
(Karpus et al., 1997; Hogaboam et al., 1998; Gu et al., 2000). A
randomized double-blinded placebo-controlled trial to evalu-
ate the safety and efficacy of the anti-CCL2 antibody, CNTO
888 (Centocor Inc, USA) is currently recruiting. Patients will
be maintained on their current therapy and the primary end
point is performance at lung function testing.

CXCR4 and CXCL12

As outlined earlier, there has been much recent interest in the
role of chemokines in recruiting fibrocytes to the injured
lung. Although both the CCR2/CCL12 and CXCL12/CXCR4
axes have been shown to play important roles in murine
models, in human IPF greater focus has been placed on the
CXCL12/CXCR4 axis (Phillips et al., 2004). As such, there has
been much interest in the development of CXCR4 antago-
nists for a number of indications, including cancer. Such
agents may also be worth considering in the context of IPF.
Alternative strategies targeting this axis include inhibition of
CXCR4 expression – hypoxia- and growth factor-induced
CXCR4 expression in fibrocytes is attenuated by inhibition of
mTOR, and administration of the mTOR inhibitor rapamycin

to rodents significantly inhibited bleomycin-induced lung
collagen deposition (Simler et al., 2002; Mehrad et al., 2009).

Angiotensin converting enzyme (ACE)
and angiotensin II (ANG II)

Angiotensin II is derived from the conversion of angiotensi-
nogen (AGT) by ACE. ANG II is a potent inducer of epithelial
apoptosis (Wang et al., 1999) and there is in vitro and in vivo
evidence that these effects are mediated by the ANGII
receptor subtype, AT(1) (Li et al., 2003a,b). ANG II is also a
potent inducer of procollagen production by human lung
fibroblasts, at least in part via the autocrine action of TGF-b
(Marshall et al., 2004). Recent studies have also provided evi-
dence for the existence of an ANGII/TGF-b ‘autocrine loop’:
human lung myofibroblasts derived from human IPF lung
constitutively express more AGT and active TGF-b than
control fibroblasts; in turn, induction of fibroblast to myofi-
broblast differentiation by TGF-b is associated with increased
AGT expression (Uhal et al., 2007).

ACE inhibitors such as captopril (Wang et al., 2000a), and
AT(1) receptor antagonists such as losartan (Marshall et al.,
2004) attenuate bleomycin-induced lung fibrosis. This
response is associated with a reduction in epithelial cell apo-
ptosis (Wang et al., 2000a; Li et al., 2003a) and TGF-b expres-
sion (Otsuka et al., 2004).

In human disease, increased levels of ANGII are
observed in IPF lung compared with non-fibrotic controls,
localizing to apoptosing epithelial cells and myofibroblasts
in fibrotic foci (Li et al., 2006), Moreover, ACE insertion/
deletion polymorphisms are associated with suscepti-
bility and outcome in acute respiratory distress syndrome
(Marshall et al., 2002).

In light of these observations, two trials to evaluate
the efficacy of losartan in IPF are currently recruiting.
The first will focus on vascular reactivity in IPF and is
beyond the scope of this review. The second trial is a
pilot intervention study (University of South Florida) evalu-
ating the FVC response to losartan after 12 months treat-
ment. The estimated completion date for this study is
March 2012.

Targeting the coagulation cascade

There is compelling evidence for a role for the coagulation
cascade in driving the fibroproliferative response to lung
injury [reviewed in (Chambers, 2008)]. Tissue factor is highly
expressed on the hyperplastic epithelium in IPF (Imokawa
et al., 1997) and thrombin levels are increased in BALF from
patients with fibrotic lung disease (Hernandez-Rodriguez
et al., 1995). Moreover, we have provided evidence that the
upstream coagulation zymogen, factor X, is locally produced
and activated in the intra-alveolar compartment of patients
with IPF and in the bleomycin model (Scotton et al., 2009).
Anticoagulants are highly effective in attenuating fibrosis in
experimental animal models when given either prophylacti-
cally (Howell et al., 2001; Scotton et al., 2009) or therapeuti-
cally (Gunther et al., 2003).
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While the coagulation cascade may contribute to pulmo-
nary fibrosis by promoting the deposition and persistence of
fibrin, current evidence suggests that the direct receptor-
mediated cellular effects elicited by activation of the major
high-affinity thrombin receptor, proteinase-activated recep-
tor (PAR)-1) may play a central role [reviewed in (Chambers,
2008)]. Recent work has also highlighted a potentially key
role for PAR-2 in pulmonary fibrosis (Borensztajn et al., 2010).

PAR-1 is expressed by numerous cell types, including
fibroblasts, epithelial cells and macrophages; and activation
of this receptor leads to the release of potent pro-
inflammatory and pro-fibrotic mediators [reviewed in
(Chambers, 2008)]. In terms of pro-fibrotic responses, PAR-1
signalling in fibroblasts promotes their proliferation via the
autocrine production of PDGF (Blanc-Brude et al., 2005) and
drives their differentiation into myofibroblasts via avb5-
dependent TGF-b activation (Scotton et al., 2009). On epi-
thelial cells, PAR-1 activation similarly leads to TGF-b
activation but this is mediated via the epithelial-restricted
avb6 integrin (Jenkins et al., 2006). PAR-1 signalling also
induces the production and release of CTGF by lung fibro-
blasts (Chambers et al., 2000) and thrombin up-regulates
the expression of the fibrinolysis inhibitor, plasminogen
activator inhibitor-1 in this cell type (Hayakawa et al.,
1995). Finally, studies in our laboratory with PAR-1 knock-
out mice provide strong support for a role for this receptor
in mediating inflammatory and fibrotic responses to lung
injury (Howell et al., 2005).

In terms of demonstrating a causal role for the coagula-
tion cascade in human disease, a recently completed trial
investigating the effect of anticoagulation in IPF provided
some support for this notion (Kubo et al., 2005). In this non-
blinded prospective randomized trial, patients with IPF who
were admitted to hospital were randomly assigned to receive
prednisolone or prednisolone and anticoagulation in the
form of heparin or warfarin. Increased survival at 3 years was
observed in the anticoagulation arm compared with the non-
anticoagulation arm (63% vs. 25% respectively). Further-
more, mortality associated with acute exacerbations of IPF
was reduced in the anticoagulation arm compared with those
treated with prednisolone alone. Despite these promising
data, concerns about the non-blinded nature of the trial as
well as the diagnostic criteria used to confirm the diagnosis of
IPF mean that the role of anticoagulation in IPF remains
unclear. However, the AntiCoagulant Effectiveness in Idio-
pathic Pulmonary Fibrosis (ACE-IPF) trial (NHLBI, USA), cur-
rently recruiting patients, will hopefully shed important light
on this issue. This double-blinded randomized placebo-
controlled study will evaluate the efficacy of warfarin treat-
ment on time to death or disease progression in IPF, and the
results are eagerly awaited. It has also been proposed that
nebulized administration of anticoagulant to patients might
represent a means of achieving local anticoagulation without
undesired systemic effects, and a recent open label explor-
atory study demonstrated that nebulized heparin was safe
and well-tolerated in IPF patients (Markart et al., 2010).
Finally, PAR-1 antagonists are currently being developed as
novel anti-thrombotic agents and several large-scale trials
have recently been completed in the setting of cardiovascular
disease. The scientific rationale for testing such antagonists in
the setting of lung fibrosis is gaining strength.

Eicosanoid imbalance

There is good experimental evidence that re-establishing an
intact epithelium following injury may serve to suppress
excessive fibroblast activation. Because fibrosis may result
from an imbalance in the relative levels of pro- and anti-
fibrotic mediators, there has been much interest in the
potential anti-fibrotic role of the cyclooxygenase (COX)-2
dependent prostanoid, prostaglandin E2 (PGE2). PGE2 is the
main prostanoid produced in the lung and is secreted by
several cell types, including fibroblasts and epithelial cells
(Maher et al., 2010a). PGE2 exerts major anti-fibrotic effects by
suppressing fibroblast responses, including proliferation (Bit-
terman et al., 1986; Lama et al., 2002), differentiation into
myofibroblasts (Kolodsick et al., 2003) and collagen synthesis
(Goldstein and Polgar, 1982). In support of an anti-fibrotic role
for COX-2 in lung fibrosis, COX-2-deficient mice develop
increased fibrosis following bleomycin-induced injury (Keer-
thisingam et al., 2001). These findings are supported by the
observation that PGE2 levels are decreased in IPF lung, whereas
levels of leukotrienes derived from the 5-lipooxygenase
pathway, including LTB4, are increased (Borok et al., 1991b;
Wilborn et al., 1996). Several groups have shown that primary
lung fibroblasts derived from patients with IPF are unable to
up-regulate COX-2 in response to pro-inflammatory and pro-
fibrotic mediator activation, including TGF-b (Keerthisingam
et al., 2001) (Wilborn et al., 1995; Xaubet et al., 2004).

Aside from exerting major anti-fibrotic effects, PGE2 has
recently been implicated as playing a central role in promot-
ing the ‘apoptosis paradox’ of IPF. According to this paradox,
IPF is characterized by (and possibly the result of) excessive
epithelial cell apoptosis and (myo)fibroblast resistance to
apoptosis. Recent studies from our centre have shown that
the lack of PGE2 may provide a mechanistic explanation for
increased resistance of myofibroblasts to apoptosis, in com-
parison with increased epithelial cell apoptosis (Maher et al.,
2010a). PGE2 has also been shown to play a central role in
mediating the anti-fibrotic effects of plasminogen activation
(Bauman et al., 2010). The EP receptors involved in mediating
the anti-fibrotic and apoptotic responses of PGE2 are coming
to light with roles identified for both EP2 (Kolodsick et al.,
2003) and EP4 (Maher et al., 2010b). Activation of these
receptors with selective agonists (e.g. butaprost, ONO-A1-
329) may offer promise as novel anti-fibrotic agents.

Further evidence to suggest that an eicosanoid imbalance
contributes to a pro-fibrotic microenvironment stems from
the observation that 5-LO knockout mice are protected from
bleomycin-induced fibrosis (Peters-Golden et al., 2002). In
light of these data, a recent study has completed recruitment
of IPF patients. This trial is an open label phase II trial (Uni-
versity of Michigan) comparing the 5-LO inhibitor, zileuton,
to azathioprine and prednisolone: the primary end point is
BALF LTB4 levels, but secondary end points include perfor-
mance at lung function testing and progression free survival.

Prostacyclin (PGI2) is another arachidonic acid metabolite
derived via the COX-2 pathway. Similar to PGE2, PGI2 possess
a number of anti-fibrotic properties, and COX-2 derived
PGI2 has been shown to play an important role in limiting
the development of bleomycin-induced lung fibrosis
(Lovgren et al., 2006). Recent work has demonstrated that
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intraperitoneal administration of iloprost, a PGI2 analogue,
attenuates the fibrosis seen in this model (Zhu et al., 2010).
The use of this drug in a nebulized form in PHT suggests that
further investigation in IPF might be warranted.

Targeting the redox equilibrium

The recent addition of NAC to prednisolone and azathioprine
as an adjunct therapy for IPF reflects the growing belief that
targeting the increased oxidative burden in IPF (MacNee and
Rahman, 1995; Rahman et al., 1999) will result in a clinical
benefit for these patients.

However, recent work has demonstrated that similar ben-
efits may be observed when redressing this redox imbalance
from the opposite side of the equation: NADPH oxidase
(NOX)-4 catalyses the reduction of O2 to ROS, and genetic
and pharmacological targeting of NOX-4 attenuates experi-
mentally induced fibrosis, possibly by interfering with TGF-b
induced myofibroblast activity (Hecker et al., 2009). More-
over, in addition to ROS there is evidence for nitric-oxide
driven nitrosative stress in IPF (Saleh et al., 1997a) and the
administration of aminoguanidine, a specific inhibitor of
inducible nitric oxide synthase, attenuates bleomycin-
induced fibrosis in mice (Giri et al., 2002). The development
of such agents, as well as other novel antioxidant therapies
such as superoxide dismutase mimetics, which inactivate
ROS, may offer alternative therapeutic strategies to redress
this redox imbalance, although the successful translation of
these latter agents from animal to human studies has yet to
be realized. Moreover, the identification of the redox-
sensitive transcription factor Nrf2 as a regulator of antioxi-
dant enzyme and defence protein genes [reviewed in (Walters
et al., 2008)], together with evidence of increased susceptibil-
ity of Nrf2 knockout mice to bleomycin-induced fibrosis (Cho
et al., 2004), may help identify further molecular targets and
pathways for therapeutic modulation in IPF.

Epithelial mitogens

As mentioned previously, appropriate epithelial cell migra-
tion, proliferation and differentiation in response to injury is
central to successful wound healing and tissue repair. There is
accumulating evidence that such processes are impaired in
the context of abnormal fibroproliferative responses to injury
(Finch et al., 1989; Rubin et al., 1989; Deterding et al., 1996).
Intratracheal administration of the epithelial mitogen, kera-
tinocyte growth factor (KGF) before bleomycin instillation
attenuates the subsequent fibrotic response (Deterding et al.,
1997) while TGF-b blocks KGF-induced proliferation of alveo-
lar pneumocytes in vitro (Zhang et al., 2004). In addition,
bone marrow transplantation of haematopoietic stem cells
expressing KGF significantly reduces bleomycin-induced lung
injury, possibly by promoting AEC II proliferation (Aguilar
et al., 2009). Administration of the epithelial mitogen, hepa-
tocyte growth factor (HGF) similarly attenuates lung collagen
accumulation in animal models of pulmonary fibrosis (Dohi
et al., 2000), and HGF further exerts a pro-apoptotic effect on
myofibroblasts via the c-Met receptor (Mizuno et al., 2005).

Although this raises the possibility that activation of the
HGF/c-Met system in fibrotic lungs may represent a potential
target in IPF, this receptor system is frequently activated in a
broad spectrum of human cancers – because IPF patients are
at a heightened risk of developing lung cancer (Ozawa et al.,
2009), the potential role of the HGF/c-Met axis in driving
epithelial tumours in IPF would need to be fully explored and
understood before this approach could be deemed viable.

Angiogenesis

Despite the first observation of microvascular systemic-
pulmonary anastamoses in IPF lung over 40 years ago
(Turner-Warwick, 1963), the role of aberrant angiogenesis in
the pathogenesis of this condition remains unclear. The key
issue remains whether neovascularization represents a critical
pathogenetic mechanism contributing to progressive fibrosis
or a compensatory mechanism to promote alveolar repair.

In line with human studies, aberrant vascular remodelling
has been observed in the lungs of bleomycin-challenged rats
(Peao et al., 1994) suggesting a pro-angiogenic microenviron-
ment in this model. Evidence to suggest that an imbalance
between angiogenic and angiostatic chemokines is of mecha-
nistic importance in this model stems from observations that
levels of the angiostatic chemokine CXCL10 are lower in
bleomycin-challenged mice compared with control lungs
(Keane et al., 1999). Moreover, administration of both
CXCL10 and CXCL11, another angiostatic chemokine,
attenuate bleomycin-induced fibrosis with a concomitant
reduction in angiogenesis (Keane et al., 1999; Burdick et al.,
2005). In humans, increased levels of the angiogenic chemok-
ines CXCL8 and CXCL5 have been reported in IPF lung
(Keane et al., 1997; 2001), while IPF-derived fibroblasts con-
stitutively express more CXCL8 than their non-fibrotic coun-
terparts (Keane et al., 1997); depletion of these chemokines
from lung tissue reduced the tissue-derived angiogenic activ-
ity (Keane et al., 1997; 2001).

It seems therefore that targeting the pro-angiogenic micro-
environment may provide a further therapeutic avenue for IPF
patients. A more global approach to achieving an angiostatic
environment may be achieved using agents such as tetrathio-
molybdate (TM) and minocycline. TM is a copper-chelating
agent that possesses anti-angiogenic properties in vivo (Pan
et al., 2002), which may be related to transcriptional down-
regulation of angiogenic growth factors such as vascular
endothelial growth factor (VEGF) (Brewer et al., 2004). TM
administration attenuated bleomycin-induced fibrosis in mice
(Brewer et al., 2003) and a non-randomized control trial (Uni-
versity of Michigan) investigating the safety of TM in IPF has
recently been completed. The secondary end point in this trial
was performance at lung function testing, and we await the
results with interest. Minocycline is also known to possess
anti-angiogenic properties (Tamargo et al., 1991) and its effi-
cacy in treating IPF is the subject of a Phase III trial (University
of California) – this trial has finished recruiting and the results
are awaited. The targeting of VEGF, along with PDGF
and fibroblast growth factor signalling pathways is an area of
active research in tumour biology. Optimism that BIBF 1120
[Boehringer Ingelheim Pharmaceuticals (BIP), UK], an inhibi-
tor of their respective receptor kinases, fuelled by the observa-
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tion that anti-VEGF gene therapy attenuates experimentally
induced fibrosis (Hamada et al., 2005), could prove an effective
anti-angiogenic drug in this field prompted the initiation of a
double-blinded, placebo-controlled trial (BIP, UK) to evaluate
the safety and efficacy of this drug in IPF. The results are
currently pending.

However, recent work suggests a decrease in the extent of
anastamoses (Renzoni et al., 2003) between the pulmonary
and systemic vasculature within the fibroblastic foci of
IPF, highlighting the lack of clarity regarding the role of
neovascularization in IPF – to this end, it has been proposed
that aberrant neovascularization in areas of less fibrosis
may represent a compensatory mechanism to the vascular
ablation reported in the aforementioned work, and necessary
for regeneration of alveolar septae (Renzoni, 2004). Further
investigation is therefore required to elucidate the role of
neovascularization in the pathogenesis of IPF to enable a
rational interpretation of data derived from the aforemen-
tioned trials.

Ongoing trials of other agents in IPF

Somatostatin
Aside from the broad and overlapping therapeutic categories
discussed above, a number of other novel targets potentially
important in the pathogenesis of IPF have recently been
identified. For example, recent work has demonstrated that
expression of the somatostatin receptor, sst2, is increased
in mice following bleomycin challenge (Borie et al., 2008).
Subcutaneous administration of a somatostatin analogue,
SOM230 (Novartis, Switzerland), in this model attenuates
bleomycin-induced fibrosis, and this attenuation is associated
with reduced expression of TGF-b and CTGF (Borie et al.,
2008). The anti-fibrotic mechanism of action of somatostatin
analogues remains unclear, although it may relate to inhibi-
tion of fibroblast proliferation (Borie et al., 2008). Increased
expression of the sst2 receptor is also observed in the lungs of
patients with IPF (Antoniu, 2008), and these data prompted
the initiation of a proof of concept, non-randomized open
label study (Institut National de la Santé Et de la Recherche
Médicale, France) to evaluate the efficacy of octreotide, a
somatostatin analogue, in IPF. This study has been com-
pleted, although the results are yet to be reported.

Thalidomide
Thalidomide is a drug originally introduced as a sedative.
Despite its well-known teratogenic effects, it has proven effi-
cacious in treating a wide variety of conditions including
multiple myeloma. Thalidomide possesses anti-inflammatory
(Koch, 1985), immunomodulatory (Haslett et al., 1998) and
anti-angiogenic properties (D’Amato et al., 1994), and has
been demonstrated to attenuate bleomycin-induced fibrosis
in mice (Tabata et al., 2007). Its precise mechanism of action
remains unclear, although the observed attenuation in fibro-
sis following experimental lung injury is accompanied by a
reduction in VEGF expression (Tabata et al., 2007), suggesting
that inhibition of neovascularization might represent a
potential mechanism. IL-6 expression has also been shown to
be reduced in this model suggesting multiple possible modes

of action (Tabata et al., 2007). In light of these data, a non-
randomized open label study (John Hopkins University)
designed to evaluate the safety and efficacy of thalidomide in
patients with IPF has been completed, but the results are not
yet published.

Recent advances in the identification
of novel targets and pathways

Lysophosphatidic acid
Recent work has identified the bioactive phospholipid deriva-
tive lysophosphaditic acid (LPA), acting via stimulation of its
multiple G-protein-coupled receptors LPA1–5, as an important
mediator in wound repair and tissue fibrogenesis (Watterson
et al., 2007). The potential significance of this mediator in
lung fibrosis has been highlighted by studies demonstrating a
critical role for LPA1 activation in fibroblast recruitment and
vascular leak following experimentally induced lung injury in
mice (Tager et al., 2008). In addition, LPA induces avb6-
mediated TGF-b activation in lung epithelial cells (Xu et al.,
2009) via RhoA and Rho kinase, following interaction with
the LPA2 receptor, findings consistent with previous observa-
tions that LPA is capable of mediating cellular contraction in
a number of different cell types (Chrzanowska-Wodnicka and
Burridge, 1996). In support of a role for LPA in human disease,
BALF LPA levels and LPA2 immunoreactivity are significantly
increased in IPF patients compared with non-fibrotic control
samples (Tager et al., 2008; Xu et al., 2009), suggesting that
LPA may represent a novel therapeutic target in pulmonary
fibrosis. Indeed, the success of prophylactic administration of
a LPA1 receptor antagonist, in attenuating bleomycin-induced
lung fibrosis in mice, has prompted the initiation of a phase I
clinical study using AM152 (Amira, USA), an alternative LPA1

antagonist, in healthy subjects, with a view to evaluating its
anti-fibrotic efficacy in IPF in the future.

Wnt signalling
The Wnt signalling pathway plays a crucial role in lung
development, regulating both epithelial and mesenchymal
development via autocrine and paracrine signals. A detailed
discussion of this signalling pathway is beyond the scope of
this article and has been recently reviewed (Kikuchi et al.,
2007). In brief, Wnt proteins bind to Frizzled cell surface
receptors or low-density lipoprotein co-receptors. The inhibi-
tion of glycogen synthase kinase 3b results in the hypophos-
phorylation of b-catenin that allows translocation of this
cytoskeletal protein into the nucleus. Subsequent binding of
b-catenin to the LEC/TCF family of transcription factors con-
verts them from transcriptional repressors to activators.

Support for the potential involvement of this pathway in
IPF comes from observations in humans and animal models.
Strong nuclear b-catenin immunoreactivity is observed in the
lungs of IPF patients, localizing to fibroblasts within fibrotic
foci and to proliferative bronchiolar lesions, a finding not
observed in non-IPF lung (Chilosi et al., 2003). b-catenin and
WNT-1-inducible signalling protein (WISP-1) have been
shown to promote EMT in vitro suggesting that dysregulated
activation of b-catenin associated transcription factors could
promote an expansion of the myofibroblast population in IPF
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(Chilosi et al., 2003) (Konigshoff et al., 2009). Further support
for the importance of the Wnt signalling pathway in the
pathogenesis of IPF stems from the observation that mice
deficient in matrilysin (MMP-7), a target gene of the
b-catenin-LEF1 signalling pathway, are protected from
bleomycin-induced fibrosis, and interestingly expression of
MMP7 is significantly increased in IPF lung (Zuo et al., 2002).,
WISP-1 is up-regulated in humans with IPF and mediates
pulmonary fibrosis in mice (Konigshoff et al., 2009) and phar-
macological inhibition of Wnt/beta-catenin/CREB binding
protein signalling reverses experimentally-induced pulmo-
nary fibrosis (Konigshoff et al., 2009; Henderson et al., 2010)
The scientific rationale for interfering with Wnt signalling in
IPF is therefore rapidly gaining strength.

Jagged/Notch pathway
As highlighted previously, it is increasingly recognized that in
the context of a pro-fibrogenic cytokine milieu, EMT may
promote the development of a myofibroblast population that
significantly contributes to fibrogenesis. While TGF-b is seen
as the principle driving force for EMT, recent studies have
demonstrated the potential importance of integration of
TGF-b and Jagged ligand/Notch receptor signalling pathways
in EMT – these pathways are highly evolutionary conserved
cell signalling systems that regulate cell fate specification,
and siRNA targeting of components of the Notch pathway
has previously been shown to block TGF-b induced EMT in
kidney tubule epithelial cells (Zavadil et al., 2004). Recent
work has demonstrated that Notch signalling plays a role in
EMT both upstream and downstream of TGF-b in rat AECs in
vitro, and that inhibition of Notch receptor activation attenu-
ates TGF-b – induced a-SMA expression (Aoyagi-Ikeda et al.,
2010), a finding seen also in kidney tubule epithelial cells
(Nyhan et al., 2010). Furthermore, Notch1 co-localizes with
a-SMA in bleomycin-induced pulmonary fibrosis and in
patients with pulmonary fibrosis (Aoyagi-Ikeda et al., 2010).
These exciting data suggest that inhibition of the Notch sig-
nalling pathway may offer a further therapeutic opportunity
to tackle pulmonary fibrosis, one that may bypass the poten-
tial problems of a more global anti-TGF-b strategy.

Lysyl oxidase-2
Lysyl oxidase-2 (LOXL2) belongs to a family of five enzymes
that play essential roles during the biogenesis of connective
tissue by catalysing the first step in the formation of cross
links in collagens and elastin (Kagan and Li, 2003). Recent
studies have highlighted a novel role for LOXL2 in the cre-
ation and maintenance of the pathologic micro-environment
of cancer and fibrotic diseases (Akiri et al., 2003; Erler et al.,
2006). This enzyme is up-regulated in IPF and administration
of a monoclonal anti-LOXL2 antibody (AB0023; Arresto Bio-
Sciences, USA) dosed either prophylactically or therapeuti-
cally, significantly attenuated bleomycin-induced fibrosis in
mice (Barry-Hamilton et al., 2010). This attenuation was asso-
ciated with a decrease in the number of a-SMA + fibroblasts as
well as a considerable improvement in cross-linked fibrillar
collagen abundance and a reduction in TGF-b signalling
(Barry-Hamilton et al., 2010). LOXL2 could therefore poten-
tially mediate fibroblast activation in vivo by enzymatically
catalysing the cross-linking of fibrillar collagen with a corre-

sponding increase in local matrix tension (Wipff et al., 2007)
resulting in activation of TGF-b1 signalling from the latent
complex as outlined earlier. LOXL2 expression is relatively
low in normal tissues so therapeutic targeting of this enzyme
may represent an attractive target for therapeutic intervention
in several fibrotic conditions, including pulmonary fibrosis.

microRNA
microRNAs (miRNAs) are short (20–24 nt) non-coding RNAs
that are involved in post-transcriptional regulation of gene
expression by affecting both the stability and translation of
mRNA. They are known to play critical roles in organogenesis
(Stefani and Slack, 2008), and dysregulation of miRNAs is
increasingly implicated in a variety of disease processes.
Recent microRNA microarray studies in IPF showed that a
number of miRNAs are differentially expressed in IPF com-
pared with non-fibrotic control lungs. Notable examples
include the miRNA, let-7d, which is down-regulated in the
IPF lung, as well as in response to TGF-b signalling. The
down-regulation of let-7d in IPF and the pro-fibrotic effects of
this down-regulation in vitro and in vivo suggest a key regu-
latory role for this microRNA in preventing lung fibrosis
(Pandit et al., 2010). In contrast, a second study focused on
miR-21 – this is up-regulated in human IPF lung specimens, as
well as in the murine bleomycin model (Liu et al., 2010a). In
this study, miR-21 was found to exert/promote pro-fibrotic
responses, potentially by amplifying the fibrogenic effects of
TGF-b by regulating the expression of an inhibitory Smad,
Smad7. Administration of miR-21 antisense probes dimin-
ished the severity of experimental lung fibrosis in mice, even
when treatment was started 5–7 days after initiation of bleo-
mycin injury. This study raises the tantalizing possibility that
future developments in miRNA therapeutics may open up
novel opportunities for treating clinically refractory fibrotic
diseases, such as IPF.

Conclusions and future directions

Idiopathic pulmonary fibrosis is a devastating and progressive
condition with an appalling prognosis. It is clear that the
fibroproliferative response to injury seen in this condition
reflects an extremely complex interplay between a number
of different cellular and signalling mechanisms, with an
unknown degree of redundancy. Furthermore, it is increas-
ingly appreciated that the targeting of one particular pathway
only, may not have any effect on fibrosis secondary to injury;
rather, lung fibrosis may be a consequence of disequilibrium
in a number of different processes – epithelial and endothelial
injury; inflammation and the immune response to injury;
myofibroblast expansion; hypercoagulation; angiogenesis
and aberrant wound repair mechanisms. The relative impor-
tance of these pathways, which share the final common
pathway of fibrogenesis, may further vary across individuals,
highlighting the importance of identifying subgroups of
phenotypes, which may be more responsive to particular
therapies.

The bleomycin model of fibrosis in mice is a useful model
to delineate the relative importance to pathogenesis of these
pathways but, as has been well documented, is by no means
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an accurate representation of all the features of IPF (Scotton
and Chambers, 2010). Aside from pirfenidone and NAC, opti-
mism that targets derived from attenuation of experimentally
induced fibrosis would translate into a clinical benefit in IPF
has not yet been realized. In terms of the clinical predictabil-
ity of the bleomycin model to IPF, therapeutic rather than
prophylactic dosing is recommended in order to avoid inter-
fering with the inflammatory response rather than the
fibrotic response to injury (Moeller et al., 2008; Scotton and
Chambers, 2010).

The use of high-throughput gene expression profiling
technology may be of particular benefit in understanding the
complex interplays seen in pulmonary fibrosis. Microarray
analysis of RNA expression in human disease samples can
reveal regulatory networks and expression profiles, which
underlie disease progression (see (Kaminski and Rosas, 2006)
for review), but as yet, no targets identified by this means
have been trialled in IPF.

Aside from challenges to understanding pathogenetic
mechanisms in IPF, advances in therapeutics have been
limited by a number of other factors. Importantly, the intrin-
sic nature of the disease, a slow burning process reflecting
years of dysregulated remodelling, means that identifying
patients before end-stage fibrosis has developed is problem-
atic – it is by no means certain that an adult lung has the
capacity to remodel and regain functionality from established
fibrosis, and a halt to disease progression may be all that can
achieved. The design of clinical trials to evaluate therapeutic
strategies in IPF can also be beset by problems. For instance,
selection bias and diagnostic uncertainty in this heteroge-
neous condition may result in patients with varying degrees
of baseline disease, and therefore varying degrees of sensitiv-
ity to treatment, being inappropriately enrolled into the same
trial. In addition, there remains no clear consensus as to the
most appropriate end point to study in interventional
studies. Clearly, mortality is the most robust outcome but
large numbers of patients are required to be maintained
within a trial for long periods. A 10% decline in FVC over 1
year is a widely used parameter of disease progression and
increased risk of mortality (King et al., 2001; Flaherty et al.,
2003; Latsi et al., 2003), although recent work suggests that
smaller changes may be of clinical significance in IPF
(Zappala et al., 2010) and while composite indices of lung
function can predict mortality, their use has not been
adopted into the design of recent clinical trials. The recent
demonstration, however, that large well-conducted trials can
be performed to evaluate drug treatments in IPF, together
with the realization that the therapeutic targeting of multiple
pro-fibrotic pathways is likely to be more successful than
focusing on single pathways, offers more hope than ever
before to sufferers of this devastating condition.
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