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Abstract

Transcranial brain stimulation and evidence of ephaptic coupling have recently sparked

strong interests in understanding the effects of weak electric fields on the dynamics of brain

networks and of coupled populations of neurons. The collective dynamics of large neuronal

populations can be efficiently studied using single-compartment (point) model neurons of

the integrate-and-fire (IF) type as their elements. These models, however, lack the dendritic

morphology required to biophysically describe the effect of an extracellular electric field on

the neuronal membrane voltage. Here, we extend the IF point neuron models to accurately

reflect morphology dependent electric field effects extracted from a canonical spatial “ball-

and-stick” (BS) neuron model. Even in the absence of an extracellular field, neuronal mor-

phology by itself strongly affects the cellular response properties. We, therefore, derive addi-

tional components for leaky and nonlinear IF neuron models to reproduce the subthreshold

voltage and spiking dynamics of the BS model exposed to both fluctuating somatic and den-

dritic inputs and an extracellular electric field. We show that an oscillatory electric field

causes spike rate resonance, or equivalently, pronounced spike to field coherence. Its reso-

nance frequency depends on the location of the synaptic background inputs. For somatic

inputs the resonance appears in the beta and gamma frequency range, whereas for distal

dendritic inputs it is shifted to even higher frequencies. Irrespective of an external electric

field, the presence of a dendritic cable attenuates the subthreshold response at the soma to

slowly-varying somatic inputs while implementing a low-pass filter for distal dendritic inputs.

Our point neuron model extension is straightforward to implement and is computationally

much more efficient compared to the original BS model. It is well suited for studying the

dynamics of large populations of neurons with heterogeneous dendritic morphology with

(and without) the influence of weak external electric fields.
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Author Summary

How extracellular electric fields—as generated endogenously or through transcranial

brain stimulation—affect the dynamics of neuronal populations is of great interest but not

well understood. To study neuronal activity at the network level single-compartment neu-

ron models have been proven very successful, because of their computational efficiency

and analytical tractability. Unfortunately, these models lack the dendritic morphology to

biophysically account for the effects of electric fields, and for changes in synaptic integra-

tion due to morphology alone. Here, we consider a canonical, spatially extended model

neuron and characterize its responses to fluctuating synaptic input as well as an oscil-

latory, weak electric field. In order to accurately reproduce these responses we analytically

derive an extension for the popular integrate-and-fire point neuron models. We show that

the dendritic cable acts as a filter for the synaptic input current, which depends on the

input location, and that an electric field modulates the neuronal spike rate strongest at a

certain (preferred) field frequency. These phenomena can be successfully reproduced

using integrate-and-fire models, extended by a small number of components that are

straightforward to implement. The extended point models are thus well suited for study-

ing populations of coupled neurons with different morphology, exposed to extracellular

electric fields.

Introduction

Extracellular electric fields in the brain and their impact on neural activity have gained a con-

siderable amount of attention in neuroscience over the past decade. These electric fields can be

generated endogenously [1–3] or through transcranial (alternating) current stimulation [4–6],

and can modify the activity of neuronal populations in various ways [1, 7–9]. Although the

fields generated by this type of noninvasive brain stimulation are rather weak (�1 V/m [4, 5])

and do not directly elicit spikes, they can modulate spiking activity and lead to changes in cog-

nitive processing, offering a range of possible clinical interventions [10–12]. How external

fields lead to changes of the membrane voltage in single cells has been studied in detail [13–

15]. However, their effects on population spike rate and the underlying mechanisms are largely

unexplored.

Computational models of neurons exposed to electric fields offer a useful tool to gain a bet-

ter understanding of these mechanisms. Multi-compartment models of neurons are well suited

for corresponding investigations at the level of single cells and small circuits [16] but are too

complex for a purposeful application in large populations. Single-compartment (point) neuron

models of the integrate-and-fire (IF) type are well applicable to study the dynamics of large

neuronal populations, due to their computational efficiency and analytical tractability [17].

However, typical IF model neurons lack the dendritic morphology required for a biophysical

description of electric field effects. Furthermore, even in the absence of an extracellular field,

the dendritic morphology strongly shapes neuronal response properties [18].

In this contribution, we extend the popular class of IF point neuron models to quantita-

tively account for morphology dependent modulations of neural activity due to: (i) dendritic

influences on the integration of synaptic inputs and (ii) the effects of extracellular electric

fields. Furthermore, we describe how oscillatory electric fields affect neuronal subthreshold

and spiking activity and identify field-induced spike rate resonance. Specifically, we consid-

ered a canonical spatial pyramidal neuron model which consists of a somatic compartment

and one (apical main) passive dendritic cable, and which is exposed to in-vivo like fluctuating
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synaptic input and an electric field. Based on that model we analytically derived an extension

for the classical leaky and the refined exponential, [19], IF point neuron models in order to

exactly reproduce the subthreshold dynamics of the spatial model for arbitrary parametriza-

tions. We then evaluated the extended IF models by quantitatively comparing their spiking

activity with the spiking activity of the corresponding spatial model. Finally, we used these

models to study the effects of an oscillating electric field (due to the presence of the dendritic

cable) on the spike rate dynamics.

Results

Our derivation of the extended point neuron model consists of two steps. We first calculate

the somatic membrane voltage of a ball-and-stick (BS) model in response to subthreshold syn-

aptic inputs at the soma and the distal dendrite and to a time-varying, spatially homogeneous,

extracellular electric field. This involves solving a generalized cable equation [20]. Second, we

seek to exactly reproduce this voltage response in the point neuron model by deriving addi-

tional model components (see Fig 1): two linear temporal filters, one for each input location,

to be applied to the “raw” synaptic input and one additional input current to describe the field

effect. The model components are given in analytical form and depend on the parameters of

the BS model and the electric field. We refer to the model equipped with the new components

as the extended point (eP) neuron model. We first derive this extension for the well-known

leaky IF (LIF) neuron model, and present the extension adapted for the exponential IF (EIF)

neuron model in a separate section.

Models

The BS neuron model consists of a lumped soma attached to a passive dendritic cable of length

L. The dynamics of its membrane voltage, when receiving synaptic inputs at the soma, Is(t),
and the distal dendrite, Id(t), and when exposed to a spatially homogeneous external electric

field, E(t), are governed by the cable equation:

cm
@VBS

@t
� gi

@
2VBS

@x2
þ gmVBS ¼ 0; 0 < x < L; ð1Þ

subject to the boundary conditions:

Cs
@VBS

@t
� gi

@VBS

@x
þ GsVBS � GsDTe

VBS � VT
DT ¼ IsðtÞ � giEðtÞ; x ¼ 0; ð2Þ

@VBS

@x
¼
IdðtÞ
gi
þ EðtÞ; x ¼ L; ð3Þ

at the soma (x = 0) and the end of the dendrite (x = L). VBS denotes the deviation of the mem-

brane voltage from rest, Vrest, VBS(x, t) := VBS,i(x, t) − VBS,e(x, t) − Vrest, where VBS,i and VBS,e

are the intra- and extracellular potentials. The effects of a spike are described by the IF-type

reset condition for the soma:

if VBSð0; tÞ � Vs thenVBSð0; tÞ :¼ Vr ð4Þ

and by a short refractory period of length Tref during which VBS(0, t) is clamped at the reset

value Vr. Spike times are defined by the times at which the somatic membrane voltage VBS(0, t)
crosses the spike voltage value Vs from below. cm denotes the membrane capacitance, gm the

membrane conductance, and gi the internal (axial) conductance of a dendritic cable segment
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of unit length. Cs and Gs are the somatic membrane capacitance and leak conductance. The

exponential term with threshold slope factor ΔT and effective threshold voltage VT approxi-

mates the somatic sodium current at spike initiation [19]. For details see Methods.

In the proposed IF point neuron extension, that is, the eP model, the deviation of the mem-

brane voltage, VeP, from rest is governed by

CeP
dVeP

dt
þ GePVeP � aGePDTe

VeP � VT
DT ¼ ½Ls � Is�ðtÞ þ ½Ld � Id�ðtÞ þ IEðtÞ; ð5Þ

and by the reset condition:

if VeP � Vs thenVeP :¼ V 0r; ð6Þ

where VeP is clamped to V 0
r

for the duration of the refractory period Tref after every spike. CeP

and GeP are the membrane capacitance and leak conductance. The scaling factor α ensures an

equal membrane voltage response to the depolarizing current described by the exponential

terms in both models (BS and eP). We consider two versions of these models separately. First,

we treat the LIF versions in detail, where we omit the exponential terms in Eqs 2 and 5; specifi-

cally, by taking the limit ΔT! 0 (and setting Vs = VT). In the subsequent part we then consider

the (full) EIF versions of the BS and eP models. Below we explain in detail how the compo-

nents of the point model extension are derived: the linear input filters Ls(t), Ld(t), the addi-

tional input current equivalent to the field effect, IE(t), and, in case of the (full) EIF type

models, the scaling factor α. The analytical expressions of these model components are given

in Eqs 10, 13, 20 and 21 (for the LIF case), and in Eqs 22–26 (for the EIF case). To mimic the

remaining depolarization along the dendritic cable after each spike, we choose an elevated

reset voltage for all point neuron models: V 0
r
¼ ðVr þ VTÞ=2.

For comparison we also use a point neuron model (of LIF and EIF type, respectively) with-

out the extension, that is, Ls(t) = Ld(t) = δ(t) and α = 1, and we fit the parameters of that model

Fig 1. Diagram of the extended point neuron model. Top: Visualization of the ball-and-stick, BS, (left) and

the extended point, eP, (right) neuron models. Both models receive synaptic input currents at the soma and

the distal dendrite, Is(t) and Id(t), and are exposed to an external electric field E(t). Ls(t) and Ld(t) denote the

additional input filters describing the dendritic effects. IE(t) denotes the additional input current describing the

field effect. VeP(t) and VBS(0, t) denote the corresponding membrane voltages (at the soma). Bottom:

Electrical circuit diagram for the subthreshold dynamics of the BS model. For a description of the parameters

and their values see Table 1.

doi:10.1371/journal.pcbi.1005206.g001
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to best reproduce the activity of the BS model for equal synaptic inputs (details see below). We

refer to this model as the P model.

The somatic input filter for the LIF model

We first consider the BS and eP model neurons of the LIF type (i.e, ΔT! 0, Vs = VT) receiving

subthreshold synaptic input at the soma in the absence of an electric field (E(t) = 0, IE(t) = 0,

Id(t) = 0). To avoid ambiguity we use the superscript Is for the membrane voltage variables in

this case. The somatic membrane voltage response of the BS model (Eqs 1–3) can be calculated

as (see Methods)

V̂ Is
BSð0;oÞ ¼

Î sðoÞ

Csioþ Gs þ zðoÞ gi tanhðzðoÞLÞ
; ð7Þ

zðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

m þ o2c2
m

p

2gi

s

þ sgnðoÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� gm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

m þ o2c2
m

p

2gi

s

; ð8Þ

where :̂ indicates the temporal Fourier transform and ω = 2πf denotes angular frequency. The

somatic membrane voltage response of the eP model (Eq 5) is given by

V̂ Is
ePðoÞ ¼

L̂sðoÞÎ sðoÞ

CePioþ GeP
: ð9Þ

The dendritic filter Ls required to exactly reproduce the somatic membrane voltage response

of the BS model, i.e., V̂ Is
ePðoÞ ¼ V̂

Is
BSð0;oÞ, must then be equal to ratio of the impedances of

both models:

L̂sðoÞ ¼
CePioþ GeP

Csioþ Gs þ zðoÞ gi tanhðzðoÞLÞ
; ð10Þ

where z(ω) is given by Eq 8. In the following, we choose the membrane capacitance and con-

ductance of the eP model to be equal to the corresponding somatic quantities of the BS model,

CeP = Cs, GeP = Gs. To see the necessity of the filter, let us consider the P model (no dendritic

filter, L̂sðoÞ ¼ 1) whose subthreshold response is given by

V̂ Is
P ðoÞ ¼

Î sðoÞ

CPioþ GP
: ð11Þ

Because of the additional frequency-dependent term in the denominator of Eq 7 compared

to Eq 11, it is not possible to adjust the parameters CP and GP of the P model such that

V̂ Is
PðoÞ ¼ V̂

Is
BSð0;oÞ for all frequencies ω. The somatic response of the BS model can only be

approximated in this case.

Fig 2A shows the impedances, ZIs
m
ðoÞ≔ V̂ Is

m
ðoÞ=Î sðoÞ,m 2 {BS|x = 0, eP, P}, of the three neu-

ron models for an example set of parameter values for the BS model. The two parameters of

the P model (CP and GP) were determined by matching the steady-state somatic voltage,

ZIsP ð0Þ ¼ Z
Is
BSð0Þ, and minimizing the mean squared distance between ZIsP and ZIsBS over the visu-

alized range of input frequencies. The impedance of the eP model matches the impedance of

the BS model exactly while the impedance of the P model deviates substantially, in particular

for larger frequencies.

Fig 2B–2D show the amplitudes and phases of the input filter L̂sðoÞ for various sets of

parameters for the BS morphology. L̂sðoÞ is always a high-pass filter, which attenuates the

IF Neuron Model Extension: Electric Fields and Dendritic Input Filter

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005206 November 28, 2016 5 / 29



somatic inputs at lower and amplifies them at higher frequencies. This effect is more pro-

nounced for a larger dendritic and a smaller somatic compartment. It becomes stronger with

increasing ratio of dendritic over somatic size. Nevertheless, the filter does not differ qualita-

tively for changes in neuron morphology.

We next compare how well the point neuron models eP and P reproduce the spiking activ-

ity of the BS model neuron. For this purpose we consider an in vivo-like fluctuating synaptic

input current Is(t) described by an Ornstein-Uhlenbeck process (see Methods). The model

outputs are compared over a range of values for the input mean I0
s

and standard deviation σs.

The parameter values of the P model were adjusted to best reproduce the spike train of the BS

model (see Methods for details). Fig 3A displays the time series of the somatic membrane volt-

age of the three models in response to the same input currents—a weak (small I0
s
, σs) and a

strong current (large I0
s
, σs). For both input currents, the eP model well reproduces the somatic

voltage dynamics of the BS model. Consequently, the spike times are also well reproduced.

There is, however, a mismatch between the voltage traces during short periods (of less than

approximately 10 ms duration) after spikes have occurred. This discrepancy is a result of the

remaining dendritic depolarization after a spike has occurred in the BS model, which is only

approximated by the elevated reset voltage V 0
r

(see section Models above) in the point neuron

models. In comparison, the P model performs worse in reproducing the BS membrane voltage

Fig 2. Impedance and filters for somatic inputs. A: Impedances ZIsBS, Z
Is
eP, and ZIsP of the three neuron

models as a function of input frequency. B: Gain and phase of the input filter L̂s as a function of input

frequency. The neuronal morphology varied as indicated, in terms of dendritic cable length (350 μm, 700 μm,

1050 μm), cable diameter (0.6 μm, 1.2 μm, 1.8 μm) and soma diameter (5 μm, 10 μm, 15 μm). * indicates the

default parameter values. For all other parameter values used see Table 1.

doi:10.1371/journal.pcbi.1005206.g002
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dynamics, particularly the fast fluctuations are poorly recovered. This is expected from the

mismatch in the impedance for high frequencies (cf. Fig 2A).

In Fig 3B–3E we compare spiking activity in terms of spike coincidences and spike rates for

a wide range of input parameters. We used the spike coincidence measure Γ which quantifies

the similarity between two spike trains for a given precision of 3 ms (see Methods). The maxi-

mum value of 1 indicates an optimal match, i.e., spike times always coincide, a value of 0 corre-

sponds to pure chance, i.e., the degree of coincidences for two Poisson spike trains with equal

rates. The P model was fitted to the BS model for each input (in terms of I0
s
, σs) separately. The

parameters of the eP model, on the other hand, are constant and do not depend on the input

Fig 3. Reproduction of spiking activity for somatic inputs using LIF type models. A: Membrane voltage

traces of the BS (blue), eP (green) and P (red) neuron models in response to a weak (I0
s
¼ 4:68 pA, σs = 11.94

pA, top) and a strong input current (I0
s
¼ 7:69 pA, σs = 33.34 pA, bottom). The parameter values of the P model

were tuned independently to maximize the coincidence factor ΓBS,P for each set of input parameters. B:

Coincidence factor for the BS and eP model spike trains, ΓBS,eP (left), and for the BS and P model spike trains,

ΓBS,P (right) as a function of input mean I0
s

and standard deviation σs. C: Difference ΓBS,eP − ΓBS,P between the

coincidence factors shown in B. D: Spike rate difference of the BS and eP models (left) and of the BS and P

models (right) as a function of I0
s

and σs. E: Spike rate of the BS neuron model. The input parameters used in A

are indicated in B. Results presented in B-E are averages over 6 noise realizations. The parameter values of

the BS model are listed in Table 1.

doi:10.1371/journal.pcbi.1005206.g003
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at all. The eP model very accurately reproduces the BS spike times for small spike rates (Γ�
0.9 for small I0

s
and σs), see Fig 3B and 3E. This performance decreases only slightly for increas-

ing σs (noise dominated input) and somewhat stronger for increasing I0
s

(mean dominated

input). Generally, Γ decreases with increasing spike rates. This can be attributed to the tran-

sient periods after spikes during which the dendritic cable is still loaded and the membrane

voltages of both neuron models deviate. Those periods do not depend on the spike rate and

therefore have a stronger deteriorating effect when the interspike intervals are smaller. In addi-

tion, when σs is small the model neurons spike repetitively in a rather clock-like manner, with

comparable rate but most likely out of phase due to mismatches caused by the membrane volt-

age resets. This helps understand the rather low values of Γ for mean dominated inputs. The

spike rate of the BS model is also reproduced quite well by the eP model, which underestimates

it only slightly (Fig 3D). Spike coincidence and spiking rate reproduction of the eP model can

be improved even further by additionally tuning the reset voltage V 0
r

using Γ or the spike rate

distance as a cost function. The P model, in comparison, is substantially worse in reproducing

the spike times at small spike rates and only slightly better than the eP model for large spike

rates (Fig 3B and 3C). The spike rate of the BS model is slightly overestimated by the P model

(Fig 3D). Even though the parameters of the P model were optimized in an input-dependent

manner the eP model leads to an improved reproduction of the BS spiking activity overall.

In summary, the dendritic cable implements a high pass filter for inputs at the soma. Due to

the derived filter for somatic inputs, the eP model—without having fitted any of its parameters

—well reproduces the BS model dynamics for subthreshold and suprathreshold inputs. Nota-

bly, the computation time required for the BS model was at least 25 times that of the eP model,

using measurements on a single core of a desktop computer.

The distal input filter for the LIF model

We next consider subthreshold synaptic input at the distal dendrite instead of somatic input,

but otherwise the same setup as in the previous section. Here we use superscipt Id for the mem-

brane voltage variables to better distinguish from the previous scenario. The somatic mem-

brane voltage response of the BS model can be expressed as (see Methods)

V̂ Id
BSð0;oÞ ¼

Î dðoÞ sechðzðoÞLÞ
Csioþ Gs þ zðoÞ gi tanhðzðoÞLÞ

; ð12Þ

where z(ω) is given by Eq 8. In order to reproduce that voltage response using the eP model,

for which V̂ Id
ePðoÞ ¼ L̂dðoÞÎ dðoÞ=ðCePioþ GePÞ (cf. Eq 9), we obtain

L̂dðoÞ ¼
ðCePioþ GePÞ sechðzðoÞLÞ

Csioþ Gs þ zðoÞ gi tanhðzðoÞLÞ
: ð13Þ

As in the previous section, we choose CeP = Cs, GeP = Gs. In contrast to the somatic input filter

Ls the filter Ld for distal inputs exhibits low pass properties for various BS morphologies, see

Fig 4A. The shape of this filter is largely independent of the soma size. Compared to the attenu-

ation of low frequency in case of somatic input, the filter gain for high frequency dendritic

input is much lower. This results in a stronger filtering effect for dendritic inputs than for

somatic inputs.

An evaluation of the distal input filter in terms of reproduction of BS spiking activity (Γ
and rates) is shown in Fig 4B–4E for a range of input mean I0

d
and standard deviation σd values.

For comparison we used the P model (without filter) whose parameters were tuned to best

reproduce the spike train of the BS model for each input (i.e., (I0
d
, σd)-pair) separately. The eP

model very accurately reproduces the BS spike times for small spike rates (Γ� 0.9 for small I0
d

IF Neuron Model Extension: Electric Fields and Dendritic Input Filter
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and σd). The accuracy drops somewhat as I0
d

increases, which can be explained as in the previ-

ous section. Interestingly, the performance does not deteriorate with increasing spike rate in

general; it remains high if the noise intensity σd is sufficiently strong (Γ� 0.8 for σd� 80 pA,

independent of I0
d

in the considered range). The spike rate of the BS model is somewhat under-

estimated by the eP model (Fig 4D). It should be noted that the spike rate reproduction could

be substantially improved by an increased reset voltage value V 0
r
, as the remaining dendritic

depolarization after spikes is more pronounced in case of distal input compared to somatic

input. The computational speed-up of the eP model here is the same as in the previous section.

The P model, in comparison, is less accurate across all inputs (Fig 4B–4D), even though its

parameters depend on the input.

In summary, the dendritic cable implements a low pass filter for inputs at the distal den-

drite, and due to the corresponding derived filter the eP model reproduces the BS model

dynamics for subthreshold and suprathreshold inputs much better than the P model.

Fig 4. Distal input filter and reproduction of spiking activity using LIF type models. A: Gain and phase

of the input filter L̂d as a function of frequency. The neuronal morphology varied as indicated, in terms of

dendritic cable length (350 μm, 700 μm, 1050 μm), cable diameter (0.6 μm, 1.2 μm, 1.8 μm) and soma

diameter (5 μm, 10 μm, 15 μm). * indicates the default parameter values. B: Coincidence factor for the BS and

eP model spike trains, ΓBS,eP (left), and for the BS and P model spike trains, ΓBS,P (right) as a function of input

mean I0
d

and standard deviation σd. C: Difference ΓBS,eP − ΓBS,P between the coincidence factors shown in B.

D: Spike rate difference of the BS and eP models (left) and of the BS and P models (right) as a function of I0
d

and σd. E: Spike rate of the BS neuron model. Results presented in B-E are averages over 6 noise

realizations. The default parameters values of the BS model are listed in Table 1.

doi:10.1371/journal.pcbi.1005206.g004
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Effect of an extracellular electric field on the neuronal dynamics

We now consider an extracellular electric field—in addition to the synaptic inputs—to which

the neuron is exposed to. We characterize the effects of that field on the subthreshold somatic

membrane voltage and spiking dynamics of the BS neuron and we determine an explicit

expression for the additional input current of the extended point neuron model to reproduce

these effects. The electric fields we are interested in are oscillatory, spatially uniform on the

neuronal scale and weak such as induced by transcranial brain stimulation [6]. In the follow-

ing, we consider a field with amplitude E1 and angular frequency φ,

EðtÞ ¼ �
@VBS;e

@x
ðtÞ ¼ E1 sin ðφtÞ: ð14Þ

Recall that VBS,e(x, t) is the extracellular potential. The BS subthreshold somatic membrane

voltage response to this field, VE
BS
ð0; tÞ, is determined by Eqs 1–3. Using the temporal Fourier

transform the solution can be expressed analytically as

V̂ E
BSð0;oÞ ¼

ÊðoÞgi ½sechðzðoÞLÞ � 1�

Csioþ Gs þ zðoÞ gi tanhðzðoÞLÞ
; ð15Þ

where z(ω) is given by Eq 8 (see Methods). Note, that we again neglect the exponential current

in this section (LIF case, but see next section for the EIF case). In the time domain this yields

VE
BSð0; tÞ ¼ jAðφÞj sin φt þ arg ðAðφÞÞð Þ; ð16Þ

AðφÞ ¼
E1gi ½sechðzðφÞLÞ � 1�

Csiφþ Gs þ zðφÞ gi tanhðzðφÞLÞ
; ð17Þ

where arg(x) denotes the argument of the complex number x. The overall subthreshold

response in presence of the electric field and synaptic input can be decomposed as

V̂ BSð0;oÞ ¼ V̂
Is
BSð0;oÞ þ V̂

Id
BSð0;oÞ þ V̂ E

BSð0;oÞ; ð18Þ

with V̂ Is
BSð0;oÞ, V̂

Id
BSð0;oÞ and V̂ E

BS
ð0;oÞ given by Eqs 7, 12 and 15. For the eP model, on the

other hand, we have

V̂ ePðoÞ ¼
L̂sðoÞÎ sðoÞ þ L̂dðoÞÎ dðoÞ þ Î EðoÞ

CePioþ GeP
: ð19Þ

To guarantee an equal subthreshold response in both models, i.e., V̂ ePðoÞ ¼ V̂BSð0;oÞ, we

obtain the following expression for the additional input current,

IEðtÞ ¼ jBðφÞj sin φt þ arg ðBðφÞÞð Þ; ð20Þ

BðφÞ ¼
E1giðCePiφþ GePÞ½sechðzðφÞLÞ � 1�

Csiφþ Gs þ zðφÞ gi tanhðzðφÞLÞ
; ð21Þ

where we set CeP = Cs and GeP = Gs (as in the previous sections). It should be noted that these

results are not restricted to sinusoidal field variations, as considered here, and can be easily

adjusted for any time-varying or constant description of the electric field using its Fourier

transform.

The equivalent input current IE(t) as well as the somatic subthreshold sensitivity to the

field, |A(φ)|/E1 and the phase shift between oscillating membrane voltage and field, arg(A(φ)),

with A(φ) from Eq 17, are shown in Fig 5. Interestingly, the amplitude of IE(t) increases with
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increasing field frequency (Fig 5A), while the sensitivity decreases (Fig 5B). The sensitivity

curve changes quantitatively, but not qualitatively, with varying neuronal morphology (Fig

5B). Specifically, its dependence on the field frequency becomes more pronounced with

increasing ratio of dendritic size over somatic one. The cable length has the strongest impact

in this respect. Notably, the morphology parameters can be adjusted such that the sensitivity

curve well matches with empirical results obtained from rat hippocampal pyramidal cells in

vitro. The phase shift between the somatic membrane voltage and field oscillations also

depends on the field frequency. It exhibits an anti-phase relation for slow oscillations, and

decreases with increasing frequency (Fig 5B).

We next assess how the electric field affects spiking activity for a range of field frequencies

using the BS and eP models. For that purpose, we simulated both model neurons subject to the

field and noisy synaptic input at the soma or at the distal dendrite. The synaptic drive alone is

strong enough to cause stochastic spiking with rate r0. The oscillatory field leads to an oscil-

latory spike rate modulation quantified as r1(φ)sin(φt + ψ(φ)) around the constant baseline

spike rate r0 (see Methods for details). Note that this spike rate modulation measure is related

to the frequently used spike field coherence measure.

Fig 5. Input current equivalent to the field effect and somatic sensitivity. A: Input current IE to reproduce

the effect of a 1 V/m field in the eP model. Its amplitude and phase shift relative to the field as a function of field

frequency. B: Neuron sensitivity to the field, i.e., the ratio between its somatic membrane voltage amplitude

and the field amplitude, and phase shift between the oscillatory membrane voltage and the field. The neuronal

morphology varied as indicated, in terms of dendritic cable length (350 μm, 700 μm, 1050 μm), diameter (0.6

μm, 1.2 μm, 1.8 μm) and soma diameter (5 μm, 10 μm, 15 μm).▲ indicate values obtained from

electrophysiological recordings of rat hippocampal pyramidal cells [15]. * indicates the default parameter

values. For all other parameter values used see Table 1.

doi:10.1371/journal.pcbi.1005206.g005
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The amplitude r1 and phase shift ψ of the spike rate modulation for various somatic inputs

(in terms of I0
s

and σs), a range of field oscillation frequencies and two field strengths are

shown in Fig 6. The eP model well reproduces the spike rate dynamics of the BS model

exposed to the field for all considered field and input parameter values. The amplitude r1
increases linearly with increasing field magnitude E1. In contrast to the subthreshold sensitivity

to the field (cf. Fig 5B), the spike rate modulation exhibits a clear resonance in the beta and

gamma frequency bands across the different inputs. In other words, the spike rate oscillations

are strongest for field oscillations of that frequency range. The amplitude peak is more pro-

nounced for stronger inputs and most prominent when the input is dominated by its mean

(large I0
s
, small σs). This resonance amplitude rapidly increases with increasing baseline spike

rate—by increasing both, mean and standard deviation of the background input from small

values—and saturates at about r0 = 30 Hz (Fig 6, center). The resonance frequency shifts rather

gradually from the beta to the gamma range as the baseline spike rate increases from a few

spikes per second to about 60 Hz. The phase shift ψ varies around π, depending on the input

and field frequency. Note that ψ = π implies that the probability of spiking is largest at the

trough of the field oscillation. This results from the orientation of the field, which, in case of

E(t) = E0 > 0, induces a (hyper-)polarized somatic membrane voltage.

To examine the importance of the specific shape of IE(t), we also considered an alternative

sinusoidal input current IE(t) = I1 sin(φt + ϕ) for the eP model. Note that the amplitude and

phase shift of that current are constant across different field frequencies. Using that current,

the typical resonance of the spike rate modulation due to the field cannot even roughly be

reproduced (Fig 6).

Let us now inspect spike rate modulation due to the field in presence of distal dendritic

inputs instead of somatic ones. In Fig 7 the results are shown for various distal inputs (in terms

of I0
d

and σd). Interestingly, for all considered distal dendritic inputs, spike rate modulation

amplitudes increase monotonically with the field frequency over the whole considered range

(up to 1 kHz, see Discussion for an explanation). Similarly as for somatic inputs, modulation is

strongest for mean dominated (large I0
d
, small σd) distal inputs, and the phase shift ψ varies

around π. Overall, the eP model well reproduces the modulation observed in the BS model.

Extension for EIF model neurons

In the previous sections, we considered only capacitive and leak currents through the neuronal

membrane; the model extension presented there applies to the LIF type model neurons. Here,

we consider the BS and eP models described by Eqs 1–3, 5 without neglecting the exponential

term, that approximates the voltage dependent sodium current at spike initiation. That is, we

derive and evaluate the model extension for model neurons of the EIF type.

To derive the required model components Ls(t), Ld(t), α and IE(t) we linearize the exponen-

tial terms in Eqs 2 and 5 around a baseline voltage value V0 and then proceed similarly as

above. Specifically, we calculate the subthreshold somatic membrane voltage response of the

BS model, using the (temporal) Fourier transform, and obtain four response components:

V̂BSð0;oÞ ¼ V̂
Is
BSð0;oÞ þ V̂

Id
BSð0;oÞ þ V̂

DT

BSð0;oÞ þ V̂ E
BS
ð0;oÞ, where VIs

BS, VId
BS and VE

BS
denote

the voltage response components to Is, Id and E, respectively, and the additional term VDT

BS is

due to the (linearized) exponential term. These four voltage response components are given by

the explicit expressions Eqs 41–43 in the Methods section. For the eP model, on the other hand,

we can also calculate the subthreshold membrane voltage response in the Fourier domain,

V̂ ePðoÞ, given by Eq 48. By requiring equal subthreshold responses, V̂ ePðoÞ ¼ V̂BSð0;oÞ, we

obtain the following explicit expressions for the components Ls, Ld, α and IE, considering the
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electric field defined in Eq 14:

L̂sðoÞ ¼

CePioþ GeP 1 � ae
V0 � VT

DT

 !

Csioþ Gs 1 � e
V0 � VT

DT

 !

þ zðoÞ gi tanhðzðoÞLÞ

; ð22Þ

L̂dðoÞ ¼

CePioþ GeP 1 � ae
V0 � VT

DT

 !" #

sechðzðoÞLÞ

Csioþ Gs 1 � e
V0 � VT

DT

 !

þ zðoÞ gi tanhðzðoÞLÞ

; ð23Þ

Fig 6. Spike rate modulation due to an electric field for somatic inputs. Top/bottom, left/right: Spike rate

modulation of the BS (blue) and the eP (green) models due to an oscillating electric field as a function of its

frequency, for different field amplitudes (E1 = 1 V/m, solid lines; E1 = 10 V/m, dashed lines) and somatic

inputs: I0
s
¼ 7:69 pA, σs = 11.94 pA (top left), I0

s
¼ 7:69 pA, σs = 33.34 pA (top right), I0

s
¼ 4:68 pA, σs = 11.94 pA

(bottom left), and I0
s
¼ 4:68 pA, σs = 33.34 pA (bottom right). Magenta lines show the spike rate modulation of

the eP model for which IE was given by IE(t) = I1 sin(φt + ϕ) with constant amplitude I1 = |B(0.5/(2π))|, phase

shift ϕ = arg(B(0.5/(2π))), B from Eq 21 and E1 = 10 V/m. Note the different amplitude scales in the top panel.

Results for larger field amplitude (E1 = 10 V/m) are not displayed for the mean driven regime (top right),

because spike rate modulation amplitudes exceeded the baseline rate in that case, which impedes the

modulation quantification procedure (see Methods). Center: Resonance frequency argmax(r1) and amplitude

max(r1) of the spike rate modulation of the eP model as a function of baseline spike rate r0, which was

changed by simultaneously increasing (I0
s
, σs) from (4.25 pA, 8.89 pA) to (8.12 pA, 36.40 pA).

doi:10.1371/journal.pcbi.1005206.g006
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a ¼
Gs

Gs þ tanhðL=lÞ gi=l
; ð24Þ

IEðtÞ ¼ jBðφÞj sin φt þ arg ðBðφÞÞð Þ; ð25Þ

BðφÞ ¼

E1gi CePiφþ GeP 1 � ae
V0 � VT

DT

 !" #

½sechðzðφÞLÞ � 1�

Csiφþ Gs 1 � e
V0 � VT

DT

 !

þ zðφÞ gi tanhðzðφÞLÞ

; ð26Þ

where z(ω) is given by Eq 8. The scaling factor α guarantees that the voltage response com-

ponent caused by the exponential term, VDT

BS , is reproduced. In other words, α ensures that

the spike initiation current, described by the exponential term, leads to an equal steady state

in both models. Note that the two filters for EIF neurons and those for LIF neurons depend

on input frequency in qualitatively the same way (by comparing Eqs 22 and 23 with Eqs 10

and 13).

Fig 7. Spike rate modulation due to an electric field for distal dendritic inputs. Spike rate modulation of

the BS (blue) and the eP (green) models due to an oscillating electric field as a function of its frequency, for

different distal dendritic inputs: I0
d
¼ 12:44 pA, σd = 33.04 pA (top left), I0

d
¼ 12:44 pA, σd = 111.2 pA (top right),

I0
d
¼ 7:03 pA, σd = 33.04 pA (bottom left), and I0

d
¼ 7:03 pA, σd = 111.2 pA (bottom right). Magenta lines show

the spike rate modulation of the eP model for which IE was given by IE(t) = I1 sin(φt + ϕ) with constant

amplitude I1 = |B(0.5/(2π))| and phase shift ϕ = arg(B(0.5/(2π))) with B from Eq 21 and E1 = 10 V/m. Note the

different amplitude scales in the upper panel.

doi:10.1371/journal.pcbi.1005206.g007
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We assessed the reproduction of BS spiking activity by the extended EIF model for somatic

inputs using the spike coincidence factor Γ and estimated spike rates (Fig 8). Here again the

parameter values of the P model were adjusted to maximize ΓBS,P for each input separately.

The range of input parameter values was chosen to obtain similar spike rates as in Fig 3.

Despite the linearization in the derivation, the eP model achieves a correct reproduction of the

BS spike trains (Γ� 0.7 for a wide range of input parameters). In particular, ΓBS,eP is large for

small spike rates (small I0
s

and σs) and decreases for increasing I0
s

(towards mean dominated

input), see Fig 8A and 8D. The eP model tends to underestimate the firing rate of the BS

model (Fig 8C). This discrepancy in the rate could be reduced by optimizing the point model

reset voltage, V 0
r
, to better account for the remaining dendritic cable depolarization in the BS

model. Similarly, an improved performance of the eP model in terms of spike train reproduc-

tion could be achieved by tuning this reset voltage. The P model, on the other hand, rather

poorly reproduces the BS spiking dynamics for small input noise intensity (Γ� 0.6 for σs� 30

pA, see Fig 8A). Overall, also in presence of the exponential term the eP model clearly outper-

forms the simpler P model for small spike rates (ΓBS,eP − ΓBS,P� 0.3 for small I0
s

and σs) and

achieves similar performance for high spiking activity (Fig 8B).

The reproduction of spiking activity of the BS model was also assessed for distal dendritic

inputs. The range of input parameters (I0
d

and σd) was adjusted to obtain similar BS spike rates

as for the LIF case. The eP model performs well, in particular for small spike rates or suffi-

ciently strong noise intensity; its performance decreases in the mean driven regime (Fig 9A).

On the contrary the P model fails to reproduce the BS spiking activitiy (see Fig A in S1 Text for

more details).

Fig 8. Reproduction of spiking activity for somatic inputs using EIF type models. A: Coincidence factor

for the BS and eP model spike trains, ΓBS,eP (left), and for the BS and P model spike trains, ΓBS,P (right) as a

function of input mean I0
s

and standard deviation σs. The parameter values of the P model were optimized to

maximize ΓBS,P for each input (i.e., (I0
s
, σs)-pair) independently. B: Difference ΓBS,eP − ΓBS,P between the

coincidence factors shown in B. C: Spike rate difference of the BS and eP models (left) and of the BS and P

models (right) as a function of I0
s

and σs. D: Spike rate of the BS neuron model. Results presented in A-D are

averages over 6 noise realizations. The parameter values of the BS model are listed in Table 1.

doi:10.1371/journal.pcbi.1005206.g008
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In summary, the somatic and distal dendritic input filters obtained for EIF neurons are

qualitatively similar to the ones obtained for LIF neurons. The eP model, in contrast to the P

model, well reproduces the BS model dynamics for subthreshold and suprathreshold inputs—

also for the EIF case.

Spike rate modulations due to an oscillatory electric field using EIF type model neurons for

synaptic background input at the soma or distal dendrite are displayed in Fig 9 (see also Fig B

and Fig C in S1 Text for additional parameter values of the background input). Similarly to

the LIF case, spike rate modulation amplitudes do not decrease monotonically with the field

Fig 9. Reproduction of spiking activity for dendritic inputs and spike rate modulation due to an

electric field using EIF type models. A: Coincidence factor for the BS and eP model spike trains, ΓBS,eP

(left) as a function of input mean I0
s

and standard deviation σs. Difference ΓBS,eP − ΓBS,P between the

coincidence factors obtained with the eP and the P models (center). The parameter values of the P model

were optimized to maximize ΓBS,P for each input (i.e., (I0
s
, σs)-pair) independently. Spike rate of the BS neuron

model (right). Results are averages over 6 noise realizations. The parameter values of the BS model are listed

in Table 1. B: Spike rate modulation of the BS (blue) and the eP (green) models due to an oscillating electric

field as a function of its frequency, for different distal somatic inputs: I0
s
¼ 5:05 pA, σs = 24.08 pA (left), I0

s
¼

10:61 pA, σs = 68.21 pA (right). Magenta lines show the spike rate modulation of the eP model for which IE was

given by IE(t) = I1 sin(φt + ϕ) with constant amplitude I1 = |B(0.5/(2π))| and phase shift ϕ = arg(B(0.5/(2π))) with

B from Eq 21 and E1 = 10 V/m. C: Same as B for dendritic synaptic input instead of somatic one: I0
d
¼ 7:56 pA,

σd = 57.73 pA (left), I0
d
¼ 16:73 pA, σd = 203.41 pA (right).

doi:10.1371/journal.pcbi.1005206.g009
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frequency. For somatic background input, we find spike rate resonance in the beta and gamma

frequency range, similarly as shown by LIF type models. However, in case of distal dendritic

input, EIF neurons exhibit resonance peaks in the high gamma frequency band, in contrast to

LIF neurons, whose resonance frequency is substantially larger (see Discussion for an explana-

tion). For both input locations the spike rate modulations shown by the BS model are well

reproduced by the eP model and resonance amplitudes are stronger for large spike rates (i.e.,

large I0
s
, σs and large I0

d
, σd, respectively).

Discussion

In this contribution we presented an extension for IF point model neurons to accurately reflect

the filtering of synaptic inputs caused by the presence of a dendrite and the effects of weak,

oscillatory electric fields on neuronal activity. Based on a canonical BS neuron model, we ana-

lytically derived additional components for LIF and EIF point neuron models to exactly repro-

duce the subthreshold voltage dynamics of the spatially extended BS neuron.

These new components consist of (i) two linear filters applied to synaptic inputs depending

on their location (soma or distal dendrite) and (ii) an additional input current quantifying the

field effect on the membrane voltage. The EIF point model requires an additional scaling

parameter to accurately match the BS voltage dynamics. Exhaustive evaluations for suprathres-

hold in-vivo like fluctuating inputs demonstrated that the BS spiking activity is well repro-

duced by the extended point neuron model in both cases (LIF and EIF). Optimizing the

parameters of the standard LIF and EIF models without the derived extension components,

however, does not suffice to adequately reproduce the BS model dynamics.

Due to their computational efficiency the extensions of the point neuron models are well

suited for application in large networks to investigate, for example, the effects of neuronal

morphology and electrical fields on neuronal spiking activity at the population level. Addition-

ally, our methodological results serve as a building block to derive mean-field descriptions for

the collective (spike rate) dynamics of large coupled populations [17, 21, 22, 23, chapter 4.2].

An implementation of the presented models using Python (for the eP model) and NEURON

(for the BS model) is freely available at https://github.com/nigroup/IF_extension.

Below, we summarize our results on the obtained input filters and the field effects on neuro-

nal dynamics.

Synaptic input filtering due to the dendrite

We have demonstrated that synaptic input is integrated at the soma in distinct ways due to the

presence of the dendrite, depending on the input site. Distal dendritic input is low-pass filtered

(cf. Fig 4A), in accordance with previous results [24], whereas somatic input is high-pass fil-

tered (cf. Fig 3B). The latter effect is consistent with recent measurements from Purkinje cells

and with theoretical results [18] which show a similar change in somatic impedance due to the

presence of a dendritic tree (Fig. 4 in [18], in comparison with Fig 2A here). Consequently, the

presence of a dendrite can lead to an enhanced neuronal spiking response to high-frequency

somatic inputs [18], which may be further amplified by the dendritic effect on the sharpness of

spikes at the axon initial segment [25]. The derived IF model extension enables efficient analy-

ses of the BS spike rate response to modulations of the input current—which are, however, not

within the scope of this paper.

There are two different strategies for taking into account complex neuron morphologies in

models while keeping numerical simulation computationally efficient. One option is to reduce

the number of compartments while retaining important properties of the dendritic tree [26].

Alternatively, one can extend point neuron models with temporal kernels which are calibrated
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to reproduce the somatic membrane voltage response to synaptic inputs as observed in com-

plex morphological cells [27, 28]. Our approach is of the latter type, with the advantage that

the temporal kernels (filters) are analytically derived from the underlying morphological BS

model.

A similar extension for point model neurons to reproduce dendritic input integration of

model cells with complex morphology has been recently proposed in [29]. Using the Green’s

function formalism a synapse model was developed, whose computational complexity practi-

cally allows for only a small number of synaptic input locations. Based on the BS model we

were able to derive input filters for point model neurons using only the Fourier transform

(without having to rely on the Green’s function) and these filters are simple to implement.

We have demonstrated that our extended model outperforms the simpler point neuron

model in terms of spike train reproduction. Overall, it performs well for suprathreshold inputs,

particularly in case of distal inputs and for somatic inputs that are not too strong. That perfor-

mance could be further enhanced by optimizing the reset voltage to better reflect the remain-

ing dendritic membrane depolarization in the BS model after each spike, as was mentioned

previously.

In our study we have considered passive dendrites. Nonlinear (spike-generating) currents

along the dendrite, which cause nonlinear synaptic input integration [30–32], could be incor-

porated using our approach in a “quasi-active” framework [24]. This would involve solving the

cable equation with linearized nonlinear components, similarly as for the exponential terms

used here (EIF case).

Effects of weak electric fields on neuronal activity

We investigated in detail the effects of a spatially homogeneous, oscillating, weak electric field,

as induced by transcranial electrical stimulation, on the activity of the BS neuron. Such a one-

dimensional spatial (cable plus soma) model provides a good approximation for neurons with

elongated (apical) dendrites exposed to a uniform extracellular electrical field as long as the

dendritic (apical main) cable is not substantially smaller than its electrotonic length [33, chap-

ter 2.5]. Following the somatic doctrine [6], we focused on the effects of the field that are due

to the polarization of the membrane voltage at the soma. We analytically calculated the sub-

threshold voltage response, whose properties are in accordance with electrophysiological

observations: the response magnitude scales linearly with the field amplitude [13], as shown by

the sensitivity in Fig 5. This sensitivity is of the same order of magnitude as that measured in

pyramidal cells [15], i.e., around 0.30 mm for low frequency fields, and decreases with increas-

ing field frequency in a morphology dependent manner [14]. For non-uniform electric fields,

e.g., as generated by point source stimulation, however, the sensitivity can be roughly constant

for frequencies up to at least 100 Hz [8]. Interestingly, such a behavior can also be observed for

a uniform field in case of a rather short dendritic cable (cf. Fig 5B).

While polarization effects due to direct current fields have been extensively studied [34–

36], the effects of time-varying fields are less well understood. The response of the subthresh-

old membrane voltage to time-varying fields has been calculated in [37] for a finite dendritic

cable with leaky currents at one end, and in [38] for a spatially non-uniform field. Using a one-

dimensional cable model [33] showed that the electrotonic length is a key quantity that deter-

mines the neuronal subthreshold response to an electric field. Specifically, elongated neurons

are less sensitive to high frequency fields than compact ones. How the voltage response to an

input current at a particular location along the cable depends on input frequency is largely

determined by the membrane time constant. In case of an electrical field, however, which cor-

responds to symmetrical stimulation at both ends of the cable, the voltage response is also
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strongly influenced by currents flowing through the low-resistant intracellular medium. This

results in an enhanced high frequency response to an extracellular field when compared to an

input current [33, chapter 5].

Nevertheless, a somatic compartment was not considered in these studies. Using the BS

model we have shown that the relative size of the soma compared to the dendritic cable sub-

stantially affects the neuronal sensitivity to the field.

Further, we found frequency-dependent spike rate modulation (and hence, spike field

coherence) caused by the electric field. Unlike neuronal subthreshold sensitivity, spike rate

modulation amplitude did not decrease with the field frequency and its precise relationship to

field frequency depended on the synaptic input location. Spike rate modulation exhibited a

clear resonance in the beta and gamma frequency bands in presence of only somatic inputs (cf.

Fig 6 and B in S1 Text), whereas for only distal dendritic inputs, spike rate modulation ampli-

tudes are strongest at much larger frequencies (cf. Fig 7 and C in S1 Text). This can be linked

to a theoretical result showing that the response of single-compartment model neurons to high

frequency inputs is stronger for larger autocorrelation times of a fluctuating synaptic input

current [39]. Since fluctuating synaptic inputs arriving at the distal dendrite are low-pass fil-

tered, the autocorrelation time of the corresponding input current felt by the soma is increased

(or rather limited from below). Spike rate resonance frequencies were lower for EIF neurons

as compared to LIF neurons, in particular for background inputs only at the distal dendrite.

This may be explained by the fact that the presence of the exponential term, describing the

spike initiating sodium current, decreases the rate response to high frequency inputs [19] (see

also the analytical results in [18]). In all cases, the amplitude of the modulation also depended

on the input strength (input mean and noise intensity), but its relationship to field frequency

was not strongly affected by the input parameters. Recently it has been shown that Purkinje

neurons, due to their large dendritic trees, exhibit spike rate resonance at rather high frequen-

cies in response to somatic input modulations and in the presence of noisy dendritic input [18,

Fig 5], which is qualitatively similar to the field-induced resonance effects described here (cf.

Figs 7 and 9C). It should be noted, however, that an oscillatory (spatially uniform) external

field corresponds to oscillatory input currents with opposite sign at the soma and the distal

dendrite, respectively (cf. Eqs 2 and 3). The effects of the field can thus not be easily anticipated

from those of an input current modulation at the soma alone. Furthermore, the dendritic

membrane surface compared to the somatic one for Purkinje cells [18] is substantially larger

than that of pyramidal neurons as considered here, which additionally impedes to directly

relate the results.

Existing experimental studies on the modulation of neuronal activity by extracellular fields

have considered a small number of field frequencies (see [40] for a review). Therefore, our

results on spike rate resonance are currently not completely confirmed and may be regarded

as predictions. In accordance with our findings weak alternating electric fields (of 30 Hz) have

been shown to increase the spiking coherence of pyramidal cells in rat hippocampal slices [41],

where this increase was proportional to the subthreshold membrane polarization. Moreover,

spatially uniform extracellular fields with high-frequency components entrained spiking activ-

ity in ferret primary visual cortex more effectively than fields that only contain low-frequency

components [1, Fig. S6]. Our predictions on spike rate modulation by an oscillating electric

field are thus in agreement with current knowledge and are informative for future experimen-

tal studies. Those results may further be of potential interest for the design of transcranial elec-

trical stimulation protocols.

Regarding the point model extension, we analytically derived an expression for an input

current to reproduce the effect of the field as extracted from the biophysically grounded BS

model. The amplitude and phase of this input current depend on the parameters of the BS
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neuron and the electric field. Previously, simple phenomenologically obtained input currents

have been used for point neuron network simulations, with either constant amplitudes (across

frequencies) [1, 9] or amplitudes fitted to electrophysiological data [7]. Interestingly, the latter

study used an input current whose magnitude decreases with increasing frequency, in contrast

to the equivalent current we obtained (whose magnitude increases with frequency up to 10

kHz). The neuronal subthreshold sensitivity in that study and the ones shown here, however,

are similar. This apparent discrepancy in the currents describing the field effect may be

explained by the impedance of the applied model neurons, which naturally influences the

equivalent input current. In [7] the model parameters (and thus the impedance) were not fitted

to real cells; hence it is unlikely that the model impedance matched with the impedance of the

cells from which the current amplitudes were estimated [15]. The successful reproduction of

the BS spike rate modulation due to the field by the eP model presented here supports the

high-pass properties of the equivalent input current.

In the present study, we derived an extension for point neuron models of the LIF and EIF

types. Additional model variables with slow dynamics [42] may also be included in this frame-

work, in order to reflect, for example, effects of slowly deactivating potassium channels that

mediate spike rate adaptation and associated characteristic neuronal response properties [43,

44]. In that case, a separation of timescales argument could be used to derive the model

extension.

The results we extracted from a canonical spatial neuron model provide insight into the

effects of cellular morphology on synaptic input integration and the impact of extracellular

electric fields on neuronal activity. In particular, the presented point model extension, which

is straightforward to implement and efficient to simulate, shall give rise to comprehensive

computational investigations of neuronal population activity entrainment due to transcranial

stimulation.

Methods

The ball-and-stick (BS) neuron model

Model derivation. The BS neuron model consists of a finite passive dendritic cable of

length L with a lumped somatic compartment at one extremity x = 0 and a sealed-end at the

other. We consider this neuron model exposed to synaptic inputs at the soma Is(t) and the dis-

tal dendritic end Id(t) and to an electric field E(t) (see Fig 1). The electric field is spatially uni-

form at the scale of the neuron, which is a valid assumption for fields induced by transcranial

brain stimulation [6]. Assuming a homogeneous, purely ohmic medium (see [45] for the cable

equation in a non-ohmic medium), the subthreshold dynamics of the membrane voltage along

the dendritic cable are governed by [20]

cm
@VBS

@t
� gi

@
2VBS

@x2
þ gmVBS ¼ � gi

@E
@x
¼ 0 0 < x < L; ð27Þ

EðtÞ ¼ �
@VBS;e

@x
ðx; tÞ; ð28Þ

where VBS(x, t) := VBS,i(x, t) − VBS,e(x, t) − Vrest, with intra- and extracellular potentials VBS,i

and VBS,e, respectively. cm = cDdπ is the membrane capacitance per unit length, gi = %i(Dd/2)2π
is the internal (axial) conductance per unit length and gm = %m Ddπ is the membrane conduc-

tance per unit length. c is the specific membrane capacitance (in F/m2), %i is the specific inter-

nal conductance (in S/m), %m is the specific membrane conductance (in S/m2) and Dd is the
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cable diameter. Note, that the rightmost equality in Eq 27 is due to our assumption of a spa-

tially uniform electric field E(x, t)� E(t).
At the proximal end of the dendritic cable, x = 0, we consider a lumped soma, assuming

that the somatic diameter Ds is small compared to the cable length L. The corresponding

boundary condition is given by [46]

Cs
@VBS

@t
� gi

@VBS;i

@x
þ GsVBS � GsDTe

VBS � VT
DT ¼ IsðtÞ x ¼ 0; ð29Þ

and thus

Cs
@VBS

@t
� gi

@VBS

@x
þ GsVBS � GsDTe

VBS � VT
DT ¼ IsðtÞ � giEðtÞ x ¼ 0; ð30Þ

where Cs ¼ cD2
s
p and Gs ¼ %mD2

s
p are the somatic membrane capacitance and leak conduc-

tance, respectively. At the distal end of the dendritic cable, x = L, we have [46]

@VBS;i

@x
¼
IdðtÞ
gi

x ¼ L; ð31Þ

due to the synaptic input Id(t), and therefore,

@VBS

@x
¼
IdðtÞ
gi
þ EðtÞ x ¼ L: ð32Þ

The subthreshold voltage dynamics of the BS model are thus determined by Eqs 27, 30 and 32.

The spiking mechanism is implemented by the reset condition 4 with refractory period (see

Models in the section Results).

Calculation of the subthreshold somatic response. To analytically calculate the somatic

membrane voltage response of the BS model, we consider small variations of the synaptic

inputs Is(t), Id(t) and a weak oscillatory electric field E(t). This allows us to linearize the expo-

nential term in Eq 30 around a baseline voltage value V0 to obtain

Cs
@VBS

@t
� gi

@VBS

@x
þ Gs 1 � e

V0 � VT
DT

 !

VBS ¼ Gse
V0 � VT

DT ðDT � V0Þ þ IsðtÞ � giEðtÞ ð33Þ

for x = 0. Note that in case of a purely leaky and capacitive neuronal membrane (i.e., without

the exponential term, in the limit ΔT! 0) the linearization above is not required and the

response calculated below is also exact for larger (subthreshold) synaptic inputs and electric

field magnitudes. The linear partial differential Eq 27 together with the boundary conditions

33 and 32 can be solved using separation of variables VBS(x, t) =W(x)U(t) and the temporal

Fourier transform

V̂ BSðx;oÞ ¼WðxÞÛ ðoÞ ¼WðxÞ
Z 1

� 1

UðtÞeiotdt; ð34Þ
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where ω = 2πf denotes angular frequency. We obtain the system of differential equations

cmioV̂ BS � gi
@

2V̂ BS

@x2
þ gmV̂ BS ¼ 0 0 < x < L; ð35Þ

CsioV̂ BS � gi
@V̂ BS

@x
þ Gs 1 � e

V0 � VT
DT

 !

V̂ BS ¼

2pdðoÞGse
V0 � VT

DT ðDT � V0Þ þ Î sðoÞ � giÊðoÞ x ¼ 0;

ð36Þ

@V̂ BS

@x
¼
Î dðoÞ

gi
þ ÊðoÞ x ¼ L; ð37Þ

where :̂ indicates the (temporal) Fourier transform and δ(.) the Dirac delta function. The solu-

tion of the second order linear differential Eq 35 is given by

V̂ BSðx;oÞ ¼ a1ðoÞe
zðoÞx þ a2ðoÞe

� zðoÞx; ð38Þ

where ±z(ω) are the roots of the characteristic polynomial gi λ
2 = gm + cm iω of Eq 35:

zðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

m þ o2c2
m

p

2gi

s

þ sgnðoÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� gm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

m þ o2c2
m

p

2gi

s

; ð39Þ

(same as Eq 8). The coefficients a1(ω) and a2(ω) are calculated by inserting V̂BSðx;oÞ from Eq

38 in Eqs 36 and 37 to finally obtain

V̂ BSð0;oÞ ¼ V̂
Is
BSð0;oÞ þ V̂

Id
BSð0;oÞ þ V̂

DT
BS ð0;oÞ þ V̂ E

BSð0;oÞ ð40Þ

with

V̂ Is
BSð0;oÞ ¼

Î sðoÞ

XðoÞ
; V̂ DT

BS ð0;oÞ ¼
2pdðoÞGse

V0 � VT

DT ðDT � V0Þ

XðoÞ
;

ð41Þ

V̂ Id
BSð0;oÞ ¼

Î dðoÞsechðzðoÞLÞ
XðoÞ

; V̂ E
BSð0;oÞ ¼

ÊðoÞgi½sechðzðoÞLÞ � 1�

XðoÞ
; ð42Þ

and

XðoÞ :¼ Csioþ Gs 1 � e
V0 � VT

DT

 !

þ zðoÞ gitanhðzðoÞLÞ: ð43Þ

The function sech(x) = cosh(x)−1 refers to the hyperbolic secant. Here, VIs
BS, VId

BS and VE
BS

denote respectively the voltage response components to Is, Id and E. VDT

BS is the voltage

“response” caused by the (linearized) exponential term. Since E(t) = E1 sin(φt), the response to
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the field can be expressed in the time domain as

VE
BSð0; tÞ ¼ jAðφÞj sin φt þ arg ðAðφÞÞð Þ; ð44Þ

AðφÞ ¼
E1gi ½sechðzðφÞLÞ � 1�

Csiφþ Gs 1 � e
V0 � VT

DT

 !

þ zðφÞ gi tanh ðzðφÞLÞ

: ð45Þ

The extended point (eP) neuron model

The subthreshold voltage dynamics of the eP model is specified by Eq 5 which is comple-

mented by the reset condition 6 together with a refractory period (see Models in the section

Results).

Calculation of the subthreshold response. We consider again small variations of the syn-

aptic inputs Is(t), Id(t) and the current IE(t) that corresponds to a weak oscillatory electric field

E(t). Linearizing the exponential term in Eq 5 around the steady-state somatic voltage value,

V0, we obtain

CeP
@VeP

@t
þ GeP 1 � ae

V0 � VT
DT

 !

VeP ¼

GePae
V0 � VT

DT ðDT � V0Þ þ ½Ls�Is�ðtÞ þ ½Ld�Id�ðtÞ þ IEðtÞ:

ð46Þ

Note that here again in case of a purely leaky and capacitive membrane (ΔT! 0) the lineariza-

tion above is not required and the response calculated below is also exact for larger (subthresh-

old) inputs. Using the Fourier transform on Eq 46 yields

CePioV̂ eP þ GeP 1 � ae
V0 � VT

DT

 !

V̂ eP ¼

2pdðoÞGePae
V0 � VT

DT ðDT � V0Þ þ L̂sðoÞÎ sðoÞ þ L̂dðoÞÎ dðoÞ þ Î EðoÞ;

ð47Þ

which can be easily solved to obtain

V̂ ePðoÞ ¼
L̂sðoÞÎ sðoÞ þ L̂dðoÞÎ dðoÞ þ 2pdðoÞGePae

V0 � VT
DT ðDT � V0Þ þ Î EðoÞ

CePioþ GeP 1 � ae
V0 � VT

DT

 ! : ð48Þ

Numerical simulation

Synaptic input and electric field. To generate spike trains we considered in-vivo like

noisy synaptic inputs Is(t), Id(t). Specifically, Ix(t), x 2 {s, d} was described by an Ornstein-

Uhlenbeck process

dIx
dt
¼
I0

x � Ix
t
þ sx

ffiffiffi
2

t

r

xxðtÞ; ð49Þ

with mean I0
x
, correlation time τ and standard deviation σx. ξx(t) is a Gaussian white noise
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process, i.e. with zero mean hξx(t)i = 0 and delta autocorrelation hξx(t)ξx(t+t0)i = δ(t0), where

h.i denotes the expectation operator. Eq 49 was numerically solved using the method described

in [53].

The electric field was described by

EðtÞ ¼ E1 sin ðφtÞ; ð50Þ

(same as Eq 14) with amplitude E1 and angular frequency φ = 2πf. The values for all parameters

are provided in Table 1.

Ball-and-stick neuron model. The BS neuron model was numerically solved using the

NEURON simulation environment [54]. We applied a finite difference space discretization

scheme with 50 segments for the dendritic cable and the implicit (or backward) Euler time dis-

cretization scheme. The integration time step was fixed to 0.05 ms when the exponential term

was omitted (ΔT! 0) and 0.025 ms otherwise. Decreasing the time step size and increasing

the number of segments did not lead to noticeable changes in the membrane voltage time

series. The time-varying extracellular potential was included using the built-in “extracellular”

mechanism in NEURON.

Table 1. Description of parameters and applied values.

Parameter (Unit) Value (range) Description

c (F/m2) 1 � 10−2 [47, 48] Specific membrane capacitance

%m (S/m2) 1/2.8 [47] Specific membrane conductance

%i (S/m) 1/1.5 [47, 48] Specific internal (axial) conductance

Ds (m) {5, 10*, 15} � 10−6 [49] Soma diameter

Dd (m) {0.6, 1.2*, 1.8} � 10−6 [50] Dendritic cable diameter

L (m) {3.5, 7*, 10.5} � 10−4 [51] Dendritic cable length

Cs(F) cD2
s
p Somatic membrane capacitance

Gs (S) %mD
2
s
p Somatic membrane conductance

cm (F/m) cDd π Dendritic membrane capacitance per unit length

gm (S/m) %m Dd π Dendritic membrane conductance per unit length

gi (S �m) %i(Dd/2)2 π Internal (axial) conductance per unit length

Vs (mV) {10, 20} Spike (or cutoff) voltage

Vr (mV) 0 Reset voltage of BS model

VT (mV) 10 [52] Threshold voltage

V0 (mV) Vr Baseline voltage for EIF model extension

ΔT (mV) 1.5 [52] Threshold slope factor

TRef (ms) 1.5 Duration of refractory period

CeP (F) Cs Membrane capacitance of eP model

GeP (S) Gs Membrane conductance of eP model

V 0
r
(mV) 5 Reset voltage of eP and P models

I0
s

(pA) [4.254, 11.407] Mean input current at the soma

σs (pA) [8.887, 74.512] Somatic input noise intensity

I0
d

(pA) [6.255, 13.214] Mean input current at the dendrite

σd (pA) [21.875, 122.363] Dendritic input noise intensity

τ (ms) 0.5 Synaptic current correlation time

E1 (V/m) {1, 10} Amplitude of electric field

φ (rad) [0, 104] � 2π Angular frequency of electric field

Δ (ms) 3 Spike coincidence precision

* indicates default values.

doi:10.1371/journal.pcbi.1005206.t001
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Point neuron model. The point neuron models were numerically solved using the for-

ward Euler time discretization scheme and the same time step as used for the BS model. The

solution method was implemented in Python using the library “Numba” for fast computation.

Both point model neurons received the same realization of synaptic input Ix(t), x 2 {s, d} as the

BS model neuron. The linear filters Lx(t), x 2 {s, d} in the eP model were implemented using

the fast Fourier transform (FFT) of Ix(t) and the inverse FFT of L̂xðoÞÎ xðoÞ. The membrane

capacitance and conductance of the eP model were chosen as equal to the corresponding

somatic quantities of the BS model, CeP = Cs, GeP = Gs. Except stated otherwise, the corre-

sponding parameter values of the P model were determined by fitting the BS model spiking

activity in terms of spike coincidences. Specifically, GP was chosen such that the steady-state

(somatic) membrane voltage of the BS model is matched exactly, i.e. Zx
P
ð0Þ ¼ Zx

BS
ð0Þ, x 2 {s, d},

with impedance Zx
m
ðoÞ≔ V̂ Ix

m
ðoÞ=Î xðoÞ, m 2 {BS|x = 0, P} using Eqs 7, 12 and 11. The value for

CP was then selected to maximize the coincidence factor Γ (defined below) between 52 s lasting

spike trains of the BS and P model neurons for each shown pair (I0
x
, σx) of input parameter val-

ues. In presence of the exponential term in the models (ΔT > 0) we used V0 = Vr, which is the

steady-state (somatic) voltage in the absence of synaptic input. Several other values, within the

range [Vr, Vs], were tested for V0. This did not lead to a substantial improvement of the repro-

duction performance.

Analysis methods for the spike trains

Spike coincidence measure. To quantify the similarity between the spike trains of the dif-

ferent model neurons we used the coincidence factor Γ defined by [55]

Gref ;comp ¼
Ncoinc � hNcoinci

ðNref þ NcompÞ=2

1

N
; ð51Þ

where Ncoinc is the number of coincident spikes with precision (i.e., maximal temporal separa-

tion) Δ,Nref and Ncomp are the number of spikes in the reference spike train and in the one

being compared to it, respectively. hNcoinci = 2rΔNref is the expected number of coincidences

generated by a homogeneous Poisson process with the same spike rate r = Ncomp/T as that

shown by the compared spike train, where T is the spike train duration. The factor N ¼
1 � 2rD normalizes Γref,comp to a maximum value of 1 which is reached if the spike trains

match optimally (with precision Δ). Γref,comp = 0 on the other hand would result from a homo-

geneous Poisson process with the same rate as for the reference spike train and thus indicates

pure chance.

Spike rate resonance and phase shift measure. To examine and compare their supra-

threshold responses to an oscillatory electric field E(t) (Eq 50), we simulated the neuron mod-

els subject to both a field and a noisy synaptic background current. The latter was located

either at the soma or at the distal dendrite Ix(t), x 2 {s, d} (Eq 49). We considered regimes (in

terms of (I0
x
, σx)-pairs) where the synaptic drive is sufficiently strong to cause the neuron to

spike stochastically with rate r0. The sinusoidal field then causes a modulation of the spike rate

that becomes apparent over many trials (i.e., independent realizations of Ix(t)). This quantity

can also be thought of as the spike rate averaged over a population of neurons which individu-

ally receive a noisy synaptic drive but collectively respond to the same oscillatory field. This

population, or trial-averaged, instantaneous spike rate can be expressed as

rðtÞ ¼ r0 þ r1ðφÞ sin ðφt þ cðφÞÞ; ð52Þ

where r1 and ψ denote respectively the amplitude and phase shift, both depending on the angu-

lar frequency φ of the field. Note that in the eP model the field effect is described by the
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oscillatory current IE(t). To estimate the spike rate modulation at a given field frequency we

first extracted and collected the field phase ϕs 2 [0, 2π) for each spike time ts, such that E(ts) =

E0 sin(ϕs). These phases were calculated from 944 trials of at least 26 s duration each, for which

the first 2 s were disregarded to avoid transients, and only complete field cycles were consid-

ered. We then computed a spike rate histogram from the set {ϕs} using 20 equally sized bins

and finally applied a sinusoid of the form F(ϕ) = r0 + r1 sin(ϕ + ψ) with ϕ 2 [0, 2π) to fit that

histogram using the method of least squares, where r0 was given by the histogram mean value.

In this way we obtained r1 and ψ.

Supporting Information

S1 Text. Supplementary Figures. Fig A: Reproduction of spiking activity for dendritic inputs

using EIF type models. Fig B: Spike rate modulation due to an electric field for somatic inputs

using neuron models of the EIF type. Fig C: Spike rate modulation due to an electric field for

distal dendritic inputs using neuron models of the EIF type.
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