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ABSTRACT

Objective: In this work, we introduce a privacy technique for anonymizing clinical notes that guarantees all pri-

vate health information is secured (including sensitive data, such as family history, that are not adequately cov-

ered by current techniques).

Materials and Methods: We employ a new “random replacement” paradigm (replacing each token in clinical

notes with neighboring word vectors from the embedding space) to achieve 100% recall on the removal of sen-

sitive information, unachievable with current “search-and-secure” paradigms. We demonstrate the utility of

this paradigm on multiple corpora in a diverse set of classification tasks.

Results: We empirically evaluate the effect of our anonymization technique both on upstream and downstream

natural language processing tasks to show that our perturbations, while increasing security (ie, achieving 100%

recall on any dataset), do not greatly impact the results of end-to-end machine learning approaches.

Discussion: As long as current approaches utilize precision and recall to evaluate deidentification algorithms,

there will remain a risk of overlooking sensitive information. Inspired by differential privacy, we sought to make

it statistically infeasible to recreate the original data, although at the cost of readability. We hope that the work

will serve as a catalyst to further research into alternative deidentification methods that can address current

weaknesses.

Conclusion: Our proposed technique can secure clinical texts at a low cost and extremely high recall with a

readability trade-off while remaining useful for natural language processing classification tasks. We hope that

our work can be used by risk-averse data holders to release clinical texts to researchers.
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INTRODUCTION

Natural language processing (NLP) is being increasingly applied to

free-text clinical notes, both to improve quality-of-care and to un-

derstand the pathophysiologies and natural histories of disease.

Clinical notes are rich in information and carry observations that

cannot be easily conveyed using structured data, but their use in

NLP research is hampered by stringent security requirements, which

in turn affects researcher access to data.

Healthcare providers are often hesitant to about (or prohibited

from) sharing unstructured data with external researchers because

of the difficulties associated with securing sensitive information. The
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obligation to secure private patient information is enforced by legis-

lation such as the United States Health Insurance Portability and Ac-

countability Act (HIPAA), which defines a list of personal health

information (PHI) that must be protected, including names, dates,

and other unique identifying characteristics.

The need for automated intelligent tools to detect and secure sen-

sitive personal information is growing as many NLP tasks with clini-

cal notes involve training end-to-end systems requiring a large

amount of data. Deidentifying notes automatically with NLP will in-

crease the availability of these data for research. Many studies use

NLP techniques to assist with the anonymization of clinical notes.1–

3 Existing techniques in the clinical privacy literature purport to re-

move sensitive data (such as names) with accuracies between 90%3

and 99%,2 although this is often measured on small test sets and the

techniques are less effective on larger, noisier datasets.

In this work, we present a novel technique for masking all sensi-

tive information in text that uses the semantic properties of word

embeddings (namely, the correlation between proximity in the em-

bedding space and semantic relevance). This unique paradigm out-

performs all existing methods with respect to recall without

suffering a large decrease in performance for machine learning (ML)

classification tasks trained end-to-end. In contrast to a prior method

by Fernandes et al4 that also used word embeddings, we guarantee

that each name will be changed. This previous method added a static

amount of noise, drawn from a Gaussian distribution, to each

token’s vector representation before replacing the original token

with the token closest to the newly noised vector. However, this ap-

proach is not secure, as it assumes equal spacing within the embed-

ding space, which is empirically false.5,6 With a fixed e, certain

tokens in sparser areas would not get replaced as frequently as other

tokens, which presents a security risk. By contrast, our approach,

designed with the clinical use-case in mind, forces each token to be

replaced with a semantically proximate token chosen at random.

That is, our technique protects more data with a reduction of less

than 5% in F1 score on average for multiple clinical tasks on the

most secure obfuscation setting.

Since no perfect search algorithm exists, past deidentification

approaches necessarily overlook some sensitive information. As long

as researchers use paradigms that can be evaluated using precision

and recall, we are risking patient privacy. Novel methods to protect

privacy, belonging to new paradigms, are needed to increase the

amount of data available to researchers. We present 1 such possible

method. By trading human readability for security, we are able to

provide 100% coverage on all names and all other identifying sensi-

tive textual information. We evaluate the effect of our technique on

the most common upstream and downstream clinical NLP tasks (ie,

word similarity and disease code prediction).

BACKGROUND

Detecting PHI
The large body of literature dedicated to securing PHI in clinical

notes can be grouped under 3 high-level approaches: i) dictionary-

based methods, ii) statistical methods, and iii) hybrid methods.

Dictionary-based methods use a compiled list (ie, a dictionary)

or predefined regular expressions to identify all occurrences of pri-

vate attributes present in the data.7,8 Dictionary-based approaches

often make use of misspelling detectors; for example, Thomas et al,

using a list of 1.8 million names and a misspelling detector, reported

correctly identifying 98.7% of names in a test dataset.8

Statistical approaches, which are more robust to unseen data

than dictionary-based methods, can be further classified into classi-

cal and neural approaches.1,2,9 Regardless of the specific classifica-

tion, these techniques rely on rules, whether explicitly programmed

(eg, RegEx, POS tagging) or implicitly learned from the text. Certain

works9 make use of extracted syntactic and lexical features achiev-

ing recall over 90%, while others make use of no hand-coded fea-

tures and a recurrent neural network to achieve recall of 99% on the

MIMIC dataset.2

The most common approach to removing private attributes from

clinical notes is to use a mixture of dictionary-based and statistical

approaches.3,10 The best of these approaches claims to detect sensi-

tive information with recall and precision in the high 90s. Combin-

ing dictionary-based and statistical approaches allows each

technique to compensate for the weaknesses of the other, and often

win shared deidentification task challenges. Methods, such as that

of Liu et al,10 combined an long short-term memory-based model

with a rule-based model and achieved an F1 score in the mid-90%s,

ranking first in the 2016 CEGS N-GRID NLP challenge.11 Combin-

ing a keyword dictionary, a rule-based system, and a statistical ML

method, Yang et al12 achieved an overall micro-averaged F-measure

of 93.6%, winning the 2014 i2b2 challenge.13

Anonymization
Once PHI has been detected using any of the above methods, data

holders can either secure the data through deletion (ie, PHI removal)

or random replacement of other information of the same type (ie,

PHI replacement).

PHI removal is simple as clinical notes remain readable and there

is a minimal information loss, which is a critical concern to most

people working with clinical notes.14 However, since no perfect

search algorithm exists, sensitive data missed by PHI removal can be

found by combing through the data for names and other personal in-

formation that were not removed.

PHI replacement is a more secure approach to deidentifying clin-

ical records, as it is no longer clear which names are true and which

have been randomly replaced. Unfortunately, this approach remains

susceptible to attack by malicious individuals depending on the spe-

cifics of the replacement.15 To do this, a malicious party would look

at instances of notes where there exist multiple differing names and

leverage external world knowledge to deduce real names.15

MATERIALS AND METHODS

Past approaches framed deidentification as search followed by re-

moval or replacement. Since no perfect search algorithm exists, these

approaches necessarily overlook some sensitive information. Our

approach, Algorithm 1, is to replace every token in the clinical note

with a random related token. By relying on the semantic properties

of word embeddings, we can refactor the text to have the same prop-

erties for downstream tasks as the original text.

Word embedding algorithms are techniques that represent word

tokens as dense numeric vectors. Most existing word embedding

techniques rely on the distributional hypothesis16 and, as a result,

tokens that appear in similar contexts become closer to each other in

the numeric vector space. Our technique leverages this semantic

property by randomly selecting a token from a subset of tokens that

appear in the same context. Specifically, we replace every token in

each clinical note (in place within the note, in a one-off manner)

with a random token from the closest N neighboring tokens in the
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embedding space (excluding itself). We refer to N as the degree of

obfuscation; the larger it is, the more obfuscated the text becomes.

As we are replacing every token, we are able to achieve perfect re-

call, although with a decrease in readability. In the discussion, we

will propose a means of ensuring perfect recall while improving

readability.

This 100% replacement gives data holders complete confidence

that the anonymized notes that are produced are completely secure

in the sense that they do not exist in the original dataset at all. Fur-

thermore, as the tokens are selected randomly from neighbors that

appear frequently in the same context, we maintain the approximate

meaning of the text at the lexical level. It is important that the de-

gree of obfuscation is not too small (as it would then be too easy to

reconstruct the original note), nor too large (as the new tokens

would be completely unrelated). We suggest that randomly varying

the degree of obfuscation per token across a single clinical note will

further strengthen the security of this approach (by increasing the

difficulty of note reconstruction).

The step-by-step method is shown as Algorithm 1, and example

outputs can be seen in Table 1.

Table 1 shows a sample (artificial) clinical note along with dei-

dentified versions of the note that result from traditional deidentifi-

cation algorithms and from our algorithm with 3 different degrees

of obfuscation (ie, values of N). In this example, we see that our re-

placement algorithm presents relevant medical terms such as hcv

(hepatitis C) being replaced with hbv (hepatitis B, a common coin-

fection), ebv (a virus in the hepatitis family), or hepc (alternative

shorthand for hepatitis C). Alcoholic cirrhosis (scarring of the liver

due to alcohol abuse) is replaced by alcohcclc cirhosis (a misspelling

of the same symptom), abstainer steatohepatitis (abstainer is close to

alcoholic, and steatohepatitis is a type of fatty liver disease), and

exdrinker cirrhotic (again relevant to alcohol, and the adjective

form of the noun). The misspellings come from the corpus itself, as

clinical texts are invariably filled with grammatical and spelling

errors; correcting misspellings is still an unsolved research problem.

We would stress that these terms are not truly interchangeable as

they represent differing patient pathologies. Nonetheless, our empir-

ical experiments show that both our upstream evaluations and our

downstream classification tasks are not affected by these substitu-

tions.

We also observe that all the names have been replaced with other

names and not with misspellings of the original name. We hypothe-

size that this is because, considering all other tokens that occur in

similar contexts, misspellings are less likely to occur than name

tokens of other patients with the same ailment. This is the opposite

to the situation for most other kinds of tokens (eg, grammatical and

medical terms) where misspelling replacement is much more likely,

because the context of misspelled tokens is likely to be extremely

similar.

Experiments
In this section, we demonstrate that our replacement technique has

little to no effect on ML performance in clinical classification tasks

that use the deidentified data. More specifically, we evaluate the ef-

fect of our technique on the tasks most common in the current litera-

ture. First, we perform intrinsic tests on word embeddings created

from notes to which our algorithm has been applied. We do this to

simulate researchers creating and using embeddings from data that

have been provided to them after securing and using our method.

We compare the performance of different degrees of anonymization

alongside the performance of out-of-domain datasets to assess the

relative decrease. Second, we evaluate downstream tasks—diagnos-

tic code and International Classification of Diseases-9 (ICD-9) code

prediction—on fully anonymized notes.

Intrinsic evaluation

To test the intrinsic quality of word embeddings generated from the

anonymized clinical data, we employ the testing strategy of Wang

Table 1. An artificial clinical note, and the result of applying our

technique with 3 different degrees of obfuscation. Our algorithm

does not assume proper spelling or grammar from the input. The

obfuscated notes have less readability but maintain important in-

formation for ML applications while covering PHI

Note Type Text

Original note arnold smith is a fifty year old male, with a history posi-

tive for alcholic cirrhosis, hcv, and variceal bleeds,

presenting to the ed with syncope and an inner lip

laceration after fall on face

PHI removal *NAME* *NAME* is a *AGE* year old male, with a

history positive for alcoholic cirrhosis, HCV, and

variceal bleeds, presenting to the ED with syncope

and an inner lip laceration after falling forward onto

his face .

PHI

replacement

John Bobby is a sixty year old male, with a history posi-

tive for alcoholic cirrhosis, HCV, and variceal bleeds,

presenting to the ED with syncope and an inner lip

laceration after falling forward onto his face .

N ¼ 3 muller doug was another seventy ycar monthold man,

wth an hislory equivocal ibr alcohcllc cirhosis, hbv,

arid varlceal bdoands, chief restrainting this er wth

palpitations however a outer lid lacerations afer fall-

ing onthe cheeks

N ¼ 5 seth joe remains another sixty years olf female, wit an-

other hx positivity forthe abstainer steatohepatitis,

ebv, however varicies bleed, chief restrainting its ahc

vith presyncopc but acardiogenic supralateral lid

abrasion thereafter concussion onthe forehead

N ¼ 7 howard doug looks the thirteen decade monthoid man,

wilh wiowill histoiy postive ofr exdrinker cirrhotic,

hepc, similarly hemorroidal epistaxis, longstanding

insalin ihe ahc wtih presyncopc similarly a posterior

gingiva lacn before summer brewere scalp

Algorithm 1. Algorithm to replace each token in a clinical

note with a semantically proximate token chosen at ran-

dom.
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et al.17 They compared word embeddings generated from a variety

of sources against human-annotated values of word similarity for a

list of clinically relevant terms.

To generate word embeddings for comparisons, we used consul-

tation notes provided to ICES (previously known as the Institute for

Clinical Evaluative Sciences) under data-sharing agreements with

physicians for the purposes of evaluation and research. Consultation

notes are written by physicians and healthcare providers after inter-

acting with a patient. These notes describe history collected, results

observed, tests performed, and other details that a physician thinks

are important for the treatment of the patient. We used all patient

consultation notes (9 051 707 notes), composed of 949 782 513

tokens (2 612 592 unique tokens), Table 2.

For data preprocessing, we lower-cased all tokens, removed spe-

cial characters and numbers and split words on space and punctua-

tion tokens. We used these notes to train word embeddings using the

continuous bag-of-words (CBOW) algorithm with an embedding

size of 100, a context window of 5, and a negative sampling rate of

5. These values were picked only once as standard values because

they have been shown to work in the clinical setting.17 We then ap-

plied our replacement algorithm, sampling randomly from the clos-

est 3, 5, or 7 tokens. From the newly anonymized set of consultation

notes, we created new embeddings with the exact same set of param-

eters. We compared the quality of embeddings created on the origi-

nal consultation notes to the quality of embeddings created from

anonymized consultation notes, defining quality as correlation to

human judgments. We also included a comparison to the quality of

embeddings trained on biomedical literature and news corpora to

see whether the drop in quality from anonymization renders the spe-

cialized data useless in comparison to cheaper alternatives. The bio-

medical embeddings were trained on a snapshot of the Open Access

Subset18 of the PubMed Central in March 2016. PubMed Central is

an online digital collection of freely available full-text biomedical lit-

erature containing more than 1.25 million biomedical articles, with

2 million distinct tokens in the vocabulary. The news corpus used

was the Google News dataset.19 This corpus is trained on approxi-

mately 100 billion tokens (composed of 3 million unique words or

phrases).

For this evaluation, we used 4 word-pair lists composed of pairs

of biomedical words and the numeric degree of semantic similarity

between the word-pairs. The semantic similarity is based on human

judgments from medical coders and physicians that are provided in

the datasets. Specifically, we analyze the performance of word

embeddings on the following datasets: 1) Pedersen’s20 (30 medical

term pairs), 2) Hliaoutakis’21 (34 medical term pairs), 3)

MayoSRS22 (101 clinical term pairs), and 4) UMNSRS23 (566 medi-

cal term pairs). Following Wang et al,17 if a term is composed of

multiple words, the overall vector for the term is the average of all

the individual word vectors. FastText24 was used to generate word

embeddings for out-of-vocabulary words. For each of the paired

terms, we measured the cosine distance and presented the Pearson

correlation in Figure 1.

The results of this experiment show that our anonymization

technique does not greatly impact the quality of the embeddings

(except for N ¼ 3 on the Hliaoutakis word-pair list). Believing

that this poor performance was simply caused by chance during

the shuffling of the data, we ran the models 5 times using the

same settings and observed that this bad run was, in fact, caused

by chance. The average Pearson correlation is over 10 points

higher and within 2 points of the unanonymized model perfor-

mance, shown in Table 3.

As observed, the quality of the anonymized word embeddings, as

measured by these tests, is still higher than that of embeddings

trained on out-of-domain corpora, informing us that: i) the noise

added to the corpora by replacing each token with a random neigh-

bor generally maintains the overall co-occurrence statistics (hence

no significant change in the positive or negative direction), and ii)

the embeddings created from anonymized data remain more infor-

mative (insofar as they correlate better with human annotations)

than embeddings trained on out-of-domain corpora, demonstrating

that the anonymized data remains useful.

Table 2. Description of the consultation notes dataset

Counts

Number of patients 542 651

Number of notes 9 051 707

Number of tokens 949 782 513

Number of unique tokens 2 612 592

Figure 1. Pearson correlations of the intrinsic word embedding test. The baseline is in solid black, outputs from our technique are in shades of grey, and nonclini-

cal sources are in horizontal and vertical grey lines. As shown, increasing the degree of obfuscation with which we randomly sample does not greatly impact the

quality of the word embeddings.
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Extrinsic evaluation

In this section, we test the effect of our anonymization technique on

multiple prediction tasks.

Our first task is diagnostic code prediction from clinical notes.

We perform this task using 2 different datasets (ICES and MIMIC

III25) to demonstrate that our approach works with differing types

of clinical notes (eg, progress notes and discharge notes). We work

with embeddings created from 2 of the most popular word embed-

ding algorithms (CBOW and Skipgram) to demonstrate that our

results do not hinge on any single algorithm. We also test a variety

of ML models to demonstrate that our technique preserves enough

signal to remain useful for many different classifiers. To further

demonstrate the generalizability of our algorithm, we also perform

binary sentiment classification on movie reviews. We purposefully

choose sentiment analysis, because tokens of opposing sentiments

tend to appear in similar contexts (eg, “This movie was good” and

“This movie was bad”) and are therefore mutual candidates for re-

placement. By showing that our algorithm does not negate the signal

in sentiment analysis classification, we thereby highlight its ability

to preserve information.

Table 4 presents the complete set of experiments conducted. Fig-

ure 2 presents the average decrease in performance for different

Table 3. Pearson correlations (with 90% confidence interval bracketed beneath) of the intrinsic word embedding test done 5 times for each

setting of N¼ 3, 5, and 7 to measure the effect of randomly shuffling. As can be seen, conclusions drawn regarding comparable perfor-

mance can still be observed. This also demonstrates that the bad result shown in the body was a result of bad luck/randomization

Consultation N ¼ 3 N ¼ 5 N ¼ 7

Pedersen 0.61 0.54

(0.51, 0.56)

0.64

(0.62, 0.65)

0.62

(0.61, 0.63)

Hliaoutakis 0.28 0.26

(0.19, 0.32)

0.26

(0.24, 0.27)

0.24

(0.19, 0.29)

MayoSRS 0.39 0.38

(0.37, 0.39)

0.39

(0.39, 0.40)

0.39

(0.38, 0.40)

UMNSRS 0.49 0.49

(0.48, 0.49)

0.49

(0.49, 0.49)

0.48

(0.48, 0.49)

Table 4. Summary of all experiments. The list of models is organized column-wise by task. In brackets, we present the word embedding al-

gorithm used to randomly replace each token (CBOW or Skipgram). We also present the size of the nearest neighboring set of obfuscating

tokens from which we randomly sample. For obfuscation settings, N ¼ 0 is the evaluation on the original unprotected dataset, and for

N ¼ 3–14, we varied the size of the nearest neighbor set for each word between 3 and 14 instead of holding it constant for each token

Obfuscation (N) Models for ICES diagnostic code classification Models for MIMIC ICD-9 classification Models for sentiment analysis

N ¼ 0 Logistic regression (CBOW) CNN (CBOW) Logistic regression (CBOW)

N ¼ 3 SVM (CBOW) CNN with attention (CBOW) SVM (CBOW)

N ¼ 5 CNN (CBOW) LSTM (CBOW) CNN (CBOW)

N ¼ 7 Logistic regression (Skipgram) LSTM with attention (CBOW) Logistic regression (Skipgram)

N ¼ 9 SVM (Skipgram) SVM (Skipgram)

N ¼ 3–14 CNN (Skipgram) CNN (Skipgram)

Figure 2. Absolute percentage change of performance (F1 score) as a function of different obfuscation settings for various tasks, settings, and models. Each model

name is broken into 3 parts: 1) The task performed, of which there are 3 (Sent for Sentiment Classification, MIM for MIMIC III ICD-9 code classification, or ICES for

ICES diagnostic code classification); 2) the word embedding representation used to learn randomly replace the tokens (either SG0 or SG1 for CBOW or Skip-

gram); and 3) the type of model used to classify the texts. More details regarding each of these settings and models can be found in the Supplementary Material.
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degrees of obfuscation for each task for each classifier. The complete

details of all the data used and the setup of each experiment is given

in the Supplemental Material.

From Figure 2, we observe that increased obfuscation generally

results in decreased classification performance (measured using F1

score). However, the observed decreases are small in magnitude, no

more than approximately 5% for clinical tasks, thereby demonstrat-

ing the utility of data protected using our method.

DISCUSSION

The obfuscated data created by our technique remains useful for

many ML classification tasks. By replacing tokens with other tokens

that occur frequently in the same context, we are not changing the un-

derlying distribution greatly. Thus, the performance of ML and NLP

classification methods is not greatly impacted and may be used for pi-

lot research projects. In the Supplementary Appendix, we validate the

practicality of our technique by performing additional classification

tasks, which demonstrate that performance is preserved when apply-

ing secured embeddings to nonanonymized text and for using pre-

trained embeddings on anonymized text. Of course, there are tasks

for which our technique may not be the optimal approach for ano-

nymizing data—for example, clinical named-entity recognition and

tasks requiring human interaction or interpretability. More research is

required to evaluate the impact of our method on other tasks.

Quantitative assessment of the security of notes itself is a chal-

lenge, since existing measures of security are insufficient, and there-

fore so are existing shared tasks.11,13 Using precision, recall, or

Carrell et al’s15 approach (The issue of using other information in

notes to deduce the patient name is no longer an issue here either,

because: i) the original patient name is no longer in the note, and ii)

all other personal details will have been obfuscated as well.) to eval-

uate our technique would not be appropriate, as our technique pur-

posely alters each token, thereby achieving perfect recall with each

PHI replaced at the cost of low precision.

This perfect recall also comes at the cost of agrammatical, and

sometimes even unreadable, transformations. Using a dictionary-

based search method to preclude certain words from being replaced

would increase readability; however, choosing to keep a predeter-

mined list of informative words, for example, stop-words or medical

names (some of which might also be human names, such as Parkin-

son’s) would increase readability as well as risk. This reintroduction

of risk should only be done for specific use-cases and under con-

trolled access measures.

Theoretically, this approach could also use contextual word

embeddings26,27—embeddings that change depending on the con-

text. Future work would have to show that the trends observed

above hold and study whether model size and its contextual nature

have any negative effects regarding random neighbor generation or

privacy.

To increase security, we considered choosing differing values of

N for different tokens. Instead of choosing a replacement from a

fixed-sized set of neighboring tokens, allowing for the size of the set

to randomly change per token will protect isolated clusters of low-

frequency tokens (which may have been easier to isolate, but not

fully detect). The results of such a setting are presented for all tasks

under the setting N ¼ 3–14. Regardless, our technique, if used

alone, may still be susceptible to attacks. Should a malicious actor

gain access to the original word embeddings, it may be possible to

deduce patient identities, as it would be possible to reconstruct the

neighbors for each token. This risk is also why our approach should

not be used on small datasets. For maximum security, our approach

to anonymization should be applied after a more traditional

privacy-replacement technique in order to obfuscate instances where

the more traditional approaches to privacy have failed.

We are not advocating that this method should be used on the in-

put of a model deployed in real clinical settings. Rather, we propose

that this method can be used in pilot classification tasks very quickly

and at low cost. For example, to explore the possibility of automati-

cally classifying text, data holders can share data that have been

anonymized using our method at reduced risk. If any of the research

groups involved were able to achieve acceptable performance, then

that collaboration or development could be brought in-house to

work on real data. Our approach allows data holders to outsource

ML research and data analytics to outside research groups without

the overhead of creating and maintaining a manually secured data

repository.

CONCLUSION

In this work, we introduced a novel anonymization technique for

clinical notes that can be applied to any body of text. The method:

• is generalizable across different types of text data, as demon-

strated by our application to consultation notes, progress notes,

and movie reviews;
• guarantees that all PHI will be randomly replaced with perfect

recall, a claim that cannot be made of algorithms that currently

exist in the literature; and
• does not result in a significant decrease in performance for classi-

fication tasks using either neural networks or more traditional

machine learning.

The algorithm provides complete coverage on all sensitive infor-

mation at the cost of introducing some noise that reduces human

readability. However, we have shown through our intrinsic tests (ie,

correlation scores with human annotated word-pair lists) and extrin-

sic tests (ie, 10-way diagnostic code classification and binary senti-

ment classification) that the amount of noise introduced does not

negate the benefits of having a specialized corpus to create embed-

dings for certain ML and NLP classification tasks. Future work

should further explore additional NLP tasks, improving the human

readability aspect and possibly performing mixed-method experi-

ments with physicians and clinicians.

Using our algorithm, in conjunction with other advanced NLP

techniques to detect PHI, may both maintain readability and im-

prove privacy, but this is left for future work. In clinical settings, we

propose that our technique should be used to protect data granted

to outside researchers in the broader research team, expanding the

potential for future discoveries.

FUNDING

This work was supported by grants from the Natural Sciences and

Engineering Research Council of Canada to GH and FR, a Vanier

Canada Graduate Scholarship to MohA1. FR is supported by a

CIFAR Chair in Artificial Intelligence.

AUTHOR CONTRIBUTIONS

MohA1 and MouA2 designed the experiments. MohA1 programmed

the experiments. MohA1, MouA2, GH, and FR wrote the paper.

906 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 6

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocaa038#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocaa038#supplementary-data


MohA1 and GH formulated the original problem. FR provided di-

rection and guidance.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.

ACKNOWLEDGMENTS

We thank the helpful staff at ICES (Dr. Liisa Jaakkimainen, Dr. Therese Stu-

kel, Elisa Candido, Daniella Barron) for granting us access to data and for

their insight on our manuscript. This study was supported by ICES, which is

funded by an annual grant from the Ontario Ministry of Health and Long-

Term Care (MOHLTC). The analyses, conclusions, opinions, and statements

expressed herein are solely those of the authors and do not reflect those of the

funding or data sources; no endorsement is intended or should be inferred.

CONFLICT OF INTEREST

None declared.

REFERENCES

1. Kajiyama K, Horiguchi H, Okumura T, Morita M, Kano Y. De-identify-

ing free text of Japanese dummy electronic health records. In: Proceedings

of the Ninth International Workshop on Health Text Mining and Infor-

mation Analysis.

2. Dernoncourt F, Lee JY, Uzuner O, Szolovits P. De-identification of patient

notes with recurrent neural networks. J Am Med Inform Assoc 2017; 24

(3): 596–606.

3. Neamatullah I, Douglass MM, Li-Wei HL, et al. Automated de-

identification of free-text medical records. BMC Med Inform Decis Mak

2008; 8 (1): 32.

4. Fernandes N, Dras M, McIver A. Author obfuscation using generalised

differential privacy. arXiv preprint arXiv: 1805.08866. 2018.

5. Schakel AM, Wilson BJ. Measuring word significance using distributed

representations of words. arXiv preprint arXiv: 1508.02297. 2015.

6. Gong C, He D, Tan X, Qin T, Wang L, Liu TY. Frage: Frequency-agnostic

word representation. In: Advances in Neural Information Processing Sys-

tems. Cambridge, MA: MIT Press; 2018: 1334–1345.

7. Miller R, Boitnott JK, Moore GW. Web-based free-text query system for

surgical pathology reports with automatic case deidentification. Arch

Pathol Lab Med 2001.

8. Thomas SM, Mamlin B, Schadow G, McDonald C. A successful technique

for removing names in pathology reports using an augmented search and

replace method. AMIA Annu Symp Proc 2002; 2002: 777–781.

9. Sibanda T, He T, Szolovits P, Uzuner O. Syntactically-informed semantic

category recognizer for discharge summaries. AMIA Annu Symp Proc

2006; 2006: 714–8.

10. Liu Z, Tang B, Wang X, Chen Q. De-identification of clinical notes via re-

current neural network and conditional random field. J Biomed Inform

2017; 75: S34–S42.

11. Stubbs A, Filannino M, Uzuner €O. De-identification of psychiatric intake

records: Overview of 2016 CEGS N-GRID Shared Tasks Track 1. J

Biomed Inform 2017; 75: S4–18.

12. Yang H, Garibaldi JM. Automatic detection of protected health informa-

tion from clinic narratives. J Biomed Inform 2015; 58: S30–S38.

13. Stubbs A, Kotfila C, Uzuner €O. Automated systems for the de-

identification of longitudinal clinical narratives: Overview of 2014 i2b2/

UTHealth shared task Track 1. J Biomed Inform 2015; 58: S11–9.

14. Meystre SM, Ferrandez O, Friedlin FJ, South BR, Shen S, Samore MH.

Text de-identification for privacy protection: a study of its impact on clini-

cal text information content. J Biomed Inform 2014; 50: 142–50.

15. Carrell D, Malin B, Aberdeen J, et al. Hiding in plain sight: use of realistic

surrogates to reduce exposure of protected health information in clinical

text. J Am Med Inform Assoc 2013; 20 (2): 342–8.

16. Sahlgren M. The distributional hypothesis. Italian J Linguist 2008; 20 (1):

33–54.

17. Wang Y, Liu S, Afzal N, et al. A comparison of word embeddings for the

biomedical natural language processing. J Biomed Inform 2018; 87: 12–20.

18. Website: http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/Accessed De-

cember 13, 2019.

19. Website: https://code.google.com/archive/p/word2vec/Accessed December

13, 2019.

20. Pedersen T, Pakhomov SV, Patwardhan S, Chute CG. Measures of seman-

tic similarity and relatedness in the biomedical domain. J Biomed Inform

2007; 40 (3): 288–99.

21. Hliaoutakis A. Semantic similarity measures in MeSH ontology and their

application to information retrieval on Medline [Master’s thesis]. 2005.

22. Pakhomov SV, Pedersen T, McInnes B, Melton GB, Ruggieri A, Chute

CG. Towards a framework for developing semantic relatedness reference

standards. J Biomed Inform 2011; 44 (2): 251–65.

23. Pakhomov S, McInnes B, Adam T, Liu Y, Pedersen T, Melton GB. Seman-

tic similarity and relatedness between clinical terms: an experimental

study. AMIA Annu Symp Proc 2010; 2010: 572.

24. Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors with

subword information. Trans Assoc Comput Linguist 2017; 5: 135–46.

25. Johnson AE, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible criti-

cal care database. Sci Data 2016; 3 (1).

26. Peters M, Neumann M, Iyyer M, et al. Deep contextualized word repre-

sentations. In: Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies.

27. Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bi-

directional transformers for language understanding. In: Proceedings of

the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies.

28. Liendo Z, Roo GD, Karmakar A. Classifying medical notes into standard

disease codes. https://github.com/zliendo/AI_MedicalNotes/blob/master/

w266FinalReport_ICD_9_Classification.pdfAccessed December 13,

2019.

29. Maas AL, Daly RE, Pham PT, Huang D, Ng AY, Potts C. Learning word

vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics: Human Language Tech-

nologies.

30. Kim Y. Convolutional Neural Networks for Sentence Classification. In:

Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP).

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 6 907

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocaa038#supplementary-data
http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://code.google.com/archive/p/word2vec/
https://github.com/zliendo/AI_MedicalNotes/blob/master/w266FinalReport_ICD_9_Classification.pdf
https://github.com/zliendo/AI_MedicalNotes/blob/master/w266FinalReport_ICD_9_Classification.pdf

