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Objectives: To evaluate the comparative effectiveness of treatments, a randomized clinical trial remains 
the gold standard but can be challenged by a high cost, a limited sample size, an inability to fully reflect 
the real world, and feasibility concerns. The objective is to showcase a big data approach that takes 
advantage of large electronic medical record (EMR) data to emulate clinical trials. To overcome the 
limitations of regression analysis, a deep learning-based analysis pipeline was developed. Study Design 
and Setting: Lumpectomy (breast-conserving surgery) and mastectomy are the two most commonly 
used surgical procedures for early-stage female breast cancer patients. An emulation trial was designed 
using the Surveillance, Epidemiology, and End Results (SEER)-Medicare data to evaluate their relative 
effectiveness in overall survival. The analysis pipeline consisted of a propensity score step, a weighted 
survival analysis step, and a bootstrap inference step. Results: A total of 65,997 subjects were enrolled 
in the emulated trial, with 50,704 and 15,293 in the lumpectomy and mastectomy arms, respectively. The 
two surgery procedures had comparable effects in terms of overall survival (survival year change = 0.08, 
95% confidence interval (CI): -0.08, 0.25) for the elderly SEER-Medicare early-stage female breast cancer 
patients. Conclusion: This study demonstrated the power of “mining large EMR data + deep learning-
based analysis,” and the proposed analysis strategy and technique can be potentially broadly applicable. It 
provided convincing evidence of the comparative effectiveness of lumpectomy and mastectomy.
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INTRODUCTION

To evaluate the comparative effectiveness of treat-
ments (drugs, operation procedures, etc.), a rigorously 
designed and executed randomized clinical trial (RCT) 
remains the criterion standard. However, challenges have 
been well recognized. With a high cost, RCTs, although 
statistically sufficiently powered by design, often have 
limited sample sizes. It has been repeatedly observed that 
treatment effects seen in the real world may differ (some-
times significantly) from RCTs, which can be attributed 
to the higher-than-standard care, higher adherence, and 
other factors in RCTs. Additionally, for treatments that 
have been on the market and widely used, there are 
feasibility concerns for conducting new head-to-head 
comparison trials. The fast accumulation of data from 
registries, large electronic medical records (EMR) and 
insurance claims databases, such as data contained in the 
SEER (Surveillance, Epidemiology, and End Results) 
registries, Medicare, Medicaid, and Kaiser, as well as the 
development of data management techniques, have made 
it possible to mine a large amount of real-world data to 
complement RCTs. Comparatively, such analysis can be 
advantageous with a much larger sample size and hence 
significantly more power, a better reflection of real-world 
evidence, high cost-effectiveness, and limited feasibility 
hurdles. Among the available observational data analysis 
methods (that aim to complement RCT analysis), emula-
tion has attracted special attention, with its trial-like de-
sign, potential for causal interpretations, and scalability 
[1]. Emulation analysis has been conducted on cancers 
[2-4], cardiovascular diseases [5,6], and many other dis-
eases [7-11]. The first objective of this study is to present 
another showcase of the emulation analysis of large EMR 
data.

In RCT analysis, regression techniques (such as lin-
ear, logistic, and Cox regressions as well as t and logrank 
tests) remain the common practice. This is also true for 
emulation analysis [1]. As in the real world there is no 
randomized assignment, emulation analysis usually de-
mands an additional propensity score step, which can 
be accomplished by logistic regression [12]. Regression 
analysis is easy to conduct and has lucid interpretation. 
On the other hand, it is often challenged by “suboptimal” 
estimation and prediction performance and stringent 
model assumptions (and hence an inability to accom-
modate, for example, unknown nonlinear effects) – such 
limitations can be overcome by deep learning, which has 
experienced an unparallel surge in the past few years. 
Deep learning has demonstrated great power in diverse 
fields such as engineering, business, and social science 
[13-15]. It has been applied in biomedical research to the 
analysis of epidemiological [16], omics [17], imaging 
[18,19], and other types of data [20,21]. Our literature 

review suggests that the application of deep learning in 
the emulation analysis of observational data has been 
very limited. Additionally, “classic” deep learning tech-
niques have been criticized as “black boxes.” As such, the 
second objective of this study is to develop a deep learn-
ing-based emulation analysis pipeline, which may have 
broad applications far beyond this study. The proposed 
deep neural network (DNN) approaches inherit strengths 
from well-established statistical principles and “classic” 
DNNs and can be superior to both.

For early-stage breast cancer, the surgical treatment 
options include mastectomy (which removes the entire 
breast) and lumpectomy (which removes a tumor and 
some normal tissues surrounding it). In the past decades, 
studies have hinted at the equivalency of the two surgical 
procedures, and both have been extensively conducted in 
clinical practice. However, RCTs may potentially suffer 
from a lack of generalizability due to extensive exclusion 
criteria, and previous evidence and findings from RCTs 
were based on cohorts from the 1980s [22-25]. Since then, 
there have been significant developments in breast cancer 
detection and treatment, such as a better understanding of 
tumor biology and advancements in surgical techniques 
and adjuvant therapy. With the period effect, patient char-
acteristics have also changed significantly over time. It 
is thus of interest to compare breast cancer outcomes for 
patients who underwent the two surgical procedures in a 
more recent era. Another critical limitation of the existing 
RCTs and some observational studies is that there was 
insufficient attention to the elderly patients – many of 
them excluded elderly women or only included a very 
limited number of elderly women. The undertreatment 
and underrepresentation of elderly patients in studies 
may be attributable to limited cosmetic needs, a shorter 
life expectancy, an increasing incidence of comorbidities, 
and other factors. Breast cancer disproportionately af-
fects older women, with those over 65 having the highest 
age-specific probability of developing invasive diseases 
[26,27]. The third objective of this study is to evaluate the 
comparative effectiveness of mastectomy and lumpecto-
my for the overall survival of elderly female breast cancer 
patients diagnosed and treated more recently. This effort 
can complement the existing RCT and observational 
studies and directly inform breast cancer clinical practice.

METHODS

Data and Study Sample
The SEER-Medicare data was analyzed in this 

study. Surveillance, Epidemiology, and End Results 
(SEER) contains 22 cancer registries in the United 
States. Medicare is a federally-funded health insurance 
program in the US, and in 2010, approximately 94% of 
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the US population age 65 years or older was enrolled in 
Medicare. The SEER-Medicare data provides an ideal 
opportunity to study the US elderly cancer population. 
It has been extensively analyzed, including in emulation 
analysis [3,28]. Here, it is noted that the adopted mining 
observational data for emulation analysis strategy and 
deep learning-based analysis pipeline can be directly ap-
plied to other databases. Data analyzed in this study was 
obtained through a Data Use Agreement (DUA) by the 
National Cancer Institute (NCI). The study design was 
motivated by relevant RCTs [22-25] and observational 
analysis [29-32], while taking into consideration data 
availability in the SEER-Medicare database. The target 

and emulated trial designs are described in Appendix Ta-
ble S1. The flowchart of emulated trial patient selection 
is summarized in Figure 1. Briefly, the emulated trial en-
rolled Medicare beneficiaries with first primary invasive 
intraductal or/and lobular breast cancer (International 
Classification of Diseases for Oncology, 3rd Edition 
(ICD-O-3): 8500, 8520, and 8522) who were: 1) female 
and 66-100 years old at diagnosis, 2) diagnosed between 
1/1/07 and 12/31/17, 3) stage I-II, 4) with tumor size ≤ 
5cm, 5) received lumpectomy or mastectomy within 120 
days after diagnosis, and 6) had continuous enrollment in 
Medicare Part A and Part B, with no health maintenance 
organization (HMO) enrollment from one year before to 

Figure 1. Flowchart of sample selection.
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treatment groups were comparable and the mortality rate 
right after diagnosis was very low compared to the long 
follow-up. The overall survival information was obtained 
from the Medicare records. All subjects were followed to 
the end of 2019 or death, whichever happened first.

A DNN-based Analysis Pipeline
Under the regression framework, the emulation 

technique has been well developed. We refer to [1,33] for 
methodological developments and [2,34] for represen-
tative case studies. Additionally, some computer codes 
are also publicly available, for example at [35]. Briefly, 
to emulate the estimation of an intention-to-treat (ITT) 
effect, the observed treatments in medical records are 
used as treatment assignments. Special considerations 
may be needed if a patient received multiple treatments. 
In a well-executed RCT, different arms can be sufficiently 
balanced. As such, there may be no need for accounting 
for confounding – although it is still commonly done out 
of caution. In the emulation analysis of observational 
data, since randomization did not really happen, there is a 
risk of imbalance. To tackle this problem, the propensity 
score and inverse probability treatment (IPT) weight-
ing techniques are usually adopted to achieve baseline 
balance as in an RCT. The propensity score calculation 
is usually built on logistic regression that includes the 
treatment indicator as response and baseline covariates 
as covariates. Usually, this analysis only includes linear 
effects. Based on the logistic regression results, the IPT 
weight can be calculated as the inverse of the propensity 
score for one treatment group and the inverse of one mi-
nus the propensity score for the other group. Stabilized 
weights with a truncation at the upper 99.5% percentile 
(that is, if a weight is above the 99.5% percentile, it is set 
as the 99.5% percentile) are usually adopted for retaining 
the same group size ratio and avoiding putting extreme 
weights on certain subjects. With such weights, a pseu-
do-population can be created, for which there is no (or 

one year after the cancer diagnosis or death, whichever 
occurred first. A subject was excluded if she 1) was re-
ported from registries in New York (NY), Massachusetts 
(MA), and Idaho (ID) because of missing cancer-related 
information (eg, stage), 2) had missing information on 
month of diagnosis, gender, stage or tumor size, and 3) 
was reported from death certificate or autopsy.

Variable Information
After reviewing the relevant observational studies, 

and also considering data availability, we included the 
following variables as potential confounders, which 
may have an impact on treatment initiation (choice of 
surgery) and outcome (overall survival): 1) baseline de-
mographics: age, race, and marital status; 2) cancer-re-
lated variables: tumor size, morphology, stage, primary 
site, laterality, grade, HR status; and 3) comorbidities: 
Elixhauser comorbid conditions index. It is noted that 
human epidermal growth factor receptor 2 (HER2) was 
not measured for patients diagnosed prior to 2010, and, as 
such, it was not included in the main analysis. In addition, 
as only a few (<11) patients had unknown laterality or 
paired site/midline tumor, they were excluded from the 
analysis. A patient was enrolled into the lumpectomy arm 
if she received lumpectomy as the first surgery procedure 
after being diagnosed and would be censored if a subse-
quent mastectomy was performed. A patient was enrolled 
into the mastectomy arm if she received mastectomy as 
the first surgery procedure after being diagnosed regard-
less of subsequent surgical procedures. The International 
Classification of Diseases, Ninth Revision, Clinical Mod-
ification (ICD-9-CM), ICD-10-CM, and the Healthcare 
Common Procedure Coding System (HCPCS)/Current 
Procedural Terminology (CPT) codes appeared in Medi-
care inpatient and outpatient records were adopted to de-
fine surgeries. Details are provided in Appendix A: Table 
S2. Time zero was set as the time of surgery. Immortal 
time bias, if any, is expected to be limited, as the two 

Figure 2. Scheme of the proposed DNN-based analysis.
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denote all weights. For subject j denote                as the 
probability output (that is, a Sigmoid activation function 
is adopted for the output layer). Intuitively, hA(Xi) corre-
sponds to the covariate effect in logistic regression. For 
the input layer and hidden layers, respectively, we adopt 
the Tanh and Hardtanh activation functions. We adopt the 
logarithmic loss function (binary cross-entropy), which 
has connections with the logistic likelihood function, and 
has been popularly adopted. This has been partly motivat-
ed by the fact that, in the literature, logistic regression has 
been popularly adopted in propensity score estimation 
and has demonstrated sensible performance. The overall 
penalized loss function is:

where λ1 and λ2 are tuning parameters, ║∙║2 denotes 
the l2-norm, and ║∙║F denotes the Frobenius norm. De-
note the estimate of A as Â and                   . Following 
regression-based analysis, we calculate the inverse prob-
ability treatment weight: if subject i is in the treatment 
arm,           ; otherwise,           .

Survival analysis step. In regression analysis, the Cox 
model has been widely used because of clear interpreta-
tion and easy implementation, although alternative mod-
els have also been extensively adopted. In deep learning, 
a loss function that corresponds to the negative partial 
likelihood function of the Cox model has been developed 
[38]. However, it is not as popular as its counterpart under 
regression. Here, we develop an alternative loss function.

For subject i = 1, ... ,n, consider weight               ,  where 
S(t) is the survival function for the event time of interest. 
In practice, we estimate S(t) using the Kaplan-Meier esti-
mator Ŝ(t) and denote the corresponding weight as        We 
construct a feed-forward weighted DNN with (Zi, Xi)’s as 
input and Yi’s as output. For subject i,       is imposed as 
weight. Note that the weight calculation does not depend 
on the DNN construction. In addition, censored subjects 
have zero weights, and as such, are virtually removed 
from the DNN analysis. For the input layer, the Tanh 
activation function is adopted. For the hidden and out-
put layers, the Rectified Linear Units (ReLU) activation 
function is adopted. For the jth input variable, use β1,j, 
a vector, to denote its input layer weights. For the k2th 
(= 1, ... ,K2) hidden layer, use Bk2, a matrix, to denote its 
collection of weights. And use B to collectively denote 
all network weights. For subject i denote fB(Zi, Xi) the 
network output. Following the same penalization strategy 
as above, we propose the loss function:

          ,
where λ3 and λ4 are tuning parameters. The first term 

has a least squares form, which makes computation sim-
ple.

very weak) association between the baseline confounders 
and received treatment. Then, survival analysis, for exam-
ple, Cox regression, can be conducted using the weighted 
pseudo-population to estimate the causal effect under the 
assumption of no unmeasured confounders. Similar to 
logistic regression, Cox and other survival analysis mod-
els also rely on strong assumptions and linear effects. In 
practice, it is not uncommon to observe violations of such 
assumptions.

Our overall strategy is to follow the above frame-
work but replace regression-based analysis with DNN-
based analysis, which relies on weaker model assump-
tions and can “automatically” accommodate unspecified 
nonlinear relationships. The architecture of the DNNs 
for both propensity score and survival analysis steps is 
sketched in Figure 2 and consists of a sparse layer, mul-
tiple hidden layers, and an output layer. The key build-
ing components of a DNN include its loss function and 
estimation approach, which are presented below. Denote 
n as the number of independent subjects. For subject i, 
we observe p baseline covariates Xi = (Xi1, ... , Xip)

T, a 
binary treatment indicator Zi, and right censored survival 
outcome {Yi = min(Ti,Ci), δi = I(Ti ≤ Ci)}. Here, Ti, Ci are 
the event and censoring times, respectively, and I(∙) is the 
indicator function.

Propensity score step. A feed-forward DNN is 
constructed with input being Xi’s after standardization 
for continuous variables and one-hot encoding for cate-
gorical variables and output being Zi,’s. EMR databases 
contain rich information, and collecting data from such 
databases is almost free. As such, to avoid losing import-
ant information, “more than necessary” covariates may 
be included. In addition, in regression-based emulation 
analysis, it is also commonly observed that some covari-
ates are not significant. For the proposed DNN, we first 
propose imposing group Lasso penalization to the input 
layer weights. In particular, the weights corresponding to 
one input variable are treated as a group. Group Lasso has 
been extensively developed under the regression frame-
work and has the “group in or group out” selection prop-
erty [36]. With this penalty, we are able to distinguish 
important input variables from noises, which can lead to 
a simpler DNN structure, fewer variables and hence more 
stable estimation, and more lucid interpretations. Addi-
tionally, we also propose applying ridge penalization [37] 
to the hidden layer weights. Here, the goal is to regular-
ize estimation and avoid extreme values. In principle, it 
is possible to also apply group Lasso (or its individual 
counterpart Lasso). However, this may lead to an overly 
sparse DNN and unstable optimization.

Use α1,j, a vector, where j = 1, ... ,p, to denote the input 
layer weights corresponding to the jth input variable, and 
Ak1, a matrix, where k1 = 1, ... ,K1, to denote the weights of 
the k1th hidden layer. Additionally, use A to collectively 
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of parameters, cross-validation is not adopted but can be 
easily revised. The open-source Python module PyTorch 
is adopted.

Sensitivity analysis. In the main analysis, HER2 was 
not included because of complete missingness for pa-
tients diagnosed prior to 2010. It is recognized that HER2 
is an important confounder and may impact both surgical 
choices and overall survival. In Appendix A: S1, analysis 
was conducted on a revised cohort with available HER2 
information (that is, patients diagnosed in or after 2010), 
and HER2 was included as a confounder. Additionally, it 
was recognized that whether to perform radiotherapy was 
still being debated. Also motivated by the observed high 
proportion of patients receiving adjuvant radiotherapy 
after lumpectomy, we conducted the second sensitivity 
analysis in Appendix A: S2 and compared the overall sur-
vival of patients receiving mastectomy without adjuvant 
radiation therapy versus lumpectomy with radiation ther-
apy. The ICD-9-CM, ICD-10-CM, HCPCS/CPT codes 
for identifying radiation therapy are provided in Appen-
dix Table S2. We further fit a standard Cox regression 
model that included all the confounders and compared 
the results with those using the deep learning approach.

RESULTS

As shown in Figure 1, a total of 65,997 patients were 
enrolled in the emulated trial, with 50,704 in the lumpec-
tomy arm and 15,293 in the mastectomy arm. The wait-
ing time from diagnosis to surgery was observed to be 
short – over 95% of the surgeries were performed within 
120 days after diagnosis. The baseline characteristics 
are summarized in Table 1. It was observed that before 
the IPT weighting, the patients treated with lumpectomy 
were slightly younger, more likely to be stage I and with 
smaller tumor size and had lower comorbidity scores.

The unadjusted Kaplan-Meier survival curves by 
treatment are shown in Figure 3. For the lumpectomy 
arm, the overall mortality rate and median survival were 
22.6% and 6.0 years, respectively. For the mastectomy 
arm, they were 35.5% and 5.8 years, respectively. The pa-
tients who received lumpectomy were observed to have 
longer overall survival (p-value < 0.001 by logrank test). 
The proportional hazards assumption was tested, and 
the global Chi-squared test returned a p-value < 0.001, 
which justifies the adoption of a more flexible modeling 
technique.

In the propensity score analysis, we evaluated the 
impact of tuning parameters by visualizing parameter 
paths, which is a common technique for penalized esti-
mation [43]. The parameter paths as a function of tuning 
parameter λ1 are shown in Figure 4a. It was observed that 
tumor size was the only variable that was included when 
λ1 was large, suggesting its higher importance. As the 

The proposed loss has been motivated by the accel-
erated failure time (AFT) model [39]. Compared to the 
Cox model, the AFT model can sometimes be preferred 
because of its more lucid interpretation and simpler com-
putation. Although it has been widely adopted in regres-
sion, its DNN development has not been well pursued. 
This study can fill this important knowledge gap. There 
can be multiple estimation approaches under the AFT 
modeling. We adopt the weighted least squares technique 
[40,41], which has the lowest computational cost and can 
be easily combined with the IPT weighting.

Inference on treatment effect. In RCT analysis, quan-
tification of the significance of the treatment effect (using 
p-value, confidence interval, etc.) can be as important as 
estimation. In most of the existing DNN studies, there 
has been a lack of attention to the effect of an individual 
input variable and the quantification of its significance. 
To fill this knowledge gap, for the proposed analysis, we 
propose estimating treatment effects through a permuta-
tion of the treatment indicator Zi for each subject. That is, 
the population treatment effect is defined as the average 
increase/decrease in predicted survival time if switching 
Zi  = 1 to Zi = 0 (and vice versa) for the whole cohort. For 
inference, we propose a weighted bootstrap technique, 
which has been motivated by the weighted bootstrap for 
regression analysis [42] and consists of the following 
steps:

1) Randomly generate η1, ... , ηη from exp(1), the 
exponential distribution with rate = 1.

2) Conduct the weighted penalized estimation. In 
particular, the first term in the survival analysis objective 
function is revised as

The penalty terms remain unchanged.
3) Repeat Steps 1) - 2), eg, 500 times. The resulted 

estimates are used to construct a confidence interval (CI) 
for the treatment effect.

Computation. The bootstrap analysis can be conduct-
ed using the same approach as without the exponential 
weights. For both the propensity score and survival anal-
ysis steps, we adopt state-of-the-art techniques, including 
input standardization, Adaptive Moment Estimation for 
the gradient descent algorithm, Nesterov momentum, and 
learning rate scheduling with the exponential decay tech-
nique. We perform a Random hyperparameter optimi-
zation search and tune network depth and size, learning 
rate, penalization parameters, dropout rate, exponential 
learning rate decay constant, and momentum, with the 
assistance of the Python package Optunity. For tuning 
parameter selection, we conduct a grid search and min-
imize the cross entropy in the propensity score step and 
the weighted mean squared error in the survival analysis 
step. As the sample size is much larger than the number 
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Table 1. Patients’ Characteristics by Treatment
Mastectomy
(n = 15,293)

Lumpectomy
(n = 50,704)

Overall
(n = 65,997)

Demographics
    Age at diagnosis 76.1 (6.85) 75.3 (6.55) 75.5 (6.63)
    Race (Non-Hispanic White) 12474 (81.6%) 43038 (84.9%) 55512 (84.1%)
    Marital Status (married) 6715 (43.9%) 25048 (49.4%) 31763 (48.1%)
    Year of diagnosis
        2007 1571 (10.3%) 4586 (9.0%) 6157 (9.3%)
        2008 1540 (10.1%) 4535 (8.9%) 6075 (9.2%)
        2009 1493 (9.8%) 4504 (8.9%) 5997 (9.1%)
        2010 1456 (9.5%) 4468 (8.8%) 5924 (9.0%)
        2011 1472 (9.6%) 4575 (9.0%) 6047 (9.2%)
        2012 1512 (9.9%) 4508 (8.9%) 6020 (9.1%)
        2013 1475 (9.6%) 4493 (8.9%) 5968 (9.0%)
        2014 1373 (9.0%) 4561 (9.0%) 5934 (9.0%)
        2015 1244 (8.1%) 4721 (9.3%) 5965 (9.0%)
        2016 1126 (7.4%) 4902 (9.7%) 6028 (9.1%)
        2017 1031 (6.7%) 4851 (9.6%) 5882 (8.9%)
Tumor characteristics
    Morphology
        Intraductal 12194 (79.7%) 42100 (83.0%) 54294 (82.3%)
        Lobular 2046 (13.4%) 5498 (10.8%) 7544 (11.4%)
        Intraductal and Lobular 1053 (6.9%) 3106 (6.1%) 4159 (6.3%)
    Tumor size (mm) 20.6 (11.1) 14.6 (8.74) 16.0 (9.68)
    Stage (II vs ref: I) 8235 (53.8%) 14236 (28.1%) 22471 (34.0%)
    Primary site
        Nipple 74 (0.5%) 186 (0.4%) 260 (0.4%)
        Central 1193 (7.8%) 2168 (4.3%) 3361 (5.1%)
        UIQ 1682 (11.0%) 6942 (13.7%) 8624 (13.1%)
        LIQ 878 (5.7%) 3203 (6.3%) 4081 (6.2%)
        UOQ 4671 (30.5%) 18704 (36.9%) 23375 (35.4%)
        LOQ 1133 (7.4%) 3717 (7.3%) 4850 (7.3%)
        Axillary tail 38 (0.2%) 207 (0.4%) 245 (0.4%)
        Overlapping lesion 3417 (22.3%) 11850 (23.4%) 15267 (23.1%)
        Breast, NOS 2207 (14.4%) 3727 (7.4%) 5934 (9.0%)
    Laterality
        Right: origin of primary 7454 (48.7%) 25053 (49.4%) 32507 (49.3%)
        Left: origin of primary >7828 (>51.2%) >25640 (>50.6%) >33479 (>50.7%)
        Other or unspecified <11 <11 <11
    Grade
        I 3266 (21.4%) 14862 (29.3%) 18128 (27.5%)
        II 7281 (47.6%) 24097 (47.5%) 31378 (47.5%)
        III 4366 (28.5%) 10376 (20.5%) 14742 (22.3%)



Wang et al: Compare lumpectomy and mastectomy by a big data analysis334

making a choice between lumpectomy and mastectomy. 
All the absolute SMDs significantly reduced to be below 
0.1 and even nearly 0 with the weighting, with which the 
two arms could be considered as balanced. For compar-
ison, we also considered the standard logistic regression 
approach. The Chi-squared test for deviance returned a 
p-value < 0.001, which suggested unsatisfactory model 
fitting and hence justified the adoption of DNN.

In the survival analysis step, we also examined the 
parameter paths to assess the relative importance of input 
variables. As shown in Figure 4b, overall survival was 
found to be highly related to Elixhauser comorbidities and 
age, which remained in the model even with larger tun-

penalty level decreases, all variables can be included into 
the propensity score model. For example, race and HR 
status positive also have relatively larger group norms, 
which suggests that those variables are important factors 
and may be associated with the decision-making between 
lumpectomy and mastectomy. Figure 5a and b show 
the distributions of the estimated propensity scores and 
weights. The two treatment groups have visibly different 
propensities towards surgical options. As shown in Fig-
ure 5c, prior to the weighting, some of the absolute stan-
dardized mean difference (SMD) values were above the 
0.1 threshold, especially for tumor size and stage. Both 
variables are important factors to be considered when 

        IV 43 (0.3%) 103 (0.2%) 146 (0.2%)
        Unknown 337 (2.2%) 1266 (2.5%) 1603 (2.4%)
    HR status
        Positive or borderline 12742 (83.3%) 44922 (88.6%) 57664 (87.4%)
        Negative 2111 (13.8%) 4856 (9.6%) 6967 (10.6%)
        Unknown 440 (2.9%) 926 (1.8%) 1366 (2.1%)
Elixhauser Comorbidities 
    Comorbidity index 9.62 (8.28) 7.47 (6.79) 7.97 (7.22)

*For a categorical variable, count (percent). For a continuous variable, mean (standard deviation).

Figure 3. Unadjusted survival analysis.
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and without addressing potential confounding. This as-
sessment mimics real-world observations where there are 
always some inherent differences between those receiving 
different surgical procedures. This may also explain why 
some observational studies concluded that lumpectomy 
was associated with improved survival [29-32]. Overall, 
we concluded that lumpectomy and mastectomy had 
similar effects on overall survival. For all subjects in the 
studied cohort, the average estimated increase in overall 
survival is 0.05 years if a patient received lumpectomy in 
comparison to mastectomy. With the weighted bootstrap 
inference, the average mean survival year change (across 
bootstraps) was found to be 0.08, with a standard devia-
tion of 0.08 and 95% CI [-0.08, 0.25].

In the sensitivity analysis with respect to HER2, a 
similar conclusion was made. In particular, the average 
estimated increase in overall survival is 0.094 years if a 
received lumpectomy in comparison to mastectomy. With 

ing parameter values (and hence higher penalty). Subse-
quently, tumor size and tumor grade III or IV were found 
to contribute to survival. Based on the obtained DNN, 
the predicted subject-level survival would, on average, 
slightly increase, if a patient would have switched from 
lumpectomy to mastectomy. The result is summarized 
in Figure 6a. With the predicted survival time for each 
patient (without censoring), the Kaplan-Meier survival 
curves were constructed and shown in Figure 6b and c. In 
Figure 6b, the treatment assignment was created to be ran-
dom. The survival curves of the predicted survival times 
for the two arms almost completely overlap (p-value = 
0.2 by logrank test). In this assessment, the two surgical 
groups are balanced for treatment assignments, mimick-
ing the randomization process in a well-executed RCT. In 
comparison, in Figure 6c, a beneficial effect of lumpecto-
my (p-value < 0.001 by logrank test) was observed, if the 
treatment assignment was based on what was observed 

Figure 4. Parameter paths for the propensity score analysis (upper) and survival analysis (lower).
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Figure 5. Distributions of estimated (a) propensity score and (b) inverse probability treatment weights; and 
(c) absolute standard mean difference of all confounders before and after weighting.

Figure 6. Analysis of predicted survival: (a) predicted subject-level improvement in survival if a patient would 
switch treatment; (b) survival probabilities based on the predicted survival times if the treatment assignment 
was random; and (c) survival probabilities with patients under the original observed treatments.
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proposed analysis, similar to other DNNs, can have better 
estimation/prediction performance and more flexibly ac-
commodate unspecified nonlinear relationships. It can be 
especially useful when the logistic, Cox, and other model 
assumptions are not satisfied, as in this data analysis. 
Here, it is noted that some recent studies have pointed 
out that DNNs may not be entirely model-free [45,46]. 
Our literature review suggested that there is still a lack of 
model diagnostics tools for DNNs – it will be of interest 
to diagnose the proposed DNNs when such tools become 
available. On the other hand, the proposed analysis has 
inherited the lucid framework of emulation analysis, with 
the clear propensity score and survival analysis steps. 
Additionally, it has incorporated penalized estimation, 
examination of parameter paths, and bootstrap-based 
inference, which are routine in regression analysis but 
still have not been well developed in deep learning. It 
is noted that deep learning is not “free.” Different from 
regression analysis, there is a lack of simple models. The 
resulting DNNs are available from the authors, however, 
do not have easily interpretable forms. Additionally, they 
do not deliver simple statistics such as hazard ratio. The 
proposed assessment based on the predicted survival time 
can largely alleviate this problem.

In data analysis, our main finding is that lumpecto-
my and mastectomy have comparable long-term overall 
survival for early-stage elderly female breast cancer pa-
tients. It is noted that the studied population differs from 
many of the existing studies. The conclusion is consistent 
with most of the existing RCTs and can complement the 
existing literature. For example, the National Surgical 
Adjuvant Breast and Bowel Project (NSABP) B-04 study 
[25] and the study at the National Cancer Institute in Mi-
lan [47] both suggested no difference in 20-year overall 
survival after the two surgical procedures. More recent 
observational studies, interestingly, reached different 
conclusions. For example, Agarwal et al. [29], Hwang et 
al. [30], and Wrubel et al. [32] concluded that lumpecto-
my was superior in terms of breast cancer-specific and 
overall survival compared to mastectomy. The differ-
ence in findings can be at least partly attributed to the 
differences in study populations (for example, different 
age groups and years of diagnosis). Mogal et al. [31] spe-
cially analyzed elderly patients and also concluded that 
lumpectomy was significantly superior in terms of overall 
survival. It is noted that all of the above studies adopted 
regression-based association analysis techniques. Most 
of them did not report any model diagnostics, and there 
could be a risk of model misspecification. Additionally, 
some adopted the Kaplan-Meier technique without ad-
dressing possible confounding bias.

Limitations of the proposed analysis are fully rec-
ognized. SEER-Medicare and other EMR and insurance 
claims databases may not have comprehensive and accu-

the weighted bootstrap inference, the average mean sur-
vival year change was found to be 0.14, with a standard 
deviation of 0.08 and 95% CI [-0.02, 0.29]. In the sensi-
tivity analysis with respect to radiotherapy, it was con-
cluded that lumpectomy with radiotherapy was superior. 
The average estimated increase in overall survival is 0.30 
years if a patient received lumpectomy in comparison 
to mastectomy. With the weighted bootstrap inference, 
the average mean survival year change was found to be 
0.29, with a standard deviation of 0.09 and 95% CI [0.13, 
0.49]. It is noted that the definition of time zero changed 
and that the results could be subject to immortal time 
bias (which may result in a misleading conclusion on the 
beneficial treatment effect of lumpectomy with radiation 
therapy). As such, this conclusion should be taken with 
caution. With the standard Cox regression analysis, it 
was found that lumpectomy was slightly superior, and the 
hazard ratio was 0.96, with 95% CI [0.92, 0.99]. As the 
Cox model failed model diagnostics, the conflict with the 
deep learning-based analysis is not surprising. Addition-
ally, it is noted that the estimated treatment under the Cox 
model is in fact very small.

DISCUSSION

This article has provided another showcase of mining 
large observational data, extracting valuable information, 
complementing RCTs, and informing clinical practice. In 
our data analysis, the sample size is dramatically larg-
er than regular RCTs, making the analysis much more 
powerful. It is usually not easy to significantly increase 
sample sizes in RCTs. However, with the accumulation of 
data, the sample size of this study and other observational 
data analyses can easily keep increasing. The analyzed 
real-world data can be closer to real clinical practice than 
RCTs. With a much broader coverage and more diverse 
population, the findings can be more generalizable than 
RCTs. As acknowledged in the literature [34,44], emu-
lation and other big data analysis of observational data 
can be the most useful for assessing the effectiveness of 
existing treatments (that have not been directly compared 
in RCTs) and updating comparisons (that have been 
done years ago on patients with different characteristics). 
It is noted that the proposed analysis can also be done 
with local data, for example, generated by the Yale New 
Haven Healthcare System, to better reflect local clinical 
practice and patient characteristics. With the promising 
performance of deep learning on other biomedical prob-
lems (for example, imaging and omics data analysis), it is 
a natural step to develop deep learning-based emulation 
analysis. The proposed analysis pipeline has combined 
the strengths of both statistical analysis and “regular” 
DNNs. Specifically, key building blocks of the “stan-
dard” DNN architecture have been retained. As such, the 
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Appendix A 
 

Table S1. Comparison of the target trial and the emulated trial. 

Component  Target trial Emulated trial 

Aim To test the comparative effectiveness of 
Mastectomy and Lumpectomy for overall 
survival in early-stage breast cancer patients of 
age 66 and older 

Same 

Inclusion 
Criteria 

Subjects are female aged 66 or older and meet the 
following criteria: a) were diagnosed with the 
first primary invasive intraductal or/and lobular 
breast cancer, b) were stage I or II at the time of 
diagnosis, c) tumor size ≤ 5cm at diagnosis. 
Subjects were able and willing to provide 
informed consent. 

Other than informed consent, the eligibility in 
the target trial should all be met. Subjects also 
a) had continuous enrollment in Medicare Part 
A and Part B, with no health maintenance 
organization (HMO) enrollment from one year 
before to one year after cancer diagnosis or 
death, whichever occurred first, and b) 
received lumpectomy or mastectomy within 
120 days after diagnosis.  

Exclusion 
Criteria 

1) Enrolment in a conflicting clinical trial, 2) Any 
disease other than breast cancer associated with a 
likelihood of survival of less than one year, and 
3) unlikeness to complete the trial and follow-up 
activities. 

1) missing key confounder information: age, 
gender, cancer stage, and tumor size at the time 
of diagnosis. 2) missing essential records for 
medical history and treatment initiation, for 
example, did not have continuous enrollment 
in Medicare before and after one year of 
diagnosis or death. 

Treatment 
 

Individuals were randomly assigned to a strategy 
in an unblinded fashion. Either received 
Mastectomy or Lumpectomy. 

Same. In the emulated trial, set the treatment 
assignment window as one year after 
diagnosis.  

Follow-up Time of randomization to treatment was 
considered as the starting point of the follow-up. 

Time of randomization was not directly 
observable. Time of surgery was used as time 
zero for both groups. 

Outcome All-cause mortality Same 

Causal 
Contrast 

Intention-to-treat effect, i.e., effect of being 
assigned to Mastectomy versus Lumpectomy at 
baseline. 

Same 

Statistical 
Analysis 

Logrank test and Cox regression as the primary 
analysis techniques. Possible confounders (e.g., 
study site and co-morbidity score) would be 
adjusted. 

A deep learning technique based on the AFT 
model. Propensity score-type weighting used 
to improve covariance balance. Variance 
estimation/inference obtained via the weighted 
bootstrap technique. 
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Table S2. International Classification of Diseases, Ninth Revision, Clinical Modification 

(ICD-9-CM), ICD-10-CM, and Healthcare Common Procedure Coding System 

(HCPCS)/Current Procedural Terminology (CPT) codes for identifying treatments. 

Procedure ICD-9 ICD-10 CPT/HCPCS 
Mastectomy 
*,** 

Procedure:  
85.33–85.36, 
85.4, 85.41-
85.48,  
 

Procedure: 0HRT075-0HRT079, 0HRT07Z, 
0HRT0JZ, 0HRT0KZ, 0HRT37Z, 0HRT3JZ, 
0HRT3KZ, 0HRU075-0HRU079, 0HRU07Z, 
0HRU0JZ, 0HRU0KZ, 0HRU37Z, 0HRU3JZ, 
0HRU3KZ, 0HRV075-0HRV079, 0HRV07Z, 
0HRV0JZ, 0HRV0KZ, 0HRV37Z, 0HRV3JZ, 
0HRV3KZ, 0HTT0ZZ, 0HTU0ZZ, 0HTV0ZZ 

19300, 19303–
19307 
 

Lumpectomy 
*,** 

Procedure: 
85.20–85.23  

Procedure: 0HBT0ZZ, 0HBT3ZZ, 0HBT7ZZ, 
0HBT8ZZ, 0HBU0ZZ, 0HBU3ZZ, 0HBU7ZZ, 
0HBU8ZZ, 0HBV0ZZ, 0HBV3ZZ, 0HBV7ZZ, 
0HBV8ZZ 

19301, 19302, 
19120, 19125, 
19126 

Radiation 
therapy 

Diagnosis: 
V580, V661, 
V671 
Procedure: 
9221-9229 

Diagnosis: Z510 
Procedure: See DM-Radiation, DM0-Beam 
Radiation*** 

77401-77499, 
77750-77799, 
77520, 77523, 
G0256, G0261 

* Only included cases that had surgery performed in less than 120 days after the initial date of diagnosis 
(with the consideration that these cases might have been treated with neoadjuvant chemotherapy). 
** Patients were categorized as having lumpectomy if they had lumpectomy as the first surgical procedure 
after breast cancer diagnosis. Patients were categorized as having mastectomy if they had mastectomy as 
the first surgical procedure after diagnosis. If lumpectomy was performed first followed by mastectomy 
conducted within a one-year window after diagnosis, the patient would be censored at the time of 
mastectomy. If mastectomy was performed first, further lumpectomy was ignored. If receiving both 
mastectomy and lumpectomy on the same day, a patient was classified as receiving mastectomy. 
*** Analysis was focused on radiotherapy conducted on breast only. Codes include: DM000ZZ, DM001ZZ, 
DM002ZZ ,DM003Z0, DM003ZZ, DM004ZZ, DM005ZZ, DM006ZZ, DM010ZZ, DM011ZZ, DM012ZZ, 
DM013Z0, DM013ZZ, DM014ZZ, DM015ZZ, DM016ZZ, DM1097Z, DM1098Z, DM1099Z, DM109BZ, 
DM109CZ, DM109YZ, DM10B6Z, DM10B7Z, DM10B8Z, DM10B9Z, DM10BB1, DM10BBZ, 
DM10BCZ, DM10BYZ, DM1197Z, DM1198Z, DM1199Z, DM119BZ, DM119CZ, DM119YZ, 
DM11B6Z, DM11B7Z, DM11B8Z, DM11B9Z, DM11BB1, DM11BBZ, DM11BCZ, DM11BYZ, 
DM20DZZ, DM20HZZ, DM20JZZ, DM21DZZ, DM21HZZ, DM21JZZ, DMY07ZZ, DMY08ZZ, 
DMY0FZZ, DMY17ZZ, DMY18ZZ, DMY1FZZ. 
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Section S1: Sensitivity analysis with respect to HER2 status 

In the main analysis, HER2 status was not included, with the consideration that its information 

was missing for patients diagnosed before 2010. To examine the potential confounding effect of 

HER2 status, we further limited the cohort for analysis to those diagnosed on or after 2010 and 

included HER2 as a confounder. The patient characteristics are summarized in Table S3. 

 

Table S3. Patients’ characteristics by treatment for those diagnosed on or after 2010. 

 Mastectomy 
(n = 10,689) 

Lumpectomy 
(n = 37,079) 

Overall 
(n = 47,768) 

Demographics    
    Age at diagnosis 75.9 (6.82) 75.2 (6.49) 75.3 (6.57) 
    Race (Non-Hispanic White) 8632 (80.8%) 31282 (84.4%) 39914 (83.6%) 
    Marital Status (married) 4787 (44.8%) 18636 (50.3%) 23423 (49.0%) 
    Year of diagnosis    
        2010 1456 (13.6%) 4468 (12.1%) 5924 (12.4%) 
        2011 1472 (13.8%) 4575 (12.3%) 6047 (12.7%) 
        2012 1512 (14.1%) 4508 (12.2%) 6020 (12.6%) 
        2013 1475 (13.8%) 4493 (12.1%) 5968 (12.5%) 
        2014 1373 (12.8%) 4561 (12.3%) 5934 (12.4%) 
        2015 1244 (11.6%) 4721 (12.7%) 5965 (12.5%) 
        2016 1126 (10.5%) 4902 (13.2%) 6028 (12.6%) 
        2017 1031 (9.6%) 4851 (13.1%) 5882 (12.3%) 
Tumor characteristics    
    Morphology    
        Intraductal 8434 (78.9%) 30778 (83.0%) 39212 (82.1%) 
        Lobular 1503 (14.1%) 4089 (11.0%) 5592 (11.7%) 
        Intraductal and Lobular 752 (7.0%) 2212 (6.0%) 2964 (6.2%) 
    Tumor size (mm) 20.6 (11.1) 14.6 (8.73) 15.9 (9.64) 
    Stage (II vs ref: I) 5749 (53.8%) 10177 (27.4%) 15926 (33.3%) 
    Primary site    
        Nipple 53 (0.5%) 123 (0.3%) 176 (0.4%) 
        Central 812 (7.6%) 1509 (4.1%) 2321 (4.9%) 
        UIQ 1210 (11.3%) 5239 (14.1%) 6449 (13.5%) 
        LIQ 608 (5.7%) 2365 (6.4%) 2973 (6.2%) 
        UOQ 3300 (30.9%) 13707 (37.0%) 17007 (35.6%) 
        LOQ 797 (7.5%) 2784 (7.5%) 3581 (7.5%) 
        Axillary tail 25 (0.2%) 130 (0.4%) 155 (0.3%) 
        Overlapping lesion 2400 (22.5%) 8775 (23.7%) 11175 (23.4%) 
        Breast, NOS 1484 (13.9%) 2447 (6.6%) 3931 (8.2%) 
    Laterality    
        Right: origin of primary 5223 (48.9%) 18280 (49.3%) 23503 (49.2%) 
        Left: origin of primary >5455 (>51.0%) >18788 (>50.7%) >24254 (>50.8%) 
        Other or unspecified <11 <11 <11 
    Grade    
        I 2291 (21.4%) 11120 (30.0%) 13411 (28.1%) 
        II 5226 (48.9%) 17693 (47.7%) 22919 (48.0%) 
        III 2945 (27.6%) 7384 (19.9%) 10329 (21.6%) 
        IV 17 (0.2%) 46 (0.1%) 63 (0.1%) 
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        Unknown 210 (2.0%) 836 (2.3%) 1046 (2.2%) 
    HR status    
        Positive or borderline 9134 (85.5%) 33312 (89.8%) 42446 (88.9%) 
        Negative 1366 (12.8%) 3317 (8.9%) 4683 (9.8%) 
        Unknown 189 (1.8%) 450 (1.2%) 639 (1.3%) 
    HER2 status    
        Positive or borderline 1552 (14.5%) 3627 (9.8%) 5179 (10.8%) 
        Negative 8800 (82.3%) 32537 (87.8%) 41337 (86.5%) 
        Unknown 337 (3.2%) 915 (2.5%) 1252 (2.6%) 
Elixhauser Comorbidities     
    Comorbidity index 9.48 (8.31) 7.36 (6.79) 7.83 (7.21) 

* For a categorical variable, count (percent). For a continuous variable, mean (standard deviation). 
 
 
In this analysis, it was concluded that lumpectomy and mastectomy had similar effects on overall 

survival. For all subjects in the studied cohort, the average estimated increase in overall survival 

was 0.094 years, if a patient received lumpectomy in comparison to mastectomy. With the 

weighted bootstrap inference, the average mean survival year change was found to be 0.14, with a 

standard deviation of 0.08 and 95% CI [-0.02, 0.29]. 

 

Section S2: Sensitivity analysis with respect to radiotherapy 

In the studied cohort, most of the patients who received lumpectomy had following adjuvant 

radiation therapy performed. However, this was not the case for the patients with mastectomy. The 

observed patterns of receiving radiotherapy are summarized in Table S4. As radiotherapy can have 

a strong association with overall survival, we redefined the treatments of the target trial as 

Mastectomy without radiotherapy and Lumpectomy with radiotherapy. The patient characteristics 

are summarized in Table S5. 

 

Table S4. Patterns of receiving radiotherapy. 

Pattern Lumpectomy  
(n = 50,704) 

Mastectomy  
(n = 15,293) 

Overall 
(n = 65,997) 

Radiotherapy performed before 
the first surgery  

698 (1.4%) 77 (0.5%) 775 (1.17%) 

Radiotherapy performed on the 
same day of the first surgery 

775 (1.5%) 18 (0.1%) 793 (1.2%) 

Radiation therapy performed 
after the first surgery but before 
death or censoring 

36,699 (72.4%) 2,266 (14.8%) 38,965 (59.0%) 
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Table S5. Patients’ characteristics by treatment. 

 Mastectomy w/o 
radiotherapy 
(n = 13,027) 

Lumpectomy w/ 
radiotherapy 
(n = 36,699) 

Overall 
(n = 49,726) 

Demographics    
    Age at diagnosis 76.4 (6.93) 74.1 (5.74) 74.7 (6.16) 
    Race (Non-Hispanic White) 10636 (81.6%) 31201 (85.0%)  41837 (84.1%) 
    Marital Status (married) 5639 (43.3%) 19495 (53.1%) 25134 (50.5%) 
    Year of diagnosis    
        2007 1371 (10.5%) 3268 (8.9%) 4639 (9.3%) 
        2008 1325 (10.2%) 3264 (8.9%) 4589 (9.2%) 
        2009 1287 (9.9%) 3304 (9.0%) 4591 (9.2%) 
        2010 1247 (9.6%) 3242 (8.8%) 4489 (9.0%) 
        2011 1265 (9.7%) 3381 (9.2%) 4646 (9.3%) 
        2012 1298 (10.0%) 3239 (8.8%) 4537 (9.1%) 
        2013 1251 (9.6%) 3317 (9.0%) 4568 (9.2%) 
        2014 1154 (8.9%) 3337 (9.1%) 4491 (9.0%) 
        2015 1034 (7.9%) 3421 (9.3%) 4455 (9.0%) 
        2016 947 (7.3%) 3505 (9.6%) 4452 (9.0%) 
        2017 848 (6.5%) 3421 (9.3%) 4269 (8.6%) 
Tumor characteristics    
    Morphology    
        Intraductal 10464 (80.3%) 30531 (83.2%) 40995 (82.4%) 
        Lobular 1683 (12.9%) 3919 (10.7%) 5602 (11.3%) 
        Intraductal and Lobular 880 (6.8%) 2249 (6.1%) 3129 (6.3%) 
    Tumor size (mm) 20.0 (10.8) 14.4 (8.35) 15.9 (9.37) 
    Stage (II vs ref: I) 6546 (50.2%) 10228 (27.9%) 16774 (33.7%) 
    Primary site    
        Nipple 62 (0.5%) 108 (0.3%) 170 (0.3%) 
        Central 1020 (7.8%) 1438 (3.9%) 2458 (4.9%) 
        UIQ 1458 (11.2%) 5115 (13.9%) 6573 (13.2%) 
        LIQ 750 (5.8%) 2380 (6.5%) 3130 (6.3%) 
        UOQ 3974 (30.5%) 13954 (38.0%) 17928 (36.1%) 
        LOQ 954 (7.3%) 2756 (7.5%) 3710 (7.5%) 
        Axillary tail 31 (0.2%) 152 (0.4%) 183 (0.4%) 
        Overlapping lesion 2892 (22.2%) 8550 (23.3%) 11442 (23.0%) 
        Breast, NOS 1886 (14.5%) 2246 (6.1%) 4132 (8.3%) 
    Laterality    
        Right: origin of primary 6301 (48.4%)  18236 (49.7%) 24537 (49.3%) 
        Left: origin of primary >6715 (>51.5%) >18452 (>50.3%) >25178 (>50.6%) 
        Other or unspecified <11 <11 <11 
    Grade    
        I 2897 (22.2%) 10484 (28.6%) 13381 (26.9%) 
        II 6169 (47.4%) 17553 (47.8%)  23722 (47.7%) 
        III 3648 (28.0%) 7776 (21.2%) 11424 (23.0%) 
        IV 34 (0.3%) 70 (0.2%) 104 (0.2%) 
        Unknown 279 (2.1%) 816 (2.2%) 1095 (2.2%) 
    HR status    
        Positive or borderline 32483 (88.5%) 10840 (83.2%)  5474 (11.0%) 
        Negative 3695 (10.1%) 1779 (13.7%) 43323 (87.1%) 
        Unknown 521 (1.4%) 408 (3.1%)  929 (1.9%) 
Elixhauser Comorbidities     
    Comorbidity index 9.21 (8.09) 7.03 (6.33) 7.60 (6.90) 
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* For a categorical variable, count (percent). For a continuous variable, mean (standard deviation). 
 
 

It was concluded that lumpectomy with adjuvant radiation therapy outperformed mastectomy 

without adjuvant radiation therapy for overall survival. For all the subjects in the studied cohort, 

the average estimated increase in overall survival was 0.30 years if a patient received lumpectomy 

in comparison to mastectomy. With the weighted bootstrap inference, the average mean survival 

year change was found to be 0.29, with a standard deviation of 0.09 and 95% CI [0.13, 0.49]. One 

limitation of this sensitivity analysis is the potential vulnerability to the immortal time bias. 

Specifically, immortal time bias may arise because those who first received mastectomy might not 

receive subsequent radiotherapy due to worse health conditions and shorter survival after 

mastectomy, and because those who first received lumpectomy had to survive long enough to have 

the choice of receiving subsequent radiotherapy. The immortal time bias may distort the estimation 

of the treatment effects and lead to the misleading conclusion that lumpectomy with radiation 

therapy leads to longer survival.  

 
 
 
 


