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The  task  of the  vasopressin  system  is homeostasis,  a type of  process  which  is  fundamental  to the  brain’s
regulation  of  the  body,  exists  in many  different  systems,  and  is  vital  to health  and  survival.  Many  ill-
nesses  are related  to the  dysfunction  of  homeostatic  systems,  including  high  blood  pressure,  obesity  and
diabetes.  Beyond  the  vasopressin  system’s  own  importance,  in  regulating  osmotic  pressure,  it presents
an  accessible  model  where  we can  learn  how  the  features  of homeostatic  systems  generally  relate to

their  function,  and  potentially  develop  treatments.  The  vasopressin  system  is an  important  model  sys-
tem  in  neuroscience  because  it presents  an  accessible  system  in  which  to  investigate  the function  and
importance  of,  for example,  dendritic  release  and burst  firing,  both  of  which  are  found  in many  systems
of  the  brain.  We  have only  recently  begun  to understand  the contribution  of  dendritic  release  to neu-
ronal  function  and  information  processing.  Burst  firing  has  most  commonly  been  associated  with  rhythm
generation;  in  this  system  it clearly  plays  a different  role, still  to be  understood  fully.
. Introduction

We  now recognise that rather than just simple integrators and
elays of activity, most neurons have complex pattern generating
roperties. An important question in contemporary neuroscience

s how these properties contribute to information processing
Ramirez et al., 2004; Buzsáki and Draguhn, 2004). In particular,

any neurons generate “bursting” patterns of electrical activ-
ty, arising either through intrinsic mechanisms, or via network
nteractions. Some of these contribute to generating physiolog-
cal rhythms (such as the respiratory rhythm, Del Negro et al.,
002), where neurons synchronise across a network to generate
n emergent rhythm. In others, single synchronised bursts are
ssential to the physiological output, such as oxytocin cells driv-
ng the periodic milk let-down during suckling (Rossoni et al.,
008). However, some neurons, like the vasopressin cells of the
ypothalamus, generate bursting activity individually (Fig. 1), and
re asynchronously (Leng et al., 2008), such that the bursting is
ot reflected in the population output – so what is this bursting
ehaviour for? We  know in vasopressin neurons that bursts are

fficient for stimulus-secretion coupling, optimising secretion per
pike, but it is not clear why this is important – many neurons
re spontaneously at much higher rates than vasopressin cells.
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Moreover, bursting in these cells is efficient for triggering secre-
tion only because of particular properties of their axon terminals,
indicating that these secretion properties have co-evolved with
the bursting behaviour; suggesting that bursting is important for
other reasons. Because bursting is such a widespread feature in
the CNS, arising in many different ways, we  believe it is important
to understand exactly what advantages it offers for information
processing.

Vasopressin and its control of osmotic pressure is a relatively
simple and very well studied system. It presents an unusually
strong opportunity to be able to relate information processing
properties of cells to their physiological function as part of a sys-
tem. We are currently attempting to apply a modelling and complex
systems approach, in order to test specific hypothesis about the
adaptive value of its particular features (heterogeneity, bistability,
autocrine and paracrine communication mechanisms). We  will test
these features ultimately by expressing the physiological function
of the system in terms of a defined control task, integrating neu-
ronal modelling into a physiological systems model. The project is
defined in three parts:

1.  Build a single neuron model, including spike firing, vasopressin
secretion and intercellular communication mechanisms.

2. Duplicate the model to build a network. Evaluate input/output

Open access under CC BY license.
characteristics and study the effects of varied assumptions about
communication.

3. Build a closed-loop system model and use this to test var-
ied  network models, comparing their performance in matching
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ig. 1. Vasopressin cells project to the posterior pituitary. In response to osmotic i
ith a relatively simple single cell model.

experimental data, and systematically evaluate network perfor-
mance,  robustness and efficiency.

he first details of these components are presented elsewhere
Clayton et al., 2010). What we seek to develop here is the rationale
nd strategy behind the work. Though these parts require initially
o be developed in sequence, they will continue to be refined in par-
llel, better informed by their role and behaviour as part of a system.
his is an extended version of a paper previously presented at the
th International Conference on Information Processing in Cells and
issues (MacGregor et al., 2012).

. Background: homeostatic role of vasopressin

Vasopressin is made by neurons of the supraoptic and para-
entricular nuclei of the hypothalamus, and is secreted into the
lood from axonal terminals at the posterior pituitary. This is a
ery important “model system” in neuroscience for many reasons,
ncluding the large size and accessibility of the neurons, and the
act that, because these neurons secrete their products at measur-
ble amounts into the systemic circulation, their electrical activity
an be directly related to secretion and physiological function.
hese cells use cell volume modulated stretch-sensitive channels to
espond to osmotic pressure, and also receive synaptic input from
ther osmosensitive neurons (Bourque, 2008).

Vasopressin cells display relatively long bursts and silences.
hey are bistable oscillators; small perturbations can “flip” a neu-
on from either state (burst or silence) to the other, because their
ntrinsic activity-dependent conductances can either stop or start

 burst. An asynchronously firing population of vasopressin cells
as a lot of potential for interesting signal processing properties.
hey may  act as a low-pass filter – preserving low frequency sig-
als while filtering out stochastic noise in their inputs (Sabatier and
eng, 2007). While individual neurons respond erratically to acute
hanges, the asynchronicity means that these erratic responses
re smoothed out. The vasopressin cells are also a heterogeneous
opulation; variation in expression of membrane channels, recep-
ors, and synaptic input, produce differing sensitivities to osmotic
ressure and a wide spectrum of bursting behaviour. This hetero-
eneity has been preserved through evolution, suggesting either
hat it is an inescapable limitation, or, more interestingly, that
he heterogeneity is adaptive and has some functional purpose.
here are some clear functional consequences of heterogeneity

 a population that is heterogeneous in osmotic responsiveness
ill have a wider dynamic range than a homogeneous population.
ut there are also costs; for example, a homogeneous population

as a high intrinsic redundancy, so it is robust to degradation. A
eterogeneous population will generally be less robust – unless
he heterogeneity is not hard-wired, but arises from network self
rganisation. The most obvious way that heterogeneity could be
ells fire in a distinct phasic bursting pattern. We can closely match this behaviour

self-organised would be if individual neurons cycle through phases
of varying osmotic responsiveness – as we have suggested that they
might (Leng et al., 2008). The population of vasopressin neurons
acts together as a complex system, with multiple feedbacks act-
ing at different levels, including autocrine signals and paracrine
signalling between cells. These properties co-ordinate the vaso-
pressin cells, presumably to optimise emergent features of system
behaviour.

The vasopressin-osmotic system is part of a larger homeostatic
system that regulates plasma volume and electrolyte concentra-
tion via many mechanisms (including thirst and natriuresis; see Bie,
2009). Vasopressin secretion (Fig. 2) increases linearly with osmo-
larity above a set point (Dunn et al., 1973), and this is essential
for regulation of plasma volume and osmolarity. Plasma osmolar-
ity is normally regulated to within a few percent, so vasopressin
cells, as a population, must respond reliably to a change in extra-
cellular [Na+] of just ∼1 mM – tiny compared to the fluctuations
expected as the result of stochastic variations in neuronal activity.
A sustained increase in osmolarity requires a sustained vasopressin
response, so the vasopressin cell population must maintain their
response to an unvarying input signal. Most neurons are good at
responding to change, but to do this they adapt to a constant sig-
nal; vasopressin cells as a population must not adapt to sustained
osmotic stimulation.

At  normal osmotic pressures, the cells fire slowly; each secretes
just 1–2 vesicles/s, but this is enough to maintain normal cir-
culating concentration of ∼1 pg/ml (see Leng and Ludwig, 2008
for details). As osmotic input increases, the cells enter a bistable
phasic firing mode (Sabatier and Leng, 2007), consisting of alter-
nating bursts and silences. Each burst typically lasts for 20–60 s
at 4–10 spikes/s. Secretion is facilitated by high frequency spiking,
but fatigues within about 20 s; this fatigue is reversed after 20–30 s
of quiescence; thus a phasic firing pattern optimises secretion per
spike (Bicknell, 1988). A burst of ∼400 spikes in one vasopressin
cell releases about one vesicle from each of its ∼2000 nerve end-
ings. However, with chronic stimulation, the stores of vasopressin
are progressively depleted; if rats are given 2% NaCl to drink, then
stores decline to ∼15% of control values over 12 days, despite a mas-
sive increase in synthesis (Kondo et al., 2004). This decline reflects
the delay between increasing the rate of synthesis and replenish-
ment of the stores. At any particular time, hormone secretion in
response to a given stimulus is proportional to the size of the store
(Higuchi et al., 1991); thus, during progressive dehydration, spike
activity becomes less and less effective at secreting vasopressin.

The  larger homeostatic system, of which the vasopressin system
is part, must regulate plasma osmolarity and volume within strict

tolerance. Both hyper- and hyponatraemia are life-threatening out-
side critical limits. We  propose that the utility of this system should
be judged not by how accurately it maintains normal osmolar-
ity, but by how well it can prolong survival – i.e., when subject
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Fig. 2. Vasopressin is synthesised in the cell body and transported to the release sites through a sequence of pools, with transport and release activity driven by spike
triggered Ca2+ entry, and also possibly internal stores. The lower panels show in vitro data from Bicknell (1988). Stimulus-secretion coupling is non-linearly dependent on
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work interactions. The network must also compensate for chronic
depletion of pituitary stores and be resistant to random degradation
(loss of neurons as a result, for example, of aging). We  hypothesise
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Fig. 3. The ‘Forrester flywheel’ summarizes common problems in supply chains
(Towill,  1996). In business, stock levels incur space and wastage costs so must be
kept low; but if stocks run out, delays in restocking mean lost sales. In response to
fluctuations in demand (synaptic input) the business can alter manufacture (synthe-
sis) and moderate supply (secretion) by moderating price levels (stimulus-secretion
oth  spike rate (lower left) and burst duration (lower right). Per spike secretion is
ool. The secretion rate also declines during prolonged bursts as the reserve pool is

o chronic challenge, how long will it maintain osmolarity within
olerable bounds? This is a novel way of understanding the vaso-
ressin system; it expresses its physiological function in terms of a
efined control task, and in so doing it enables systematic, objective
tudy of its performance, and systematic assessment of the utility
f each of the various features of the vasopressin system.

This  task is not trivial, and is in fact analogous to a problem in
upply chain management that has considerable economic signifi-
ance (Fig. 3).

.  Network structure and regulation

Vasopressin cells are not synaptically interconnected, but com-
unicate via dendritic release of several substances (Fig. 4). This

equires Ca2+ dependent exocytosis of stored vesicles, and dur-
ng sustained osmotic stimulation this is triggered by spike activity
Ludwig et al., 2002). Vasopressin itself is a paracrine signal; it sur-
ives long enough to diffuse to neighbouring neurons and act as a
opulation feedback, exciting slow firing cells and inhibiting those
ore active (Gouzènes et al., 1998). Dynorphin is packaged in the

ame vesicles as vasopressin, but in smaller quantities and is broken
own more quickly; it is an autocrine regulator, causing a slow inhi-
ition that helps to terminate bursts (Brown and Bourque, 2006).
ndocannabinoids (Hirasawa et al., 2004; Di et al., 2005), apelin
Llorens-Cortes and Moos, 2008), galanin (Kozoriz et al., 2006),
denosine (Ruan and Brown, 2009) and nitric oxide (Stern and
hang, 2005), also modulate spike activity, some by presynapti-
ally inhibiting synaptic input. The mechanisms vary, and differ in
uration of effect and spatial dispersion.
We hypothesise that these signals coordinate the heterogeneous
ctivity of vasopressin cells to efficiently encode and respond to
smotic stimuli over a wide dynamic range, over prolonged periods.
eterogeneity in osmosensitivity will in itself extend the dynamic
al at ∼13 Hz, initially showing facilitation, before being limited by the releasable
ted.

range  of the system, but the most active neurons will be depleted
relatively rapidly. We  suspect therefore that the feedback inter-
actions may  ensure that cells, during chronic stimulation, cycle
through prolonged stages of activity and rest (as suggested in Leng
et al., 2008). Such cycling may  arise as an emergent property of net-
coupling).  Management needs to link manufacturing (synthesis) to sales (secretion);
to link stock (stores) levels to a given variability of demand (expected variability of
physiological challenge) for given delays in the system; and to ration supply by rais-
ing prices. The business must minimise the risks of losses associated with either
running  out of stock (hypernatraemia) or overstocking.
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hat the network interactions will provide robustness to the system
s a whole, enabling it to adapt to cell loss.

. The modelling approach

The  ‘first focus’ hypothesis for the modelling is that burst fir-
ng is an essential element of the neurons’ output response. We
elieve that bursting is essential for efficient signal encoding but
e do not yet understand why. The first part of addressing this is

o understand the mechanism.
Electrophysiological studies of vasopressin cells (Armstrong,

007; Bourque, 2008; Tasker et al., 2002) have led to
odgkin–Huxley type neuron models that closely match in vitro
ata (Komendantov et al., 2007; Roper et al., 2004). Our current
ingle cell model incorporates the basic mechanisms implemented

n these, but in a computationally simpler form – a modified leaky
ntegrate and fire model which (with minor variations in param-
ters) can be tightly fit to in vivo data from the whole spectrum
f recorded vasopressin cell activities, and which can therefore be

Slow afterhyperpolarisation (AHP)

Fast afterhyperpolarisation (HAP)

20 mV

5 ms

Afterdepolarisation (DAP)

20 mV

500 ms

6 spikes

ig. 5. Three major post spike potentials, the HAP, the AHP and the DAP shape the cell
hanges post-spike, with shape determined by these post spike potentials (Sabatier et al.
eriod. The DAP generates the following peak in excitability which gradually falls to a pla
lausible network topologies, making use of dendritic signals; a common population
08), and the two combined.

duplicated with variation to form a realistic heterogeneous neuron
population.

The simplest leaky integrate and fire model has a single vari-
able and differential equation representing membrane potential;
it assumes that excitability only varies with input activity, using
a fixed firing threshold, and resetting after each spike. To simu-
late (mostly calcium driven) post-spike afterpotential dependent
changes in excitability observed in vasopressin cells, our modified,
non-renewal version, similar to the spike response model of Gerst-
ner (Jolivet et al., 2004), adds three afterpotential variables (Fig. 5),
described by ordinary differential equations as decaying exponen-
tials, summed to generate a varied firing threshold. The transient,
hyperpolarising afterpotential (HAP) causes a post spike refrac-
tory period of ∼50 ms.  The smaller, slower, after-hyperpolarising
potential (AHP) summates to limit firing rate. As the HAP decays,
a subsequent depolarising afterpotential (DAP) confers a transient

hyperexcitability; this can accumulate across spikes, contributing
to the inception and maintenance of bursts. During bursts, the
autocrine action of dendritic dynorphin release slowly attenuates
the DAP, resulting in a shift in excitability which eventually ter-
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inates the burst. The model simulates this by adding a bistable
omponent.

Synaptic input is modelled as a Poissonian mix  of excitatory and
nhibitory random perturbations to the membrane potential which
eaks, decaying back towards resting potential. These perturbations
re either fixed amplitude ∼1–4 mV  or use ionic conductance based
eversal potentials. Using these components, the model can match
bserved activity in varied vasopressin cells, matching (a) spike
nterval distributions and hazard functions, (b) burst and silence
istribution, (c) firing rate index of dispersion, and (d) burst tem-
oral profile. It also matches the functional behaviour of the more
omplex models, fit to extensive experimental data (Sabatier et al.,
004).

.1. Spiking model equations

The  spike model described here is a development of the model
resented in Clayton et al. (2010), using a simplified bistable mech-
nism, and replacing the gaussian noise based input. The membrane
otential V is the sum of the components described below:

 = B + H + A + Vsyn (1)

 spike is fired when V exceeds the threshold parameter Vth. The
esting potential is defined as 0, where the model is initialised.

Decaying synaptic input is modelled by:

dV syn

dt
= −Vsyn

�syn
+ ensynmag + insynmag (2)

here en and in are the Poisson random EPSP and IPSP counts, gen-
rated here using the same mean rate, synrate. Parameter synmag

ives the PSP magnitude. Input decays exponentially with half life
syn. The time constants are calculated from half life parameters
sing the formula:

x = �x

logn2
(3)

here x is the variable concerned.
The  HAP and AHP variables H and A are modelled as decaying

xponentials with halflife parameters �H and �A, incremented by
H and kA when a spike is fired:

dH

dt
= − H

�H
+ kHs (4)

dA

dt
=  − A

�A
+ kAs (5)

here s = 1 if a spike is fired at time t, and s = 0 otherwise.
A  similar equation describes a slow inhibitory variable I, repre-

enting dynorphin:

dI

dt
= − I

�I
+ kIs (6)

The DAP uses a similar form, but with its value capped by param-
ter Dcap, also accounting for the effect of the AHP:

dD

dt
= − D

�D
+

⎧⎨
⎩

Dcap − D − A)
Dcap

kDs if D + A < Dcap

0 otherwise
(7)

The following equations describe the bistable bursting mecha-
ism:

dBsyn

dt
= (Vsyn − Bsyn)

100
(8)
i = B + Bsyn (9)

dB

dt
= −(Bi − D + B1I)(Bi − I)(Bi + I)

100
(10)
ems 112 (2013) 85– 93 89

The bistability variable B incorporates the effects of the DAP
and opposing dynorphin accumulation, encoding two  stable points,
bursting and silence, and an unstable balance point. Variable
Bsyn adds the random perturbations generated by synaptic input.
Parameter values were derived from fitting the model to in vivo
experimental data using a genetic algorithm, running the model on
1 ms  steps (Clayton et al., 2010). An example set, corresponding to
Fig. 1, is presented in Table 1.

We tested the robustness of the model and the parameter fit by
testing each parameter in turn with 10% changes (Figs. 6 and 7).
The results showed some variation in burst duration and short
term spike patterning (detected in the hazard function Sabatier
et al., 2004) but continued to plausibly represent in vivo activity.
We assessed how much the activity varied from the fitted control
by using a chi square measure to compare the model generated and
in vivo hazard functions. The figures show the parameter changes
which gave the largest variation from the fitted parameter set.

In  further work currently under development we  are attempting
to couple the spiking model to a secretion model based on the
physiological mechanisms of vasopressin vesicle trafficking and
secretion (Fig. 2). This ordinary differential equation model uses
five variables; representing spike dependent changes in [Ca2+] con-
centration, activity dependent facilitation, facilitation clearance,
and the size of the releasable and reserve pools. Parameters are
derived from experiments, and fitted to match the non-linear
stimulus-secretion coupling properties (including facilitation and
fatigue) observed in vitro e.g. (Bicknell, 1988).

Development and testing of the model is in custom software
built in C++and wxWidgets, based on modelling and data analysis
software we have previously developed to study diverse neu-
roendocrine systems (MacGregor and Leng, 2005; Macgregor and
Lincoln, 2008; MacGregor et al., 2009).

4.2. The single neuron model and communication mechanisms

In  order to simulate a heterogeneous population we must be
able to duplicate the single neuron model with variation. The burst
firing mechanism must be shown to remain robust under parame-
ter variation, so that we can randomly generate a varied population,
introducing variation into the model in a way that closely resembles
the heterogeneity observed in vivo.

The stimulus-secretion components that have been modelled
represent vesicle trafficking and secretion, to reproduce facilita-
tion and fatigue. However, testing the model over longer timescales
(hours and days) must also take account of long term depletion
of vasopressin stores, and will require modelling of synthesis and
transport mechanisms, including long timescale store replenish-
ment by activity-dependent synthesis (Fitzsimmons et al., 1994).

The  most novel part of the neuron model will be the network
communication mechanisms (dendritic release and response) and
tools for building the network’s structure. Each released substance
will have rules that govern spatial and temporal dissemination,
and will have different effects. Most inhibit electrical activity, but
by different mechanisms, some by modulating EPSP rate and/or
IPSP rate and some post-synaptically (e.g. by modulating resting
potential or EPSP magnitude). This is the stage where the project
becomes more speculative and predictive. We  still know very little
of the functional purpose of these mechanisms, or their endogenous
triggers.

4.3. Osmotic signal encoding
The  vasopressin neurons receive excitatory synaptic input from
osmosensitive neurons and have their own  excitatory osmosensi-
tive channels. The neurons also receive inhibitory synaptic inputs,
but it is not certain whether these are also osmosensitive. In vitro,
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 hypertonic stimulus applied to the main core of osmosensitive
eurons has been shown to increase EPSPs but not IPSPs at the
asopressin neurons (Richard and Bourque, 1995), but combined
odelling and in vivo study (Leng et al., 2001) suggests that coacti-

ation of excitatory and inhibitory inputs is required to produce
he linearity observed in the spike rate response. We  can fur-
her test these options with the phasic spiking model, including
n exploration of whether the intrinsic osmosensitive excitation
erves purely as redundancy, or makes some functional difference
o osmotic signal encoding.

Finally,  the vasopressin neurons interact via dendritic secretion
f vasopressin and other factors. We  have argued that the behaviour
f vasopressin cells is influenced by the activity of their neighbours,
hrough the generation of ‘population signals’. For the encoding,
he important output signal is the summed population activity,
nd communication mechanisms are required to coordinate the
esponse.

.4. Building a robust signal encoding and response network

The  simplest population signal is weak mutual interaction,
hich affects all neurons similarly. Dendritically released vaso-
ressin may  be such a signal, given its abundance and long
alf-life. For paracrine signals (e.g. nitric oxide and endocannabi-
oids), or to test more limited vasopressin dispersion, each

euron will share one or more input pools (Fig. 4), based on den-
ritic bundles (Ludwig and Leng, 2006). We  recently developed a
etwork model to understand how oxytocin cells orchestrate syn-
hronized bursts during reflex milk ejection (Rossoni et al., 2008).
based on the chi square fit measure comparing the model generated hazard function
ol data uses the fitted Table 1 parameters.

In  that model, each neuron contacts a few ‘dendritic neighbours’
via one or more shared communication pools (dendritic bundles),
with dendritic secretion non-linearly coupled to firing activity; we
will use similar network topologies here (Fig. 4).

Choosing to model dendritic communication in this way implic-
itly assumes some signals are confined within defined dendritic
bundles, while other signals are distributed freely throughout the
population. The evidence for distinct bundles comes from electron
microscopic studies showing that in dehydration, magnocellular
neuron dendrites are found directly apposed in bundles of 2–8 den-
drites. The bundles are enclosed by astrocyte processes that act
to regulate them physiologically. Though we are not proposing to
model the dynamics of bundling, this does suggest that some sig-
nals may  be effectively confined within bundle based pools. We
will incorporate this into the model using communication pools as
illustrated in Fig. 4.

Neurons  contacting two or more pools will link sub-populations,
and varying the number of pools, number of neurons in each, and
how many each neuron contacts, generates a wide range of struc-
tures to test. Randomly connected structures can be built by an
automated process based on defined parameters, and cell hetero-
geneity can be generated by randomly varying, for example, input
rates and HAP parameters.

We  will test network performance with increasingly difficult
tasks, progressively introducing the more complex network struc-

tures. An initial network of 100 neurons should be sufficient to test
varied structures but small enough to ease analysis, though we will
eventually aim to move to larger networks on a comparable scale
to the ∼9000 neurons in vivo. The first objective is a network which
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AP,  show the greatest variation in the hazard function and spiking pattern, with a
urst duration.

esponds to a fixed mean input (varied between tests) linearly with
 stable maintained response, proportional to the average network
nput over a wide dynamic range. We  have good information on
timulus-secretion coupling in the nerve endings, but know less
bout stimulus-secretion coupling for the dendrites. However, it
s activity dependent (during osmotic stimulation; (Ludwig et al.,
002)), so we initially assume the non-linearity of release is similar
o that at the terminals, and that dendritic release is proportional
o the size of the stores.

For  more advanced tests, input protocols vary the input rate,
ither in discrete steps or continuously; the network must be
ble to track these changes without generating unstable feed-
ack cycles (see Forrester flywheel) and maintain a linear output
esponse. Neuronal responses tend to be highly non-linear, and
t is still unknown what mechanism might feedback from the
ecretion response to modulate spike activity. We  will test the
etwork further by increasing the variation in the neurons,

ncluding excitability, bursting properties, and synthesis and secre-
ion.

.5. Building and testing a vasopressin system

The vasopressin system is very efficient; under most conditions
smotic pressure varies only by 3%, leaving a very small dynamic
ange for the input signal. It can lose many of its neurons and
till maintain response and can also sustain response for several

ays of prolonged osmotic challenge, despite limited stores. We
ill formulate the homeostatic control task fulfilled by the vaso-
ressin system in a way  that allows us to objectively assess its
erformance (and compare it with that of related networks), and
r value causing a higher magnitude post-spike depolarisation and resulting longer

to study systematically the robustness of the network in the face
of (a) increasing levels of noise in the inputs and (b) progressive
degradation (cell death as occurs naturally during aging), mod-
elled as either random or activity-dependent (excitotoxic) neuronal
loss.

There have been many previous attempts to model the body
physiology of this system, but they have tended to attempt to
replicate the system, without building towards a functional under-
standing of its components. We want to take an approach which
is more as if we  were engineering a system for a robot, keeping
it strictly as simple as possible, and only adding components that
might improve its performance. We can use it to answer questions
such as why is important that the vasopressin secretion response
is linear? Does the ability to control both water and salt excretion
improve regulation of osmotic pressure?

A closed system model sufficient to relate the osmotic input sig-
nal to the secretory output will require simplified representation
of water and salt intake and loss (we will not attempt any distinct
model of kidney function or natriuretic mechanisms). Variables
will represent intracellular and extracellular water, and salt, with
differential equations to define their behaviour. Perturbations will
represent drinking and eating. Salt will be lost at a concentration-
dependent rate into urine. Water will be lost into urine at a rate
dependent on vasopressin, and also at a constant rate, represent-
ing nonsensible loss such as respiration. The input to the neurons
will be a linear function of osmotic pressure (the ration of body

salt to body water), above a set point. Defining the control task in
this way will enable us to study how well the system can prolong
survival – i.e., when subject to chronic challenge, how long will it
maintain osmolarity within tolerable bounds?
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5. Conclusion

So what about the Forrester flywheel? We  know that the vaso-
pressin system is very good at this type of problem. It links release
and synthesis to maintain pituitary content (Fitzsimmons et al.,
1992), and very efficiently and robustly delivers the right amount
of vasopressin, responding to highly variable demand. Our theory
is that patterning in the neurons’ spike response to osmostic pres-
sure is an essential element of the system. By building a multiple
spiking neuron based model, linked to secretion, we  can attempt
to investigate this, testing what advantage bursting might give to
the dynamics of the secretion response to osmotic input. We  hope
to demonstrate that a heterogeneous bursting population plays a
role in encoding demand, and also in maintaining robust delivery
while subject to varying stock levels.

The spiking model described here is able to closely match sin-
gle cell in vivo activity with a fixed input rate. However, to match
the in vivo response to a changing input with the present model
requires that the input affects parameter values. This is avoided
by a cousin of the present model described in MacGregor and
Leng (2012), which is able to show that asynchronous burst firing
does indeed play a role in signal encoding, helping to linearise the
response to increasing osmotic input. Current work is attempting to
develop a robust secretion model to be integrated with the spiking
model. The work will progress to testing a network of model cells,
investigating how dendritic communication is used to coordinate
their response. Finally, the network will be integrated into a system
model of osmotic homeostasis currently under development.

This  novel way of understanding the vasopressin system
expresses its physiological function in terms of a defined control
task, and in so doing it enables systematic, objective study of its
performance, and systematic assessment of the utility of each of
the various features of the vasopressin system, by evaluating the
performance of closely related models in which these specific fea-
tures are varied systemically. This will generate novel, testable
predictions, and subsequent work will test these experimentally.
Demonstrating a functional purpose for asynchronous burst firing
may  apply to other parts of the brain and even apply more broadly
to the general problem of distributed control systems.
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