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Ethambutol (EMB) is a first-line antituberculosis drug currently being used

clinically to treat tuberculosis. Mutations in the embCAB operon are responsible

for EMB resistance. However, the discrepancies between genotypic and

phenotypic EMB resistance have attracted much attention. We induced EMB

resistance in Mycobacterium tuberculosis in vitro and used an integrated

genome–methylome–transcriptome–proteome approach to study the

microevolutionary mechanism of EMB resistance. We identified 509 aberrantly

methylated genes (313 hypermethylated genes and 196 hypomethylated genes).

Moreover, some hypermethylated and hypomethylated genes were identified

using RNA-seq profiling. Correlation analysis revealed that the differential

methylation of genes was negatively correlated with transcription levels in

EMB-resistant strains. Additionally, two hypermethylated candidate genes

(mbtD and celA1) were screened by iTRAQ-based quantitative proteomics

analysis, verified by qPCR, and corresponded with DNA methylation differences.

This is the first report that identifies EMB resistance-related genes in laboratory-

induced mono-EMB-resistant M. tuberculosis using multi-omics profiling.

Understanding the epigenetic features associated with EMB resistance may

provide new insights into the underlying molecular mechanisms.
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Introduction

Pre-coronavirus pandemic, tuberculosis (TB) was the main

cause of death from a single infectious agent and is one of the

most common communicable diseases worldwide (Kirby, 2021).

According to the WHO Global TB Report of 2021,

approximately 1.5 million people died from TB in 2020

(Chakaya et al., 2021). Drug-resistant TB (DR-TB) is a major

global public health problem. Globally, approximately 3%–4% of

new and 18%–21% of previously treated TB cases return with

multidrug resistance (MDR) or rifampicin (RFP) resistance (RR)

(Seung et al., 2015). Drug resistance in TB complicates the

effectiveness of anti-TB drugs (Lee and Suh, 2016). The

mechanism of Mycobacterium tuberculosis (Mtb) drug

resistance remains unknown, and new anti-tuberculosis drugs

are scarce.

Ethambutol (EMB) is an arabinose analogue that interferes

with arabinosyl transferase, resulting in the obstruction of cell

wall synthesis in mycobacteria. This makes it a key drug in first-

line anti-TB treatment (Zhang et al., 2020). A national survey of

drug-resistant TB indicated that the resistance rate to EMB has

gradually increased in China, approaching 17.2% in re-treated

TB patients (Zhao et al., 2012). Some studies revealed that

mutations in the embCAB operon play a major role in the

development of EMB resistance in Mtb, especially the

“canonical” mutations in codon 306, 406, or 497 of embB

(Telenti et al., 1997; Plinke et al., 2010; Safi et al., 2010; Safi

et al., 2013). In addition, mutations in aftA (Safi et al., 2013),

embR (Sharma et al., 2006), and ubiA, which are involved in the

biosynthesis of the mycobacterial cell wall (He et al., 2015), are

also associated with variable levels of EMB resistance in Mtb.

Despite a strong association between gene mutation and EMB

resistance, mutations in genes cause variable degrees of EMB

resistance and are required, but not enough, to cause high-level

resistance to EMB (Palomino and Martin, 2014). Approximately

30% of EMB-resistant strains do not present any mutations in

embB (Palomino and Martin, 2014), and many clinical strains

present with mutations in this gene but remain susceptible to

EMB (Safi et al., 2013).

Over the past decade, epigenetic mechanisms have become

increasingly important in our understanding of pathogenicity,

host immunity, hypoxic survival, and virulence. Epigenetics can

affect gene expression without altering the DNA sequence, not

only in eukaryotes but also in bacteria, in which DNA

methylation is one of the main epigenetic mechanisms for the

regulation of gene expression (Fatima et al., 2021). Studies on the

correlation between DNA methylation and mechanisms of drug

resistance in Mtb have recently attracted extensive attention. The

role of DNA methylation in gene regulation and stress response

in Mtb has been identified as a novel mechanism by which Mtb

modulates gene expression in the stress response (Shell et al.,

2013). Single-molecule, real-time (SMRT) sequencing profiled

the core methylome of clinical isolates and provided a
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comprehensive list of methylated genes in drug-resistant

clinical isolates (Gong et al., 2021). Furthermore, DNA

methylation has become a new direction to study TB drug

resistance, but there are no reports exploring its relationship

with EMB-resistant Mtb.

In this study, we induced mono-EMB-resistant Mtb in vitro

and used an integrated genome–methylome–transcriptome–

proteome approach to study the microevolutionary

mechanism of EMB resistance. Two genes, mbtD and celA1,

were further investigated and were found to be associated with

EMB resistance. We hope that this study can help reveal a new

Mtb EMB resistance mechanism and provide a new target and

basis for reversing multidrug resistance.
Materials and methods

Bacterial strains and growth conditions

The wild-type Mtb H37Rv strain was used as the parent

strain. A total of 12 clinical Mtb isolates, consisting of six drug-

susceptible and six mono-EMB-resistant Mtb strains, were

obtained from sputum samples of patients with pulmonary TB

who presented to the Centre for Tuberculosis Control of

Guangdong Province, Guangzhou, Guangdong, China. All

isolates were tested using both the MYCOTB and the

Löwenstein–Jensen (LJ) proportion method against 14 anti-TB

drugs. Mtb strains were cultured on LJ, Middlebrook 7H9, and

7H10 media with OADC (oleic acid–albumin–dextrose–

catalase). The cultures were grown at 37°C.
In vitro induction of EMB-resistant Mtb

Before laboratory evolution, the Mtb H37Rv strain was

cultivated in LJ medium without the drugs used for laboratory

evolution. A monoclone was picked and processed by

amplification culture and used as the primary strain (ERG0),

which was selected to prepare the EMB-resistant strain. ERG0

was cultivated on LJ medium containing a series of

concentration gradients (2−4, 2−3, 2−2, 2−1, and 20) of EMB,

based on the World Health Organization (WHO) critical

concentration (2.0 mg/L EMB) (World Health Organization,

2018). ERG0 cells were cultured on LJ medium (2−4 EMB

concentration) for approximately 4 weeks and named

generation 1 (ERG1). These steps were repeated until the

culture met the WHO criteria for the EMB-resistant strain

(ERG7). To stabilize the drug-resistant phenotype, the ERG7

EMB-resistant Mtb strain was continuously cultured until

generation 8 (ERG8) for further analysis. The wild-type Mtb

H37Rv strain, simultaneously cultivated on LJ medium without

EMB, was used as a control strain (WTG8). All generation

strains were verified using the appropriate concentrations of the
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drug used in the drug-susceptibility test. Each generation’s cells

were stored in glycerol stocks at −80°C for further analysis.
Drug susceptibility testing

The Mtb isolates were subjected to susceptibility testing

against anti-tuberculosis drugs using the standard proportion

method on LJ medium according to previously described

procedures (Canetti et al., 1969). The Sensititre MYCOTB

MIC plate (BASO) was used to determine the minimum

inhibitory concentrations (MICs) of Mtb strains according to

the manufacturer’s instructions. Each 96-well microtiter plate

was used to test an isolate against 14 anti-tuberculosis drugs:

isoniazid (INH), streptomycin (SM), ethambutol (EMB),

ofloxacin (OFX), moxifloxacin (MFX), amikacin (AKM),

kanamycin (KM), capreomycin (CPM), protionamide (PTO),

p-aminosalicylate (PAS), rifampin (RFP), rifabutin (RBU),

levofloxacin (LFX), and pyrazinamide (PZA). Visible cell

growth in a drug-free well indicated usable results. The MIC

was recorded as the lowest antibiotic concentration that reduced

visible growth. Three independent experiments were performed.
Whole-genome resequencing

Mtb genomic DNA was extracted and purified using

traditional cetyltrimethylammonium bromide according to

previously published procedures (Somerville et al., 2005).

Whole-genome resequencing and bioinformatics analyses were

performed as previously described (Zhao et al., 2019). Library

preparation and genome sequencing were briefly performed

using Gene-Optimal (Shanghai, CA). A TruSeq DNA kit

(Illumina) was used for DNA library preparation. The libraries

were sequenced using Illumina MiSeq or HiSeq 2000 sequencing

systems. High-quality reads were mapped to the H37Rv

reference genome (NC_000962.3) using the Geneious

6.0 (Biomatter).
SMRT sequencing

Genomic DNA was extracted from the ERG8 and WTG8

strains. SMRT library preparation from genomic DNA samples,

SMRT sequencing (Pacific Biosciences RSII platform), and

bioinformatics analysis were performed as previously described

(Zhu et al., 2016).
Methylation-specific PCR

Methylation-specific PCR (MSP) was performed as

previously described (Ku et al., 2011). DNA extracted from the
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ERG8 and WTG8 strains were subjected to sodium bisulfite

treatment and DNA purification using the EZ DNA

Methylation-Gold Kit (Zymo Research), according to the

manufacturer’s instructions. MethPrimer (http://www.urogene.

org/methprimer/), an online platform, was used for primer

design (Li and Dahiya, 2002). The MSP primers used in this

study are listed in Supplementary Table S1. We used the

universal methylated human DNA standard (Zymo Research)

as a fully methylated (100%) MSP positive control. A set of two

PCR reactions were performed, and the products were analyzed

via gel electrophoresis.
RNA-seq analysis

Total RNA was isolated from Mtb strains using FastPrep-24

with a FastRNA Pro Blue Kit (MP Biomedicals) following the

manufacturer’s instructions. Total RNA fragmentation was

performed using the ultrasonic method (140–160 bp) (Covaris

M220) after DNase I (QIAGEN) treatment and ribosomal RNA

removal (Epicentre). Random primers were used to synthesize

the first and second strands, and dTTP was replaced with dUTP

for complementary (cDNA) synthesis. Ultra-™Directional RNA

Library Prep Kit for Illumina (NEB) was used according to the

manufacturer’s instructions. The final library products were

purified using 0.8× beads (Beckman) and assessed using an

Agilent Bioanalyzer 2100 system (Agilent). The Illumina HiSeq

4000 platform was used for the whole-transcriptome analysis.
Reverse transcription quantitative PCR

Total RNA was extracted and converted to cDNA using a

SuperScript III First-Strand Synthesis Kit (Thermo Fisher

Scientific). The mRNA expression of three genes (mbtD, mbtB,

and celA1) was analyzed using SYBR Green (Maeda et al., 2003).

SigA was used as the internal reference. Mean ± SEMwas calculated

from three independent experiments, and significant differences

were determined using the unpaired Student’s t-test. The primers

used in this study are listed in Supplementary Table S1.
Protein preparation and liquid
chromatography–mass
spectrometry analysis

Mtb total protein was extracted by the mechanical crushing

method, digested with trypsin (37°C for 24 h), and labeled using

the iTRAQ(R) Reagents Multiplex Kit (Sigma) following the

manufacturer’s instructions. The samples were subjected to

liquid chromatography–mass spectrometry (LC–MS)

according to our published procedure (Wu et al., 2020). Three

biological replicates were used for each group.
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Bioinformatics analysis

Pairwise comparison of the average methylation levels across

the samples by the median methylation levels. The heatmap was

created using the HemI 1.0 software (|fold change| > 2, padj <

0.05). Gene ontology (GO) enrichment and KEGG analyses were

performed using DAVID online software.
Statistical analyses

Data are presented as mean ± standard deviation (SD) for

each group. Student’s t-tests were used to compare the

differences between two independent groups. The correlation

between differential methylation and gene expression levels was

determined using Spearman’s linear regression analysis.

Statistical significance was set at p < 0.05.
Results

Laboratory microevolution of Mtb under
EMB stress conditions

To globally investigate EMB-resistant mechanism of Mtb, we

performed a laboratory microevolutionary strategy of Mtb using
Frontiers in Cellular and Infection Microbiology 04
EMB stimulation with successive concentration gradients.

Figure 1A shows a schematic overview of the laboratory

evolution protocol. Figure 2B shows the time course of MIC

change during laboratory evolution. To analyze molecular

mechanisms associated with resistance acquisition, we

expected to obtain a mono-EMB-resistant Mtb strain.

Therefore, the MIC values of 14 anti-TB drugs were

determined in 96-well microplates. The results indicated that

the MICs of all anti-TB drugs except EMB remained below the

WHO criteria under continuous EMB drug pressure; that is, no

cross-resistance occurred, indicating that the induction of EMB-

resistant Mtb was successful (Figure 1C and Supplementary

Table S2).
Whole-genome resequencing of the
induced EMB-resistant Mtb

To identify mutations that confer resistance against EMB, we

performed whole-genome sequencing analysis of induced EMB-

resistant Mtb. Compared with the parental strain, comparative

genomic analysis revealed that apart from the point mutation

within embB (1489C!A, G497L) of EMB-resistant strains

(ERG8 and WTG8), a point mutation occurred in ubiA

(113C!T, A38V). These results indicate that EMB-resistant

Mtb was successfully induced and established. Interestingly, a
A

B

C

FIGURE 1

Laboratory evolution of Mycobacterium tuberculosis (Mtb) under ethambutol (EMB) stress conditions. (A) Schematic overview of laboratory evolution.
Mtb strains at each generation were stored in glycerol at −80°C and subjected to minimum inhibitory concentration (MIC) measurements. (B) Time
series of MIC value of 14 anti-TB drugs for each generation during the laboratory microevolutionary experiment. Using Mtb H37Rv as a wild-type
strain, the laboratory microevolutionary experiments were repeated for seven generations until the MIC reached the critical concentration. (C) The
MIC values of 14 anti-TB drugs in ERG8 strain. Critical concentrations for drug susceptibility testing by Löwenstein–Jensen (LJ) medium, 2.0 mg/ml.
Critical concentrations for DST by liquid culture, 5.0 mg/ml.
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point mutation at C1489A in the embB gene was found in four

EMB-susceptible isolates (ERG3, ERG4, ERG5, and ERG6).

However, no mutations were found in the ubiA gene of EMB-

susceptible isolates (ERG1–ERG6). No other drug-resistance

related gene mutations were found in EMB-resistant strains

(Figure 1B, Supplementary Table S3). These results suggest

that in addition to these two gene mutations, there may be

other factors influencing EMB resistance in Mtb.
Association of aberrant methylation with
gene expression

Potential aberrant methylation of genes in the ERG8 strain

was identified with the SMRT sequencing assay identifying the

genome-wide distribution of methylated sites in ERG8 and

WTG8. Compared with the WTG8 strain, 509 aberrant

methy la t ion of genes were found , inc lud ing 313

hypermethylated genes and 196 hypomethylated genes in the

ERG8 strain (Figures 2A, B, Supplementary Table S4). DNA

methylation is linked to gene silencing, which is considered a key

mechanism in the regulation of mRNA transcription. We

subsequently investigated the association between aberrant

methylation and gene expression in the ERG8 strain by

transcriptome analysis. We identified 3,982 genes in total,

including 201 that were significantly upregulated and 128 that

were significantly downregulated (padj ≤ 0.05, |log 2 Ratio|≥1)

(Figures 3A, B, Supplementary Table S5).

Consistent DNA methylation–gene expression linkage

events were extracted by dividing the differentially methylated

genes (DMGs) and differentially expressed genes (DEGs) into

four expression groups based on their methylation/expression

levels (hypermethylat ion, hypomethylat ion, mRNA
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upregulation, and mRNA downregulation). Clustering analysis

revealed that the high expression group showed a low

methylation level (11 genes), whereas the low-expression

group showed a high methylation level (15 genes) (Figure 3C).

In addition, correlation analysis revealed that differential

methylation of genes was negatively correlated with

transcription levels in the EMB-resistant strain (Figure 3D).
Identification of differentially expressed
proteins in the induced
EMB-resistant Mtb

Changes in protein levels and expression of genes in the

laboratory-induced EMB-resistant strain were investigated. We

performed global protein expression profiling by iTRAQ-two-

dimensional LC–MS/MS on the ERG8 and WTG8 strains. A total

of 2,175 proteins were identified, and 185 proteins had expression

differences greater than 1.2-fold (p < 0.05), including 100

upregulated proteins and 85 downregulated proteins in the ERG8

strain compared to theWTG8 strain (Supplementary Table S6). GO

enrichment and KEGG pathway analyses were also performed to

classify the functions of significantly expressed proteins. As a result,

60 differentially expressed proteins (DEPs) were associated with

growth, 86 and 51 DEPs were related to cellular components of the

plasma membrane and cell wall, respectively, and DEPs mainly

participated in the arabinosyltransferase activity and ACP

phosphopantetheine attachment site binding involved in the fatty

acid biosynthetic process (p < 0.05) (Figure 4A). KEGG pathway

analysis showed that these proteins were primarily involved in

biosynthesis and metabolic pathways (Figure 4B). We

subsequently investigated the association of DEGs between

transcriptional and protein expression levels by integrating
A B

FIGURE 2

DNA methylation profiling. (A) Probability density of the DNA methylation region coverage by strain. The black line indicates the respective
ERG8 strain. The red line indicates the WTG8 strain, (B) Heatmap showing the hierarchal clustering of the differential methylated genes. Each
column represents an individual sample, and each row represents a gene. Methylation levels are depicted according to the color legend on the
right. Color change from green to red indicates the change from hypomethylation to hypermethylation.
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transcriptomic and proteomic analyses. Of the 11 identified low-

methylation and high-expression genes, 9 genes were identified at

the protein level according to the proteomic dataset. Accordingly, 15

genes with high methylation and low expression were identified, and

9 genes were identified at the protein level according to the

proteomic dataset, among which 3 genes (mbtB, mbtD, and celA1)

were significantly downregulated (Figure 4C). The changes (EMG8

vs. WTG8) in the candidate genes at the transcriptional and protein

levels are presented in Figure 4D.
Experimental validation of differential
genes screened by multi-omics in EMB-
resistant Mtb

DNA methylation, especially within the promoter regions, is

traditionally correlated with gene expression. To further validate

the association between aberrant methylation and gene
Frontiers in Cellular and Infection Microbiology 06
expression, three genes, mbtD, mbtB, and celA1, were selected

to detect methylation status and mRNA expression levels by

MSP and qPCR; qPCR confirmed that mRNA expression levels

of mbtD (p < 0.01) and celA1 (p < 0.05) were significantly higher

in the WTG8 strain than in the ERG8 strain. The mRNA

expression of mbtB was not significantly different between the

ERG8 and WTG8 strains (p > 0.05) (Figure 5A). In addition, we

analyzed mRNA expression levels of mbtD and celA1 in 12

confirmed clinical isolates of Mtb, namely, six drug-susceptible

(DS) and six mono-EMB-resistant (EMR) species; the MICs of

14 anti-TB drugs are shown in Supplementary Table S7. The

expression of mbtD and celA was significantly downregulated in

the EMR strains compared to that in the DS strains (Figure 5B).

CpG islands are situated in the mbtD and celA1 gene promoter

regions and the designed MSP primers are shown in Figure 5C.

MSP was used to evaluate the methylation status. Partial

ethylation of mbtD and celA1 was observed in the ERG8

strain, and unmethylation of mbtD was observed in the WTG8
A

B D

C

FIGURE 3

Association analysis of aberrant methylation with gene expression. (A) Volcano plot showing differentially expressed genes. Red, upregulated
genes, green, downregulated genes. Gray, genes that are not significantly differentially expressed. padj, adjusted p-value. (B) Hierarchical
clustering of the 329 differentially expressed genes (|fold change|>2, padj < 0.05). (C) Overlap between DNA methylation and RNA expression
changes. Left panel, Venn diagram showing the numbers of consistent DNA methylation-gene expression linkage events. Significantly high/low
levels of 11/15 genes’ expression and low/high levels of methylation were observed. Middle panel, heatmap clustering of the screened
differentially methylated genes (DMGs); the gradient of blue to red color represents an increase of the median methylation level. Right panel, a
heatmap of the relative abundance of the screened differentially expressed genes (DEGs). Colors denote log 10 relative abundance of each gene
in each sample. The relative abundance is shown in red (high), white (middle), and blue (low). (D) The correlation between gene expression
levels and DNA methylation status. The green dots represent the 11 identified low-methylation and high expression genes. The red dots
represent the 15 identified high-methylation and low expression genes.
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strain. In contrast, partial methylation was detected in the

WTG8 strain with low expression of celA1 (Figure 5D).
Discussion

In the present study, we conducted laboratory

microevolution of mono-EMB-resistant Mtb in vitro and

performed multi-omics analysis of laboratory-induced EMB-

resistant Mtb using an integrative methylome–transcriptome–

proteome assay. Genome-wide DNA methylation and RNA-seq

analyses identified patterns of differential DNA methylation and

mRNA expression in Mtb. By integrating proteomic data, two

candidate genes (mbtD and celA1) were screened and verified by

qPCR, which corresponded to changes in DNA methylation.

In contrast to the method of agar-based selection for

laboratory evolution against antibiotics (Maeda et al., 2021) or

induced by high-concentration drugs (Zhao et al., 2014), the

strategy of a continuous drug concentration gradient can better

simulate the accumulation of drugs in the human body.
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Determination of the MIC value of 14 anti-TB drugs showed

that laboratory-induced mono-EMB drug-resistant strains were

successfully obtained (Supplementary Table S2). EMB resistance

development is mainly caused by mutations in related genes, and

according to recent literature, mutations in embCAB, embR, and

ubiA genes are responsible for approximately 70% of clinical

EMB-resistant Mtb (Xiang et al., 2021). Despite the strong

association between genetic mutations and EMB resistance,

related gene mutations have also been found in clinical EMB-

susceptible strains (Mokrousov et al., 2002). The most common

embCAB mutations in EMB-susceptible strains have been

previously described in Iran, with phenotypic susceptibility to

EMB reconfirmed (Khosravi et al., 2019). In our study, we

performed whole-genome sequence analysis of induced EMB-

resistant/susceptible Mtb. The most common mutation,

Gln497Lys, in the embB gene of EMB-susceptible isolates

located was noticed. Phenotypic drug susceptibility testing was

repeated for all laboratory-induced EMB-resistant/susceptible

Mtb strains, and preliminary results were confirmed.

Accordingly, we believe that additional mechanisms of EMB
A B

DC

FIGURE 4

Identification of differentially expressed proteins (DEPs) in laboratory-induced strains. (A) Gene ontology (GO) enrichment analysis of the
identified differentially expressed protein based on cellular component (CC), molecular function (MF), and biological processes (BP). (B) KEGG
pathway enrichment analysis. (C) Integration of proteome and transcriptome datasets. (D) Overlap between protein and RNA expression
changes. Top panel, proteins (gray) were mapped to protein-coding transcripts. Downregulated transcripts (light green) and upregulated
transcripts (light purple) were assessed for overlap. Bottom panel, significant and consistent changes at protein and RNA.
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resistance other than mutations in these sequences within the

embCAB operon should also be considered.

DNA methylation is an important regulatory mechanism

leading to differential gene expression, and m5C and m6A

methylation have been found in Mtb genomes (Zhu et al., 2016).

Additionally, it regulated expression of genes involved in Mtb

hypoxic survival (Shell et al., 2013). A comprehensive list of

methylated genes in drug-resistant clinical isolates that shows how

DNA methylation genes are involved in drug resistance of Mtb is

available (Gong et al., 2021), suggesting that gene methylation could

be the focus of research on drug-resistant TB. However, the extent

and functional consequences of DNA methylation in bacteria are

poorly studied. We first characterized the methylomes of a

laboratory-induced mono-EMB-resistant strain using SMRT

sequencing. A total of 509 methylated genes were identified. We

found that many genes progressively acquired or lost DNA

methylation owing to the development of EMB resistance.

We subsequently investigated the association between aberrant

methylation of genes and gene expression in laboratory-induced

mono-EMB-resistant strain. Consistent with published articles

(Brenet et al., 2011; Blattler et al., 2014; Anastasiadi et al., 2018),

in this study, we observed that hypermethylated genes are

negatively correlated with their transcriptional levels. The relative
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expression levels of 15 genes (celA1, mbtI, pimB, mbtD, irtB, lipX,

mbtB, vapC16, def, fabD, irtA, hisG, mbtA, mce3B, and udgA) were

decreased based on transcriptome analysis; conversely, the

hypermethylation of these genes was observed in mono-EMB-

resistant strain. Similarly, 11 genes (mutA, otsB1, nirB, PPE20,

fadE6, nrdZ, nadB, cydC, fadB, fdxA, and purF) expression levels

substantially increased based on transcriptome analysis, and

hypomethylation of these genes was observed in mono-EMB-

resistant strains. We identified three genes (mbtD, mbtB, and

celA1) that were hypermethylated and downregulated

transcriptionally as well as at the protein level. MSP is a useful

tool for qualitative DNAmethylation analysis (Huang et al., 2013).

For the validation of gene methylation status, we specifically chose

traditional MSP for the analysis of promoter hypermethylation. In

summary, we demonstrated that mbtD and celA1 are

hypermethylated and downregulated in mono-EMB-resistant

strains. To our surprise, the mRNA expression of mbtB was not

significantly different between the ERG8 and WTG8 strains (p >

0.05). A cluster of 10 genes (designated mbtA–J), including mbtB,

mbtE, and mbtF, form an assembly line of nonribosomal peptide

synthetases and polyketide synthases (mbtC and mbtD) that

activate and elongate the monomers of the mycobactin core

(LaMarca et al., 2004; Nde et al., 2011). It has been shown that
A B

DC

FIGURE 5

Validation of mbtD and celA1 expression and promoter methylation status. (A) Expression of mbtB, mbtD, and celA1 in ERG8 and WTG8 strains
was tested by quantitative PCR. (B) Quantitative PCR was used to further verify the expression of mbtD and celA1 in drug susceptibility (DS) (n =
6) and mono-EMB (ethambutol)-resistant (EMR) (n = 6) strains. For each gene, the left bar represents the DS cohort, and the right bar represents
the EMR cohort. *p < 0.05 for EMR vs DS. DS, drug-susceptible clinical isolates of Mtb. EMR, mono-EMB-resistant clinical isolates of Mtb.
(C) Schematic diagrams of CpG islands in the promoter region of mbtD and celA1. MF, methylation forward primer. MR, methylation reverse
primer. UF, unmethylation forward primer. UR, unmethylation reverse primer. (D) Methylation status of mbtD and celA1 was detected by MSP in
ERG8 and WTG8 strain. SMD, positive controls. M, methylated alleles. U, unmethylated alleles. ** p < 0.01
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IdeR acts as a transcriptional repressor that directly affects the

transcription of the mbtB (Gold et al., 2001); however, no

differential expression of IdeR was observed between the ERG8

and WTG8 strains (Supplementary Table S5). Furthermore,

deletion of the mbtB gene results in the limited growth of M.

tuberculosis H37Rv in iron-limited media, but normal growth in

iron-replete media (De Voss et al., 2000). celA1 belongs to glycosyl

hydrolase family 6 with cellulase function (Vaca-Gonzalez et al.,

2020). Cellulose is an important component of the biofilm matrix

and is involved in biofilm formation (Limoli et al., 2015). When

overexpressed in M. smegmatis or M. bovis BCG, celA1 and its

homologue, MSMEG_6752 or BCG0063 gene, could impede

biofilm production (Van Wyk et al., 2017). Numerous studies

have reported the function of mycobacterial biofilms and have

shown increased antimicrobial tolerance of biofilms compared to

planktonic cells (Ojha et al., 2008; Islam et al., 2012). Chakraborty

et al. demonstrated that the administration of nebulized cellulase

enhanced the antimycobacterial activity of isoniazid and

rifampicin in infected mice, supporting the role of biofilms in

phenotypic drug tolerance (Chakraborty et al., 2021). Savijoki et al.

(2021) also reported that increased celA1 synthesis inM. marinum

prevents biofilm formation and leads to reduced rifampicin

tolerance. These results suggest that celA1 expression is linked to

biofilm formation and antibiotic tolerance. Our data demonstrate

that mono-EMB-resistant strains show dysregulation of

mbtD and celA1, both at the level of methylation and gene

expression, which could be an underlying mechanism behind the

development of EMB resistance. However, whether overexpression

of mbtD and celA1 modulates susceptibility to EMB in the setting

of EMB resistance remains to be demonstrated. Therefore, in our

future studies, mbtD and celA1 will be our targets for further

exploration of EMB-resistant Mtb.

In conclusion, the integrated analysis of the methylome–

transcriptome–proteome has provided a resource for genes

whose expression, at least partially, is regulated by DNA

methylation and may be involved in the development of EMB

resistance in Mtb. We demonstrated that mbtD and celA1 were

hypermethylated and downregulated in a mono-EMB-resistant

strain. These results provide a better understanding of the

mechanisms involved in EMB resistance development.
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