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Abstract

Chemical stability is a major concern in the development of protein therapeutics due to its
impact on both efficacy and safety. Protein “hotspots” are amino acid residues that are sub-
ject to various chemical modifications, including deamidation, isomerization, glycosylation,
oxidation etc. A more accurate prediction method for potential hotspot residues would allow
their elimination or reduction as early as possible in the drug discovery process. In this work,
we focus on prediction models for asparagine (Asn) deamidation. Sequence-based predic-
tion method simply identifies the NG motif (amino acid asparagine followed by a glycine) to
be liable to deamidation. It still dominates deamidation evaluation process in most pharma-
ceutical setup due to its convenience. However, the simple sequence-based method is less
accurate and often causes over-engineering a protein. We introduce structure-based predic-
tion models by mining available experimental and structural data of deamidated proteins.
Our training set contains 194 Asn residues from 25 proteins that all have available high-res-
olution crystal structures. Experimentally measured deamidation half-life of Asn in penta-
peptides as well as 3D structure-based properties, such as solvent exposure, crystallo-
graphic B-factors, local secondary structure and dihedral angles etc., were used to train pre-
diction models with several machine learning algorithms. The prediction tools were cross-
validated as well as tested with an external test data set. The random forest model had high
enrichment in ranking deamidated residues higher than non-deamidated residues while
effectively eliminated false positive predictions. It is possible that such quantitative protein
structure—function relationship tools can also be applied to other protein hotspot predictions.
In addition, we extensively discussed metrics being used to evaluate the performance of
predicting unbalanced data sets such as the deamidation case.

Introduction

Chemical stability is a major concern in the development of protein therapeutics due to its
impact on both efficacy and safety. Protein “hotspots” are amino acid residues that are subject
to various chemical modifications, including deamidation, isomerization, glycosylation, oxida-
tion etc. Deamidation primarily happens on an asparagine (Asn) residue. Its C-terminus

PLOS ONE | https://doi.org/10.1371/journal.pone.0181347  July 21,2017 1/17


https://doi.org/10.1371/journal.pone.0181347
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181347&domain=pdf&date_stamp=2017-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181347&domain=pdf&date_stamp=2017-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181347&domain=pdf&date_stamp=2017-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181347&domain=pdf&date_stamp=2017-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181347&domain=pdf&date_stamp=2017-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181347&domain=pdf&date_stamp=2017-07-21
https://doi.org/10.1371/journal.pone.0181347
https://doi.org/10.1371/journal.pone.0181347
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

@° PLOS | ONE

Protein deamidation prediction

Competing interests: LJ and YS are employees of
Amgen. This does not alter our adherence to PLOS
ONE policies on sharing data and materials.

residue’s backbone nitrogen atom conducts a nucleophilic attack to the Asn’s side chain amide
group carbon atom. An intermediate ring-closed succinimide residue is proposed to form.
The succinimide residue then conducts fast hydrolysis to lead to the final product aspartic acid
(Asp) or iso aspartic acid (IsoAsp) [1] (Fig 1). Therefore, the deamidation process causes an
Asn to Asp / IsoAsp mutation. Glutamine (Gln) residue can also undergo the deamidation
process. However, Gln deamidation happens at a much slower rate than Asn [2, 3], soitisa
less concern. Deamidation of asparagine residues in biological pharmaceuticals is a major
cause of degradation if the therapeutical proteins are not formulated and stored appropriately
[4]. If deamidation occurs in the monoclonal antibody’s complementarity determining region
(CDR), the antibody’s binding potency can be affected. Evaluating Asn deamidation liability is
a very important step during the engineering process of therapeutical protein development.

Robinson et al. have been experimentally determined deamidation half-life of Asn contain-
ing penta peptides. The penta peptides have been designed by varying the N and C terminal
residues adjacent to Asn which is at the center location of the peptide (sequence pattern: Gly-
Xxx-Asn-Yyy-Gly) [5]. The data provide sequence-based foundation of Asn deamidation pre-
diction. The same group then developed a “structure-based” deamidation prediction method
with rule-based deamidation coefficient calculation [6]. Furthermore, Robinson et al. applied
steric and catalytic effects of the Asn’s C-terminus residue type based on the penta peptides,
whose deamidation half-life had been determined, to understand primary sequence control of
deamidation as well as extend deamidation prediction to unnatural amino acid containing
sequences [7]. The Houk group at UCLA and the Aviyente group at Bogazi¢i University have
used quantum mechanics method to study molecular details of deamidation process, sepa-
rately [8-11]. Those quantum mechanics level studies helped us understand the reaction kinet-
ics and the formation of succinimide intermediate better. However, they cannot be used to
directly predict protein deamidation. Recently, Sydow et al. applied machine learning methods
to predict monoclonal antibodies’ deamidation half-life [12]. Their lookahead-enabled single
recursive partitioning tree model outperformed other machine learning methods and yielded
4.3% falsely assigned hotspots, which was much more accurate than the controlling sequence-
based prediction false rate (43%). Lorenzo et al. developed NGOME, a sequence-derived sec-
ondary structure and intrinsic disorder based deamidation prediction method [13]. NGOME
outperformed simple sequence-based method with area under the curve (AUC) value of
0.9640 v.s. 0.9270 for any deamidation and also outperformed simple sequence-based method
with AUC value of 0.7051 v.s. 0.5 for the most challenging NG motif (amino acid asparagine
followed by glycine) prediction.

Sequence-based prediction method simply identifies the NG motif to be liable to deamida-
tion. NH, NS, and/or NT sequence motifs are also considered to be liable to deamidation
based on their short penta peptide deamidation half-life. Sequence-based prediction method
still dominates deamidation evaluation process in most pharmaceutical setups due to its con-
venience. However, the simple sequence-based method is less accurate and often causes over-
engineering a protein. A more accurate prediction method would allow elimination or reduc-
tion of true deamidation liabilities as early as possible in the drug discovery process while
avoid the over-engineering problem. In our work, we developed structure-based Asn deamida-
tion prediction models with machine learning approaches. The prediction models were built
to mine available experimental and high-resolution structural data of deamidated proteins.
Experimentally measured deamidation half-life of Asn in penta-peptides as well as 3D struc-
ture-based properties, such as solvent exposure, crystallographic B-factors, local secondary
structure and dihedral angles etc., were used to train prediction models with several machine
learning algorithms. The prediction tools were cross-validated as well as tested with an external
test data set. The application can make deamidation predictions to proteins but not limited to
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Fig 1. Chemical reaction of asparagine deamidation process.
https://doi.org/10.1371/journal.pone.0181347.9001

antibodies. The random forest (RF) model had high enrichment in ranking deamidated resi-
dues higher than non-deamidated residues while effectively eliminated false positive predic-
tions, which is an advantage comparing to sequence-based prediction. Binary prediction of a
“blind” test set by RF yielded 0.96 AUC value of receiver operating curve (ROC) as well as 0.65
Matthews correlation coefficient (MCC). In addition, we extensively discussed metrics being
used to evaluate the performance of predicting unbalanced data sets such as the deamidation
case. We also used feature selection to understand contributions of different descriptors on
structural level.

Methods
Data set construction

The training data set consists of 194 asparagine (Asn) residues on 25 protein structures. Data
were obtained from the following literatures [14-25]. NMR structures in [14] were replaced by
high resolution crystal structures from the Protein Databank (PDB). The protein structure and
sequences were obtained from PDB. The redundant structures and sequences from the same
pdb structure were removed. The training data set contains different PDB entries of the same
protein which have different structure features (e.g. closed and open conformations with and
without substrate binding; different local structure etc.). The training data set also contains pro-
tein homologs from different species even with very high sequence similarity. Different struc-
tures from same or highly similar proteins with different structural features can reinforce the
machine learning methods to pick up the subtle structural features instead of just the sequence.
The prediction model is indeed more challenged with multiple crystal structures for the same
protein, due to the variability of the structural descriptors. When a crystal structure has multiple
chains, the first most complete chain to the relevant protein which contains the deamidation
sites was used. “Clean Protein” function in BIOVIA Discovery Studio 4.0 was applied to all
structures to correct problems related to structural disorder (structure with alternate conforma-
tions), protein residue connectivity and bond orders, missing side-chain or backbone atoms. It
can also correct the enumeration of hydrogens according to the preferred hydrogen representa-
tion. We also constructed an external test data set, which was curated independently from the
training set. All test proteins are distinct from the training set. It consists of 81 Asn residues on
3 high-resolution protein structures including an anthrax protective antigen, an angiogenin,
and a glucoamylase [26-30]. The test set was prepared the same way as the training set. All
structures have a resolution better than or equal to 2.5A. There are additional deamidation data
with lower resolution structures. Since B-factors, which are sensitive to resolution, are used as

PLOS ONE | https://doi.org/10.1371/journal.pone.0181347  July 21,2017 3/17


https://doi.org/10.1371/journal.pone.0181347.g001
https://doi.org/10.1371/journal.pone.0181347

@° PLOS | ONE

Protein deamidation prediction

Table 1. Data set construction.

Data sets Number of proteins Number of Asn residues Deamidated Asn Non-deamidated Asn
Training set 25 194 28 166
Test set 3 81 5 76

https://doi.org/10.1371/journal.pone.0181347.t001

descriptors, we removed those data for this study. The deamidation data sets are binary (deami-
dation—positive or not deamidation—negative). In the training data set, there are 28 positive
and 166 negative data. In the test data set, there are 5 positive and 76 negative data (Table 1).
The training and test data sets are available in S1 Table.

Descriptor set

Our novel descriptor set is a combination of one experimental measurement and a set of struc-
tural features. The experimental measured penta peptide deamidation half-life was obtained
from Robinson et al. [5]. The half-life of Gly-Xxx-Asn-Yyy-Gly represents the deamidation
rate of a penta peptide with the adjacent residues at N and C termini of Asn (N) varied by a
combination of amino acids. Residue Xxx includes G, S, T,C, M, F, Y, D,E,H,K, R, A, L, V, I,
W, and P. There were no data for residues Xxx = N and Xxx = Q. In these 2 cases, we used

Xxx = G data since the Xxx residue does not affect the deamidation half-life much. Residue
Yyyincludes G, H, S, A, D, T,C,K, M, E, R, F, Y, W, L, V, and L. There were no data for resi-
dues Yyy =N, Yyy = Q, and Yyy = P. In the case of Yyy = P, we manually assigned 999 to dea-
midation half-life since the nitrogen atom on proline is not able to perform nucleophilic attack
to Asn side chain carbonyl carbon atom under normal conditions. In the case of Yyy =N
(Gly-Xxx-Asn-Asn-Gly), we can shift one amino acid downward and use Xxx = N case. We
cannot make prediction of the Yyy = Q case.

To compensate the sequence-based penta peptide deamidation half-life descriptors, we
developed a set of structure-based descriptors. The nucleophilic attack distance between Asn
side chain carbonyl C atom and its C-term residue main chain amino N atom (Fig 2) repre-
sents the basic requirement of the chemical transformation to intermediates. Normalized crys-
tallographic B- factors at C, Ca, CB, and Cy atoms of the Asn residue (Fig 2) represent the
flexibility at Asn local region. The B-factors were normalized by obtaining the standard score
(z-score) against all atoms in a certain crystal structure [31]. Z-score = (x-t)/0, where g and o
are the average and standard deviation, respectively, of all atoms’ B-factors in a pdb structure.
B-factor normalization provides relative atomic flexibility to a certain protein. Asn residue and
side chain percentage solvent accessibilities (PSA: Percent Solvent Accessibility and PSSA: Per-
cent Sidechain Solvent Accessibility) were calculated to represent its solvent exposure. BIOVIA
Discovery Studio 4.5 was used to calculate PSA and PSSA. Backbone torsion angles—Phi (¢)
and Psi (y) and side chain torsion angles Chil (;) and Chi2 () of the Asn residue (Fig 2)
represent Asn conformation. We also included Asn local secondary structure which was quan-
tified as the following: alpha helix = 1, beta sheet = 2, coil = 3, and turn = 4. The local secondary
structure was assigned with BIOVIA Discovery Studio 4.0. In total, 13 descriptors were devel-
oped for building the prediction model (Table 2).

Statistics algorithms

Different statistics algorithms have different advantages which are suitable for specific training
and prediction purpose. To obtain high performance models for Asn deamidation prediction
purpose, we tested several statistics algorithms. Five supervised machine learning algorithms:
support vector machine (SVM), random forests (RF), naive Bayes classifier (NBC), K nearest
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Fig 2. The structure-based descriptor set. The set of descriptors includes the nucleophilic attack C-N distance, normalized
crystallographic B- factors at C, Ca, Cf3, and Cy atoms (blue) of the Asn residue, and torsion angles Phi (¢), Psi (w), Chit (x4)
and Chi2 () (magenta).

https://doi.org/10.1371/journal.pone.0181347.g002

neighbor (KNN), and artificial neural network (ANN) and a regression algorithm partial least
squares (PLS) were applied to model building. All statistics algorithms were implemented with
the Caret package (v 6.0-35) [32] in the R project for statistical computing (v 3.1.1). The R
script is available in S1 File.

Table 2. Different types of descriptors that were developed for building deamidation prediction

models.
Experimental measurement (days) Penta-peptide deamidation half-life
Conformations: Asn torsions (degrees) Backbone torsion Phi (@)
Backbone torsion Psi (y)
Sidechain torsion Chit (y1)
Sidechain torsion Chi2 (y5)
Conformations Asn local secondary structure
Flexibility: Normalized B-factors for key carbons on Backbone carbonyl C
Asn Backbone C alpha (Cq)
Sidechain C beta (Cg)
Sidechain C gamma (C,)
Solvent exposure Percent Solvent Accessibility (PSA)
Percent Sidechain Solvent Accessibility
(PSSA)
Reaction coordinate (A) Nucleophilic attack C-N distance

https://doi.org/10.1371/journal.pone.0181347.1002
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The method of support vector machines (SVM) was developed by Vladimir N. Vapnik at
AT&T Bell Labs originally for discriminative classification to solve handwriting recognition
problems [33]. It’s capable to explore subtle patterns in a noisy data set by applying kernel func-
tions and soft margins. This kernel based SVM is very powerful to make predictions by project-
ing the data to a higher dimensional feature space by a kernel function. However, using the
kernel function may introduce overfitting problem. The random forests (RF) method was devel-
oped by Leo Breiman of UC Berkeley [34]. Advantages of RF include the ability to establish
interpretable models, accurate predictive results, resistant to overfitting problems, and fast
training process. Naive Bayes classifier (NBC) is based on Bayes’ theorem [35]. It can only be
applied for classification. NBC requires only a small amount of training data to estimate the
parameters necessary for classification and can be scaled very well to very large data sets. NBC
has a little difficulty with noisy or missing data. K nearest neighbor (KNN) is a method for clas-
sifying objects based on closest training examples in the feature space (feature similarity cluster-
ing) [36]. KNN is one of the simplest machine learning algorithms. The interpretable algorithm
has simple implementation in which only one parameter-K needs to be tuned. One disadvan-
tage of the method is that it’s computationally intensive. Artificial neural network (ANN) is a
mathematical model that is inspired by the structure and functional aspects of biological neural
networks [37]. ANN is one commonly used artificial intelligent (AI) tool and able to learn from
training data. When an element of the neural network fails, it can continue without any prob-
lem by its parallel nature. ANN requires a large diversity of training set in real-world operation.
Partial least squares (PLS) is one of the most commonly used regression tools in bioinformatics
and cheminformatics [38]. It’s an extension of the multiple linear regression method. PLS can
reduce many factors to a few latent factors thus avoids overfitting problem.

Model building, validation and testing

Before training, the data were centered and scaled by using a preprocess function in each of the
training algorithms. We built binary classification models to predict a residue can be deamidated
or not. The model also output probabilities for classification, which can be used to rank the dea-
midation tendency. The Caret package automatically tuned the parameters in these models by
grid search. Ten-fold cross validation was carried out by using the same training set. The accu-
racy of the 10-fold cross validation was used for evaluating different statistics algorithms.

To rigorously evaluate the modeling performance for generally predicting real data, a
“blind” test was carried out for each model. Those deamidation data were independent from
the training data set. The accuracy from this test process was used for checking whether the
models were overfitted. In addition to prediction accuracy, ROC was plotted and AUC value
was calculated for each model to evaluate the prediction performance. ROC plots correlation
between True Positive Rate (TPR) and False Positive Rate (FPR). They are defined as the fol-
lowing:

TP
True Positive Rate (Recall) = ————
TP+ FN
L FP
False Positive Rate = ————
FP+ TN

Confusion matrix: True Positive (TP); False Positive (FP); True Negative (TN); and False
Negative (FN) was calculated in order to compute additional statistical metrics. Accuracy is
the ratio between corrected predicted cases and all cases. It can only provide a very general
evaluation of the classifier’s performance. Accuracy lacks the enrichment of the model. AUC
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value represents the enrichment of the prediction based on true positive rate (recall) vs false
positive rate on the ROC plot. Thus the AUC value is better in evaluating prediction perfor-
mance than accuracy. Since our data sets were unbalanced toward to negatives, positive pre-
diction (predicting deamidation case) was more challenging than negative prediction. Given
the limitation of AUC value for classification prediction of unbalanced data set [39], we also
analyzed precision, recall (as known as TPR), and specificity metrics to further evaluate the
positive prediction performance in comparing to negative prediction performance. Finally, we
calculated Matthews correlation coefficient (MCC) [40] as a single metrics to capture full con-
fusion matrix.

TP

Precision = ——
TP + FP

e TN
Speczfzczty = m

TP « TN — FP x FN

MCC =
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Feature selection

In order to connect statistics modeling results to the biophysical and structural information,
feature selection was performed with recursive feature elimination (RFE) method from the
Caret package. RFE evaluates critical descriptors which contribute most to the prediction
models. The high impact descriptors can help protein scientists to better design protein
mutants and construct screening libraries based on understanding the protein properties on
structural and biophysical levels.

Results and discussion
Data set construction

Our training data set contains 25 proteins and 194 Asn residues which have risk to deamida-
tion. Among the 194 Asn residues, 28 were experimentally measured to be deamidated. And
the rest of 166 residues were stable. The independent test set contains 3 proteins and 81 Asn
residues. Among the 81 Asn residues, 5 were experimentally measured to be deamidated. And
the rest of 76 residues were stable (Table 1). All proteins have high-resolution x-ray crystal
structures for structure-based prediction. Due to the nature of deamidation which is not fre-
quently observed, and the availability of high resolution crystal structure, the data sets are both
small and unbalanced. However, the training data is similar to the test and target data in terms
of proportions of the two binary outcomes. Even though the size of data sets are limited, the
protein structures are reasonably diversified, containing a wide variety of protein classes as
defined in Structural Classification of Proteins database (SCOP) [41]. In this work, we demon-
strated a predictive deamidation model can still be obtained with such a small training data set
by well developing a descriptor set tailored to deamidation mechanism.

Training binary deamidation prediction models and cross validation

The binary deamidation prediction models were trained with 6 different statistics algorithms.
Ten-fold cross validation (CV) was conducted to evaluate the overall training performance of
different algorithms (Table 3). All models had reasonable overall CV accuracy (greater than

PLOS ONE | https://doi.org/10.1371/journal.pone.0181347  July 21,2017 7/17


https://doi.org/10.1371/journal.pone.0181347

@' PLOS | ONE

Protein deamidation prediction

Table 3. Cross validation of binary deamidation prediction models.

Methods SVM

RF NBC KNN ANN PLS

CV Accuracy 0.86

0.90 0.83 0.86 0.86 0.86

https://doi.org/10.1371/journal.pone.0181347.t1003

0.8). Random Forest (RF) outperformed others and reached 0.9 accuracy. The RF algorithm is
based on binary decision trees. We focused on the RF model in the further testing study.

Testing prediction models with an external test set

To rigorously test the prediction models, we used an independent test set for blind prediction
exercise. In the test process, besides to the overall accuracy, we used additional performance
measurements to further evaluate the prediction models. True positive and negative counts are
cases of correctly predicted to be deamidation and non-deamidation, respectively. False posi-
tive and negative counts are cases of wrongly predicted to be deamidation and non-deamida-
tion, respectively. AUC value of receiver operating characteristic (ROC) plot was used to
evaluate the enrichment of positive prediction results (Fig 3).

Table 4 shows the test results. Comparing between CV and the blind test, the overall accu-
racy was generally increased (except for NBC). This comparison demonstrated that most mod-
els were not overfitted. Even though the overall accuracy was high in most models, the
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Fig 3. ROC plots for external test set predictions with different methods. The RF method (purple solid line) outperformed the

rests.

https://doi.org/10.1371/journal.pone.0181347.9003
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Table 4. Blind test of binary deamidation prediction models.

Methods SVM
Accuracy 0.94
True Positive 0
True Negative 76
False Positive 0
False Negative 5
AUC 0.73
Recall (TPR) 0
Specificity
Precision -
MCC 0

https://doi.org/10.1371/journal.pone.0181347.t1004

RF NBC KNN ANN PLS
0.95 0.75 0.94 0.94 0.95
4 3 0 0 1
73 58 76 76 76
3 18 0 0 0
1 2 5 5 4
0.96 0.76 0.74 0.69 0.71
0.80 0.60 0 0 0.20

0.96 0.76 1 1 1
0.57 0.14 - - 1
0.65 0.20 0 0 0.44

enrichment measurement by using the AUC value revealed difference between models. The
RF model outperformed others again in the testing case. S1 Table reported the prediction
details of the RF model with deamidation probability. By ranking the probability, all 5 deami-
dated Asn were enriched with highly ranked probabilities.

Since the deamidation data sets are unbalanced toward the negative case, it is necessary to
further evaluate the performance in predicting positive and negative cases separately. Recall
was used to measure how accurate the model can correctly predict deamidated Asn (positive
cases) among all experimentally measured deamidated Asn, while specificity was used to mea-
sure how accurate the model can correctly predict non-deamidated Asn (negative cases)
among all experimentally measured non-deamidated Asn. We observed more challenges in
positive prediction than negative prediction when comparing recall and specificity. All meth-
ods had specificity greater than 0.75 for predicting negatives. But the best recall was 0.80 from
the RF model by which 80% of all measured deamidated Asn could be correctly predicted.
SVM, ANN, and KNN simply predicted all test cases to be negative. So they reached an
extreme of 0 for recall and 1 for specificity. Such prediction performance is not acceptable but
was rather influenced by artifact from the unbalanced training data. However, simply using
accuracy cannot reveal this performance issue. When considering positive and negative pre-
diction performance separately, RF still outperformed other models.

Investigation of NG-motif based deamidation prediction and comparison
to another sequence-based prediction

The penta-peptide deamidation measurement showed that the NG motif subjected the highest
risk of deamidation. Actually, some sequence-based deamidation tools just simply flag all NG
motifs to be deamidated. In reality, not all NG motifs are liable to deamidation. We tried to
use our structure-based prediction method for more accurately predicting non-deamidated
NG motifs, which are the most challenging in all deamidation prediction cases. Correctly pre-
dicting non-deamidated NG motifs is also very important in designing mutation screening
libraries to effectively narrow down the library size and avoid over-engineering proteins. In
addition, we compared our structure-based method with another published sequence-based
method NGOME [13]. Same test set was use for NG-motif and NGOME methods. The NG-
motif method simply predicted all NG-motifs to be deamidated and other asparagine residues
not being deamidated. We used the NGOME web service with their default parameters to con-
duct sequence-based prediction. The RF method from our work was used for comparison.
Table 5 showed comparison between the 3 methods. Fig 4 highlighted the NG-motif and
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Table 5. Comparison between NG-motif, NGOME, and our structure-based prediction methods.

Methods NG-motif NGOME Structure-based (RF)
Accuracy 0.91 0.91 0.95
True Positive 5 4 4
True Negative 69 70 73
False Positive 7 6 3
False Negative 0 1 1
Recall (TPR) 1 0.80 0.80
Specificity 0.91 0.92 0.96
Precision 0.42 0.40 0.57
Mcc 0.62 0.53 0.65

https://doi.org/10.1371/journal.pone.0181347.1005

NGOME performance on the ROC plot of the RF method. Comparing all three methods, our
structure-based method performed slightly better than the NG-motif method, and both meth-
ods performed better than NGOME, which had a higher FP comparing to our RF method and
a higher FN comparing to NG-motif method. NG-motif method had better recall but sacri-
ficed specificity and precision comparing to our RF method. Increased false positive prediction
causes over-engineering of protein which can lead to stability and activity issues.
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Fig 4. Performance comparison between NG-motif, NGOME and our structure-based methods. NG-motif and NGOME
prediction performances were represented by plotting the TPR v.s. FPR points (red triangle for NG-motif and blue square for
NGOME) on the ROC of the RF method (purple line).

https://doi.org/10.1371/journal.pone.0181347.9004
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Our best model, RF method, correctly predicted 4 out of 7 non-deamidated NG motifs (S1
Table). This accuracy is acceptable but not very high. Two directions may improve prediction
accuracy of the non-deamidated NG motif: 1. Develop more sophisticated descriptors by
understanding the difference between deamidated and non-deamidated NG motifs. 2. Enrich
the data set to increase signal to noise ratio. On the other hand, SVM, ANN, and KNN cor-
rectly predicted all 7 non-deamidated NG motifs by simply predicting all residues in the test
set (including the 5 deamidated NG motifs) to be negatives (Table 4). So in term of the overall
performance, SVM, ANN, and KNN are no better than the NG-motif method.

Feature selection and understanding protein deamidation on structure
level

To connect the statistics prediction with biophysical and structural information of the models,
feature selection was carried out with recursive feature elimination (RFE) in the Caret package.
RFE ranks the importance of the descriptors by comparing their weight contribution in a
model. We used the best performed RF model to conduct feature selection. The experimentally
measured penta-peptide deamidation half-life ranked the highest among all descriptors with a
heavy weight (Table 6). It demonstrated the importance of this experimentally measured prop-
erty in the prediction model. Although most of other weights are similar, we did observe some
differences which made scientific sense. Asn torsion angles as well as normalized B-factors
played very important roles in the deamidation model. Torsion angle describes detailed con-
formation which significantly influences the position of the Asn side chain carbonyl carbon
atom and its C-term residue’s backbone amino nitrogen atom, the key atoms in the deamida-
tion chemical reaction. Among the 2 backbone torsions, psi is more important than phi. Psi is
the torsion close to the C-term residue of Asn, while phi is the torsion close to the N-term resi-
due of Asn, (Fig 2). This observation is consistent to the evidence that the C-term residue of
Asn has more influence to deamidation than Asn’s N-term residue. The side chain torsion
chi2 is more important than chil. Chi2 is closer to the nucleophilic attacked carbonyl than
chil. Backbone torsions are generally more important that the side chain torsions. This indi-
cates that the backbone conformation is more important to influence deamidation than the
side chain conformation.

The normalize B-factors provide the flexibility measurement which is very useful informa-
tion on top of the static coordinate from the X-ray crystallographic data. In order to conduct

Table 6. Features (descriptors) ranking by RFE (the RF model).

Features Weight
Half_life 100
norm_B_factor_CB 17.629
Psi 16.434
Chi2 16.356
Phi 14.112
norm_B_factor_CA 12.762
Chit 8.849
norm_B_factor_C 8.619
norm_B_factor_CG 7.600
PSA 6.842
PSSA 5.384
attack_distance 5.075
secondary_structure 0

https://doi.org/10.1371/journal.pone.0181347.t1006
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deamidation reaction, we hypothesized that the Asn-Yyy residues should be flexible enough to
allow the reactive carbon and nitrogen atoms to approach to a feasible distance for nucleo-
philic attack as well as avoid clashes between newly formed succinimide intermediate and its
surrounding environment. We observed that the CB’s B-factor has a significant higher contri-
bution to the model than other B-factors. The next important B-factor is CA’s. CB is generally
more flexible than backbone C and CA atoms. Both CA and CB flexibility can lead to higher
flexibility on CG since they are covalently linked. And CG is the end carbon atom out of the 4.

The PSA and PSSA were ranked slightly lower than the torsional and flexibility descriptors
but with not so different weights. Surface residues have relatively higher flexibility than that of
buried residues. In addition, surface residues are more accessible to water, which plays impor-
tant role in the deamidation reaction. All of these rankings did make structural biology sense.
To our surprise, the nucleophilic attack C-N distance did not rank high. But this feature has a
direct connection to deamidation reaction. Note that we obtained the nucleophilic attack the
carbon and the nitrogen atoms (C-N) distance by using the static coordinates from X-ray crys-
tallography, which did not necessarily represent the actual dynamics of the C-N distance in
solution. Using the C-N distance from ensemble structures by molecule dynamics simulations
of these proteins would make more sense.

Purely sequence-based prediction by using only experimentally measured deamidation
half-life as a single descriptor would derive a model which predicts all NG motifs to be deami-
dated (the NG-motif method). With additional structure-based descriptors, some non-deami-
dated NG can be identified. Moreover, structural descriptors help protein engineers to better
understand deamidation at the molecular level and provide guidance in stable protein design.

Evaluating models with unbalanced data set

There are many metrics which can be used to evaluate the performance of a prediction model.
Accuracy and AUC value are the most commonly used metrics for this purpose. Accuracy can
only provide a very general evaluation of the classifier’s performance without enrichment
information. However, AUC value describes the enrichment of the prediction based on true
positive rate (recall) vs false positive rate on the ROC plot (Fig 4). The enrichment information
can be useful to evaluate unbalanced data set. For example, both PLS and RF methods had the
same 0.95 overall prediction accuracy, since they all made 4 false predictions (Table 4). How-
ever, the RF method was considered as a much better performed model than PLS because it
more effectively predicted the positives (4 out of 5) which was a much smaller portion compar-
ing the negatives in the data set. While the PLS method only correctly predicted 1 out of 5 posi-
tive cases. The AUC values of RF (0.96) and PLS (0.71) reflected the difference.

On the other hand, AUC value cannot always provide unbiased evaluation to classifiers with
unbalanced dataset as suggested by Lever et al [39]. For unbalanced data sets, using recall, speci-
ficity, and precision can also be very effective to evaluate the true performance of the model.
These metrics are all calculated based on the confusion matrix. In our example, both training
and test data sets were unbalanced toward negatives. There are much more non-deamidated
Asn than deamidated Asn in proteins. So in our models, it is very easy to reach high specificity
across the board (Table 4), but there is a challenge to reach high recall. In an extreme case, if the
method blindly predicted all Asn to be negatives as in SVM, ANN, and KNN, the specificity
reached 1, and the recall was 0. These three methods perfectly predicted negatives but failed to
correctly predict any positives. Practically speaking, we care more of accurately predicting dea-
midated residues. As the performance of the models, recall would be more focused comparing
to specificity. So SVM, ANN, and KNN were the three worst models. On the other hand, the
recall of the RF model reached 0.80, which was considered to be satisfied.
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Precision is to evaluate the positive prediction efficiency. It is used to measure how efficient
of the positive prediction (among all predicted deamidation cases, the portion that is correctly
predicted). It should not be confused with recall. The major diffidence between the two met-
rics is that precision considers the success of positive prediction among all predicted positives.
Recall considers the success of positive prediction among all experimentally measured positives
(positive as a fact). For our purpose, balancing both high recall and precision is important
since we care how accurate the deamidated residues can be predicted (recall) as well as how
efficient of the prediction to avoid many false positives (precision). In the PLS model, the pre-
cision was 1. This model only predicted one Asn to be positive. And that one Asn was correctly
predicted (Table 4). However, the rest of 4 measured positive cases were not correctly pre-
dicted. So, its recall was only 0.2. Therefore, although PLS had a perfect precision, it was not
considered to be a good model due to the low recall. In the above discussed sequence-based
method, all NG motifs were simple flagged as positives. Even though the recall was higher than
the RF method (1 vs 0.8, Table 5), there were more false positives so that the precision dropped
to 0.42, comparing to 0.57 in the RF model. Therefore, the sequence-based method was also
not an optimized method.

Moreover, Matthews correlation coefficient (MCC) value captures information of the
whole confusion matrix. It can be used to evaluate classifiers derived from unbalanced data
sets as a single value. MCC ranges from -1 which, reflects that the prediction is always wrong,
to 1, which reflects that the prediction is always correct. An MCC of 0 reflects a random pre-
diction [39, 40]. In our test cases, RF has the highest MCC value of 0.65. SVM, ANN, and
KNN have the worst MCC of 0. These three methods made random predictions since they pre-
dicted all Asn residues to be non-deamidated (negative).

In summary, when assessing the performance of predictions with unbalanced data sets, the
purpose of prediction should be considered upfront. (Whether true positive or true negative pre-
diction is considered to be more important and which part is the minor portion?) Then the right
metrics (recall, specificity, precision, or MCC) can be selected to represent the performance.

Application to aspartic acid isomerization

The similar reaction can happen to Asp residue and transforms it to IsoAsp. Such reaction
makes Asp being considered as a protein hotspot of isomerization. Asp isomerization has been
reported on antibodies by multiple papers [42-44]. Comparing to Asn deamidation, Asp
isomerization has a higher rate at low pH (< 5.5) [1]. So when protein is formulated at low pH
condition, Asp isomerization becomes a concern. Unlike Asn deamidation, Asp isomerization
is more challenging to be detected by mass spectrometry due to the same molecular mass of the
product IsoAsp comparing to Asp. Thus, accurate prediction of Asp isomerization is even more
important than Asn deamidation prediction. Our Asn deamidation prediction method can be
applied to Asp isomerization prediction. The descriptor set is capable to represent isomeriza-
tion. More accurate results can be obtained with protein isomerization specific data set, which
is more difficult to obtain due to the above mentioned measurement challenge. Sharma et al.
reported an antibody isomerization prediction method based on logistic regression with consid-
eration of solvent exposure and flexibility of the Asp residue [45]. Their prediction to the liable
motifs DD, DG, DS, and DT performed pretty well with only one reported false negative.

Conclusions

The machine learning models, using structure-based descriptors, described in this work for
deamidation prediction achieved improved accuracy compared to existing methods. The
application can make deamidation predictions to proteins but not limited to antibodies.
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Compared to sequence-based methods, structure-based methods provide insights to better
understanding the molecular basis of deamidation event. Enriching the training data set to
contain more diversified protein deamidation data would further increase the prediction accu-
racy. Using machine learning methods to predict structure-function relationship in protein
engineering faces lots of challenges. Proteins have highly diversified structures being encoded
by their primary sequences. And proteins undergo concerted dynamics in order to conduct
their functions. In this work, the descriptor set for deamidation prediction has been well devel-
oped in connection to chemical reactions. The set includes an experimental measurement as
well as structural features. However, there could be improvements when the dynamics of the
protein, which can be investigated by molecular dynamics simulations, is considered. Under
the circumstance of the imperfect training data set and descriptor set, the statistical machine
learning algorithms play important roles in removing the noise, and amplifying the signal of
the data. Theoretically speaking, when perfect descriptors can be obtained, the very simple sta-
tistical algorithm should be good enough to construct a predictive model without overfitting
the data. While in reality, we always balance the three key components: the training data set,
the descriptor set, and statistical algorithms, in a prediction modeling process to optimize pre-
diction performance. Finally, since protein engineering data sets are often noisy and unbal-
anced, it’s critical to select proper statistical metrics for performance evaluation.

Supporting information

S1 Table. Data sets being used for training and testing as well as the RF model results.
(XLSX)

S1 File. R script for training and test models.
(TXT)

Acknowledgments

We thank Riki Stevenson, Pavel Bondarenko, Da Ren, Drew Nichols, Francis Kinderman,
Randy Ketchem, Guna Kannan, and Neeraj Jagdish Agrawal for their insightful discussions.

Author Contributions
Conceptualization: Lei Jia.

Data curation: Lei Jia.

Formal analysis: Lei Jia, Yaxiong Sun.
Investigation: Lei Jia, Yaxiong Sun.
Methodology: Lei Jia.

Project administration: Lei Jia.
Resources: Lei Jia.

Software: Lei Jia.

Validation: Lei Jia.

Visualization: Lei Jia.

Writing - original draft: Lei Jia.

Writing - review & editing: Lei Jia, Yaxiong Sun.

PLOS ONE | https://doi.org/10.1371/journal.pone.0181347  July 21,2017 14/17


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181347.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181347.s002
https://doi.org/10.1371/journal.pone.0181347

@° PLOS | ONE

Protein deamidation prediction

References

1.

10.

11.

12

13.

14.

15.

16.

17.

18.

Wakankar AA, Borchardt RT. Formulation considerations for proteins susceptible to asparagine deami-
dation and aspartate isomerization. Journal of pharmaceutical sciences. 2006; 95(11):2321-36. https://
doi.org/10.1002/jps.20740 PMID: 16960822.

Bischoff R, Kolbe HV. Deamidation of asparagine and glutamine residues in proteins and peptides:
structural determinants and analytical methodology. Journal of chromatography B, Biomedical applica-
tions. 1994; 662(2):261-78. PMID: 7719481.

Robinson AB, Scotchler JW, McKerrow JH. Rates of nonenzymic deamidation of glutaminyl and aspar-
aginyl residues in pentapeptides. Journal of the American Chemical Society. 1973; 95(24):8156-9.
https://doi.org/10.1021/ja00805a032 PMID: 4762548

Chelius D, Rehder DS, Bondarenko PV. Identification and characterization of deamidation sites in the
conserved regions of human immunoglobulin gamma antibodies. Analytical chemistry. 2005; 77
(18):6004—11. https://doi.org/10.1021/ac050672d PMID: 16159134.

Robinson NE, Robinson AB. Molecular clocks. Proceedings of the National Academy of Sciences of the
United States of America. 2001; 98(3):944-9. https://doi.org/10.1073/pnas.98.3.944 PMID: 11158575;
PubMed Central PMCID: PMC14689.

Robinson NE. Protein deamidation. Proceedings of the National Academy of Sciences of the United
States of America. 2002; 99(8):5283-8. hitps://doi.org/10.1073/pnas.082102799 PMID: 11959979;
PubMed Central PMCID: PMC122761.

Robinson NE, Robinson AB. Prediction of primary structure deamidation rates of asparaginyl and gluta-
minyl peptides through steric and catalytic effects. The journal of peptide research: official journal of the
American Peptide Society. 2004; 63(5):437—48. https://doi.org/10.1111/j.1399-3011.2004.00148.x
PMID: 15140161.

Konuklar FA, Aviyente V, Ruiz Lopez MF. Theoretical Study on the Alkaline and Neutral Hydrolysis of
Succinimide Derivatives in Deamidation Reactions. The Journal of Physical Chemistry A. 2002; 106
(46):11205—14. https://doi.org/10.1021/jp026153|

Konuklar FAS, Aviyente V, Sen TZ, Bahar |. Modeling the deamidation of asparagine residues via succi-
nimide intermediates. Molecular modeling annual. 2001; 7(5):147-60.

Radkiewicz JL, Zipse H, Clarke S, Houk KN. Accelerated Racemization of Aspartic Acid and Aspara-
gine Residues via Succinimide Intermediates: An ab Initio Theoretical Exploration of Mechanism. Jour-
nal of the American Chemical Society. 1996; 118(38):9148-55. https://doi.org/10.1021/ja953505b

Radkiewicz JL, Zipse H, Clarke S, Houk KN. Neighboring side chain effects on asparaginyl and aspartyl
degradation: an ab initio study of the relationship between peptide conformation and backbone NH acid-
ity. J Am Chem Soc. 2001; 123(15):3499-506. PMID: 11472122.

Sydow JF, Lipsmeier F, Larraillet V, Hilger M, Mautz B, Molhoj M, et al. Structure-based prediction of
asparagine and aspartate degradation sites in antibody variable regions. PloS one. 2014; 9(6):
e€100736. https://doi.org/10.1371/journal.pone.0100736 PMID: 24959685; PubMed Central PMCID:
PMC4069079.

Lorenzo JR, Alonso LG, Sanchez IE. Prediction of Spontaneous Protein Deamidation from Sequence-
Derived Secondary Structure and Intrinsic Disorder. PloS one. 2015; 10(12):e0145186. https://doi.org/
10.1371/journal.pone.0145186 PMID: 26674530; PubMed Central PMCID: PMC4682632.

Robinson NE, Robinson AB. Prediction of protein deamidation rates from primary and three-dimen-
sional structure. Proceedings of the National Academy of Sciences of the United States of America.
2001; 98(8):4367—72. https://doi.org/10.1073/pnas.071066498 PMID: 11296285; PubMed Central
PMCID: PMC31841.

Noguchi S. Conformational variation revealed by the crystal structure of RNase U2A complexed with
Caion and 2’-adenylic acid at 1.03 A resolution. Protein and peptide letters. 2010; 17(12):1559-61.
PMID: 20858208.

Capasso S, Di Cerbo P. Kinetic and thermodynamic control of the relative yield of the deamidation of
asparagine and isomerization of aspartic acid residues. The journal of peptide research: official journal
of the American Peptide Society. 2000; 56(6):382—7. PMID: 11152297.

Sinha S, Zhang L, Duan S, Williams TD, Vlasak J, lonescu R, et al. Effect of protein structure on deami-
dation rate in the Fc fragment of an IgG1 monoclonal antibody. Protein science: a publication of the Pro-
tein Society. 2009; 18(8):1573-84. https://doi.org/10.1002/pro.173 PMID: 19544580; PubMed Central
PMCID: PMC2776945.

Vlasak J, Bussat MC, Wang S, Wagner-Rousset E, Schaefer M, Klinguer-Hamour C, et al. Identification
and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody.
Analytical biochemistry. 2009; 392(2):145-54. https://doi.org/10.1016/j.2b.2009.05.043 PMID:
19497295.

PLOS ONE | https://doi.org/10.1371/journal.pone.0181347  July 21,2017 15/17


https://doi.org/10.1002/jps.20740
https://doi.org/10.1002/jps.20740
http://www.ncbi.nlm.nih.gov/pubmed/16960822
http://www.ncbi.nlm.nih.gov/pubmed/7719481
https://doi.org/10.1021/ja00805a032
http://www.ncbi.nlm.nih.gov/pubmed/4762548
https://doi.org/10.1021/ac050672d
http://www.ncbi.nlm.nih.gov/pubmed/16159134
https://doi.org/10.1073/pnas.98.3.944
http://www.ncbi.nlm.nih.gov/pubmed/11158575
https://doi.org/10.1073/pnas.082102799
http://www.ncbi.nlm.nih.gov/pubmed/11959979
https://doi.org/10.1111/j.1399-3011.2004.00148.x
http://www.ncbi.nlm.nih.gov/pubmed/15140161
https://doi.org/10.1021/jp026153l
https://doi.org/10.1021/ja953505b
http://www.ncbi.nlm.nih.gov/pubmed/11472122
https://doi.org/10.1371/journal.pone.0100736
http://www.ncbi.nlm.nih.gov/pubmed/24959685
https://doi.org/10.1371/journal.pone.0145186
https://doi.org/10.1371/journal.pone.0145186
http://www.ncbi.nlm.nih.gov/pubmed/26674530
https://doi.org/10.1073/pnas.071066498
http://www.ncbi.nlm.nih.gov/pubmed/11296285
http://www.ncbi.nlm.nih.gov/pubmed/20858208
http://www.ncbi.nlm.nih.gov/pubmed/11152297
https://doi.org/10.1002/pro.173
http://www.ncbi.nlm.nih.gov/pubmed/19544580
https://doi.org/10.1016/j.ab.2009.05.043
http://www.ncbi.nlm.nih.gov/pubmed/19497295
https://doi.org/10.1371/journal.pone.0181347

@° PLOS | ONE

Protein deamidation prediction

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

Chaves JM, Srivastava K, Gupta R, Srivastava OP. Structural and functional roles of deamidation and/
or truncation of N- or C-termini in human alpha A-crystallin. Biochemistry. 2008; 47(38):10069-83.
https://doi.org/10.1021/bi8001902 PMID: 18754677.

Tholey A, Pipkorn R, Bossemeyer D, Kinzel V, Reed J. Influence of myristoylation, phosphorylation,
and deamidation on the structural behavior of the N-terminus of the catalytic subunit of cAMP-depen-
dent protein kinase. Biochemistry. 2001; 40(1):225-31. PMID: 11141074.

Aritomi M, Kunishima N, Inohara N, Ishibashi Y, Ohta S, Morikawa K. Crystal structure of rat Bcl-xL.
Implications for the function of the Bcl-2 protein family. The Journal of biological chemistry. 1997; 272
(44):27886—92. PMID: 9346936.

di Salvo ML, Delle Fratte S, Maras B, Bossa F, Wright HT, Schirch V. Deamidation of asparagine resi-
dues in a recombinant serine hydroxymethyltransferase. Archives of biochemistry and biophysics.
1999; 372(2):271-9. https://doi.org/10.1006/abbi.1999.1512 PMID: 10600164.

Fukuda M, Takao T. Quantitative analysis of deamidation and isomerization in beta2-microglobulin by
180 labeling. Analytical chemistry. 2012; 84(23):10388-94. https://doi.org/10.1021/ac302603b PMID:
23126476.

Jha SK, Deepalakshmi PD, Udgaonkar JB. Characterization of deamidation of barstar using electro-
spray ionization quadrupole time-of-flight mass spectrometry, which stabilizes an equilibrium unfolding
intermediate. Protein science: a publication of the Protein Society. 2012; 21(5):633—46. https://doi.org/
10.1002/pro.2047 PMID: 22431291; PubMed Central PMCID: PMC3403461.

Noguchi S. Structural changes induced by the deamidation and isomerization of asparagine revealed
by the crystal structure of Ustilago sphaerogena ribonuclease U2B. Biopolymers. 2010; 93(11):1003—
10. https://doi.org/10.1002/bip.21514 PMID: 20623666.

Tattini V Jr., Parra DF, Polakiewicz B, Pitombo RN. Effect of lyophilization on the structure and phase
changes of PEGylated-bovine serum albumin. International journal of pharmaceutics. 2005; 304(1-
2):124-34. https://doi.org/10.1016/j.ijpharm.2005.08.006 PMID: 16188407.

Hallahan TW, Shapiro R, Strydom DJ, Vallee BL. Importance of asparagine-61 and asparagine-109 to
the angiogenic activity of human angiogenin. Biochemistry. 1992; 31(34):8022—9. PMID: 1380830.

Zhou HM, Strydom DJ. The amino acid sequence of human ribonuclease 4, a highly conserved ribonu-
clease that cleaves specifically on the 3’ side of uridine. European journal of biochemistry / FEBS. 1993;
217(1):401-10. PMID: 8223579.

Chen HM, Ford C, Reilly PJ. Substitution of asparagine residues in Aspergillus awamori glucoamylase
by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. The Bio-
chemical journal. 1994; 301 (Pt 1):275-81. PMID: 8037681; PubMed Central PMCID: PMC1137172.

Reilly PJ, Chen HM, Bakir U, Ford C. Increased thermostability of Asn182 —> Ala mutant Aspergillus
awamori glucoamylase. Biotechnology and bioengineering. 1994; 43(1):101-5. https://doi.org/10.1002/
bit.260430113 PMID: 18613315.

Carugo O. Correlation between occupancy and B factor of water molecules in protein crystal structures.
Protein engineering. 1999; 12(12):1021—-4. PMID: 10611392.

Kuhn M. Building predictive models in R using the caret package. Journal of Statistical Software. 2008;
28(5):1-26.

Cortes C, Vapnik V. Support-Vector Networks. Machine Learning. 1995; 20(3):273-97. hitps://doi.org/
10.1023/A:1022627411411

Breiman L. Random forests. Machine Learning. 2001; 45(1):5-32.

Rish |, editor An empirical study of the naive Bayes classifier. [JCAI 2001 workshop on empirical meth-
ods in artificial intelligence; 2001.

Keller JM, Gray MR, Givens JA. A fuzzy k-nearest neighbor algorithm. Systems, Man and Cybernetics,
IEEE Transactions on. 1985;(4):580-5.

Hagan MT, Demuth HB, Beale MH. Neural Network Design: Campus Pub. Service, University of Colo-
rado Bookstore; 2002.

Geladi P, Kowalski BR. Partial least-squares regression: a tutorial. Analytica chimica acta. 1986;
185:1-17.

Lever J, Krzywinski M, Altman N. Points of Significance: Classification evaluation. Nat Meth. 2016; 13
(8):603—4. https://doi.org/10.1038/nmeth.3945

Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.
Biochimica et biophysica acta. 1975; 405(2):442-51. PMID: 1180967.

Hubbard TJ, Ailey B, Brenner SE, Murzin AG, Chothia C. SCOP: a Structural Classification of Proteins
database. Nucleic acids research. 1999; 27(1):254—6. PMID: 9847194; PubMed Central PMCID:
PMC148149.

PLOS ONE | https://doi.org/10.1371/journal.pone.0181347  July 21,2017 16/17


https://doi.org/10.1021/bi8001902
http://www.ncbi.nlm.nih.gov/pubmed/18754677
http://www.ncbi.nlm.nih.gov/pubmed/11141074
http://www.ncbi.nlm.nih.gov/pubmed/9346936
https://doi.org/10.1006/abbi.1999.1512
http://www.ncbi.nlm.nih.gov/pubmed/10600164
https://doi.org/10.1021/ac302603b
http://www.ncbi.nlm.nih.gov/pubmed/23126476
https://doi.org/10.1002/pro.2047
https://doi.org/10.1002/pro.2047
http://www.ncbi.nlm.nih.gov/pubmed/22431291
https://doi.org/10.1002/bip.21514
http://www.ncbi.nlm.nih.gov/pubmed/20623666
https://doi.org/10.1016/j.ijpharm.2005.08.006
http://www.ncbi.nlm.nih.gov/pubmed/16188407
http://www.ncbi.nlm.nih.gov/pubmed/1380830
http://www.ncbi.nlm.nih.gov/pubmed/8223579
http://www.ncbi.nlm.nih.gov/pubmed/8037681
https://doi.org/10.1002/bit.260430113
https://doi.org/10.1002/bit.260430113
http://www.ncbi.nlm.nih.gov/pubmed/18613315
http://www.ncbi.nlm.nih.gov/pubmed/10611392
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1038/nmeth.3945
http://www.ncbi.nlm.nih.gov/pubmed/1180967
http://www.ncbi.nlm.nih.gov/pubmed/9847194
https://doi.org/10.1371/journal.pone.0181347

@° PLOS | ONE

Protein deamidation prediction

42,

43.

44.

45.

Dick LW Jr., Qiu D, Wong RB, Cheng KC. Isomerization in the CDR2 of a monoclonal antibody: Binding
analysis and factors that influence the isomerization rate. Biotechnology and bioengineering. 2010; 105
(3):515-23. https://doi.org/10.1002/bit.22561 PMID: 19806678.

Kang PJ, Craig EA. Identification and characterization of a new Escherichia coli gene that is a dosage-
dependent suppressor of a dnaK deletion mutation. Journal of bacteriology. 1990; 172(4):2055-64.
PMID: 2180916; PubMed Central PMCID: PMC208704.

Wakankar AA, Borchardt RT, Eigenbrot C, Shia S, Wang YJ, Shire SJ, et al. Aspartate isomerization in
the complementarity-determining regions of two closely related monoclonal antibodies. Biochemistry.
2007; 46(6):1534—44. https://doi.org/10.1021/bi061500t PMID: 17279618.

Sharma VK, Patapoff TW, Kabakoff B, Pai S, Hilario E, Zhang B, et al. In silico selection of therapeutic
antibodies for development: viscosity, clearance, and chemical stability. Proceedings of the National
Academy of Sciences of the United States of America. 2014; 111(52):18601-6. https://doi.org/10.1073/
pnas.1421779112 PMID: 25512516; PubMed Central PMCID: PMC4284567.

PLOS ONE | https://doi.org/10.1371/journal.pone.0181347  July 21,2017 17/17


https://doi.org/10.1002/bit.22561
http://www.ncbi.nlm.nih.gov/pubmed/19806678
http://www.ncbi.nlm.nih.gov/pubmed/2180916
https://doi.org/10.1021/bi061500t
http://www.ncbi.nlm.nih.gov/pubmed/17279618
https://doi.org/10.1073/pnas.1421779112
https://doi.org/10.1073/pnas.1421779112
http://www.ncbi.nlm.nih.gov/pubmed/25512516
https://doi.org/10.1371/journal.pone.0181347

