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Whole-transcriptome analysis of 
atrophic ovaries in broody chickens 
reveals regulatory pathways 
associated with proliferation and 
apoptosis
Lingbin Liu1,2, Qihai Xiao1, Elizabeth R. Gilbert2, Zhifu Cui1, Xiaoling Zhao1, Yan Wang1, 
Huadong Yin1, Diyan Li1, Haihan Zhang2 & Qing Zhu1

Broodiness in laying hens results in atrophy of the ovary and consequently decreases productivity. 
However, the regulatory mechanisms that drive ovary development remain elusive. Thus, we collected 
atrophic ovaries (AO) from 380-day-old broody chickens (BC) and normal ovaries (NO) from even-
aged egg-laying hens (EH) for RNA sequencing. We identified 3,480 protein-coding transcripts that 
were differentially expressed (DE), including 1,719 that were down-regulated and 1,761 that were 
up-regulated in AO. There were 959 lncRNA transcripts that were DE, including 56 that were down-
regulated and 903 that were up-regulated. Among the116 miRNAs that were DE, 79 were down-
regulated and 37 were up-regulated in AO. Numerous DE protein-coding transcripts and target genes 
for miRNAs/lncRNAs were significantly enriched in reproductive processes, cell proliferation, and 
apoptosis pathways. A miRNA-intersection gene-pathway network was constructed by considering 
target relationships and correlation of the expression levels between ovary development-related genes 
and miRNAs. We also constructed a competing endogenous RNA (ceRNA) network by integrating 
competing relationships between protein-coding genes and lncRNA transcripts, and identified several 
lncRNA transcripts predicted to regulate the CASP6, CYP1B1, GADD45, MMP2, and SMAS2 genes. In 
conclusion, we discovered protein-coding genes, miRNAs, and lncRNA transcripts that are candidate 
regulators of ovary development in broody chickens.

Broodiness is a maternal behavior in hens that is characterized by increased body temperature, reduced food and 
water intake, frequent nest occupancy, increased incubation of eggs, and cessation of laying, the results of which 
have major impacts on the poultry industry1, as it is common in most domestic fowls2. The condition results in 
atrophy of the ovary and in broody geese, this was associated with the appearance of white follicles (WF) and the 
absence of small yellow follicles (SYF) and large yellow follicles (LYF)3,4, suggesting that there is slow development 
of WF, no transition of WF into SYF, or direct atresia of SYF. The initiation and maintenance of ovarian atrophy 
in broody chickens involves a series of phenotypic and physiological changes that are poorly understood at the 
molecular level5, although the endocrine mechanisms and identification of candidate genes have been the focus 
of much research.

In broody hens, decreased gonadotrophin-releasing hormone (GnRH) and increased vasoactive intestinal pol-
ypeptide (VIP) release from the hypothalamus induced production of prolactin (PRL)6,7. Three genes, encoding 
the anti-mullerian hormone receptor II (AMHRII), prolactin receptor (PRLR), and estrogen receptor α (ERα), 
were identified as being associated with triggering or maintaining broodiness in geese8. Genetic variations in 
PRL, PRLR, VIP receptors and the dopamine D1 receptor had significant effects on the frequency and dura-
tion of broodiness6,7,9,10. Reactive oxygen species (ROS) activate autophagy in follicular granulosa cells via the 

1Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan 
Agricultural University, Chengdu Campus, 611130, Sichuan Province, China. 2Department of Animal and Poultry 
Sciences, Virginia Tech, Blacksburg, 24061, Virginia, USA. Lingbin Liu and Qihai Xiao contributed equally to this work. 
Correspondence and requests for materials should be addressed to Q.Z. (email: zhuqingsicau@163.com)

Received: 1 November 2017

Accepted: 16 April 2018

Published: xx xx xxxx

OPEN

mailto:zhuqingsicau@163.com


www.nature.com/scientificreports/

2ScIEntIFIc Reports |  (2018) 8:7231  | DOI:10.1038/s41598-018-25103-6

mTOR pathway to regulate broodiness in geese11. A reduction in MAPK signaling and/or elevation of cAMP 
signaling enhanced FSHR expression and granulosa cell differentiation12. Thus, although candidate genes for bird 
broodiness have been identified, the molecular mechanisms and associated signaling pathways remain poorly 
understood.

The advent of technology for sequencing RNA transcripts has led to the realization that non-coding RNAs 
have important functions in development and metabolism. Non-coding RNAs include microRNAs (miRNAs), 
transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small interfering RNAs (siRNAs), and long non-coding RNAs 
(lncRNAs)13,14. miRNAs are a class of highly conserved, endogenous, single-stranded, and small non-coding 
RNA molecules (approximately 18–25 nucleotides in length) that function in post-transcriptional regulation of 
gene expression through translational repression or target mRNA degradation via binding to their 3′untranslated 
regions (3′UTRs)15. miRNAs are involved in multiple biological processes including cell proliferation, differenti-
ation, apoptosis, organogenesis, and disease pathogenesis16. Results from recent studies have demonstrated that 
miRNAs can control steroidogenesis and regulate proliferation and apoptosis of granulosa cells in the human 
ovary17,18. X-linked miR-503, miR-672, and miR-465 families, which are preferentially expressed in newborn 
mouse testes and ovaries, participate in pathways associated with folliculogenesis19. miR-125b was identified as 
a highly abundant miRNA at each developmental stage of follicles that decreased during in vitro luteinization of 
theca cells20. Thus, miRNAs play important roles in ovarian development.

LncRNAs are non-protein-coding transcripts ranging from 0.2 kb to 100 kb in length that tend to be poorly 
conserved among species, and display low to moderate expression in a tissue- and time-specific manner21. Based 
on their location in the genome, lncRNA can be divided into five categories: antisense lncRNA, intronic tran-
script, intergenic lncRNA, promoter-associated lncRNA, and UTR-associated lncRNA22. lncRNAs have a wide 
range of functions in cellular and developmental processes including genomic imprinting, chromatin remodeling, 
histone modification, transcriptional and post-transcriptional regulation, apoptosis, and cell cycle regulation23–25. 
These studies focused on humans and typical laboratory models (e.g. rat, mouse and nematodes)26–29, and infor-
mation concerning other species is scarce, especially those of agricultural relevance. There are no reports of the 
involvement of lncRNAs in ovary atrophy of broody hens.

The transcriptome is the complete set of transcripts in a population of cells or a single cell, including mRNA, 
miRNA, and lncRNA, etc30. In contrast with the genome, the transcriptome is spatiotemporally regulated and 
reflects gene expression under certain physiological conditions or developmental stages23,24. RNA-seq, as a 
next-generation sequencing technology, is a highly sensitive method for whole transcriptome analysis31. To date, 
the approach has been applied to chicken in studying the skeletal muscle, adipose tissue, liver, spleen, pituitary, 
hypothalamus, and ovary16,23,24,31–33. Such data are meaningful in biomarker discovery and identifying pathways 
that govern growth and developmental processes, metabolism, and reproductive biology. The objective of this 
experiment was thus to use RNA-seq to identify transcripts and pathways that are associated with atrophy of the 
chicken ovary.

Results
Comparison of ovarian morphological and histological characteristics, and plasma hor-
mones.  Egg-laying hens had plump ovaries with many visible follicles and a gradually increasing volume, 
whereas ovaries of broody chickens showed obvious atrophy with visible characteristics (Fig. 1A,B). Ovary 
weights and ratio (Ovary weight/Body weight *100%) and stroma weights of broody chickens were significantly 
lower than those of egg-laying hens (P < 0.05), and LYF and SYF were not observed in broody hens (Table S2). 
Observation under the light microscope revealed an unconsolidated ovary with many primary follicles (one layer 
of cuboidal granulosa cells, PFs) and secondary follicles (two to six layers of granulosa cells, SFs) in egg-lay-
ing hens (Fig. 1C), while the broody chickens had numerous PFs but few SFs within the more compact ovary 
(Fig. 1D). Plasma concentrations of PRL, LH, and FSH were different between egg-laying and broody chickens 
(P < 0.05) (Fig. 1E,F and G, respectively).

Overview of RNA-sequencing.  To obtain a global view of the chicken ovary transcriptome and identify 
the protein-coding and lncRNA transcripts related to AO of BC, six strand-specific libraries were constructed and 
sequenced, resulting in a total of 508.93 M (million) raw reads, which yielded 63.3 Gb (giga bases) of raw data, 
and an average of 84.8 M of raw reads was obtained per library. And about 98.7% (502.42 M) of raw reads passed 
initial quality thresholds and were deemed as clean reads for the subsequent analyses, where an average clean 
reads was 83.74 M per library (Tables S3 and S4). We identified 58,175 reliable transcripts (Fig. S1A) including 
15,952 known and 42,223 novel transcripts. Approximately 75% of novel transcripts in each library showed a high 
coverage with at least 90% for transcript being covered by reads (Fig. S2).

In the all sequencing libraries, we identified 49,461 protein-coding transcripts including 15,952 known and 
33,509 novel protein-coding transcripts. After transcripts abundances were quantified by FPKM (Fragments Per 
Kilobase of transcript per Million mapped reads), the average expression level of novel protein-coding tran-
scripts (4.33) is about one-sixth of known protein-coding transcripts (24.81). 49,290 protein-coding transcripts 
were detected in the whole transcriptome of AO, and 49,163 protein-coding transcripts were detected in NO. A 
total of 48,992 protein-coding transcripts were co-expressed in NO and AO, while 171 and 298 protein-coding 
transcripts were specifically expressed in NO and AO, respectively (Fig. S3A). All protein-coding transcripts 
corresponded to 14,447 protein-coding genes, with an average of 3.42 transcripts per gene locus. 33,509 novel 
protein-coding transcripts corresponded to 11,504 protein-coding genes, with an average of 2.91 transcripts per 
gene locus. 79.63% protein-coding genes that had novel transcripts were identified. We also detected a large num-
ber of alternative splicing events in six sequencing libraries, which averaged 54,010 per library. The distribution 
of alternative splicing events in all libraries is similar, with three types of events being prevalent including TSS 
(Alternative 5′ first exon), TTS (Alternative 3′ last exon), and SKIP (Exon skipping) (Fig. S4).
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In total there were 8,714 lncRNA transcripts. 8,684 lncRNA transcripts were detected in the whole tran-
scriptome of AO, and 8,561 lncRNA transcripts were detected in NO. A total of 8,531 lncRNA transcripts were 
co-expressed in NO and AO, while 30 and 153 lncRNA transcripts were specifically expressed in NO and AO, 
respectively (Fig. S3B). The lncRNA transcripts corresponded to 4,273 lncRNA genes, with an average of 2.04 
transcripts per gene locus. A boxplot of FPKM, histogram of lengths, proportion of exon number per transcript, 
and GC content for protein-coding and lncRNA transcripts are shown in Fig. 2. The average expression level of 
lncRNA transcripts (2.12) was lower than protein-coding transcripts (11.24) (Fig. 2A). Protein-coding transcripts 
with an average length of 3,736 bp and 9.67 exons were longer than the lncRNA transcripts, which averaged 
1,853 bp and 3.36 exons (Fig. 2A,B). The average GC content of protein-coding and lncRNA transcripts was 
48.46% and 46.66%, respectively (Fig. 2D). These findings that are in agreement with those of previous stud-
ies23,24,34. The lncRNA transcripts included 7,241 intergenic (82.9%) and 846 antisense (9.7%) (Fig. S5A). Most of 
the lncRNA transcripts were distributed in chromosomes 1–6 (Fig. S5B).

Analysis of differentially expressed protein-coding transcripts.  Overall, 3,480 significantly dif-
ferentially expressed protein-coding transcripts (DEGs) including 1,719 down-regulated (49.4%) and 1,761 
up-regulated (50.6%) were discovered in the AO of BC (Fig. 3A). We carried out gene ontology (GO) and path-
way enrichment analysis to identify biological functions of DEGs. Among these, the most important cellular 
components involved the extracellular region, extracellular matrix, extracellular space, membrane, cell periph-
ery, and Golgi apparatus. The molecular functions consisted of cytoskeletal protein binding, structural molecule 

Figure 1.  Ovarian morphological and histological characteristics and plasma hormones in egg-laying and 
broody chickens. (A) Morphological characteristics in the normal ovary (NO) of egg-laying hens (EH) and 
(B) the atrophic ovary (AO) of broody chickens (BC). (C) Histological characteristics in NO and (D) AO (HE 
staining at 100×); SF represents secondary follicles and PF is the primary follicles. (E–G) Plasma concentrations 
of prolactin (PRL), luteinizing hormone (LH) and follicle stimulating hormone (FSH) in EH and BC; results are 
expressed as means ± standard deviation (n = 6); *P < 0.05; **P < 0.01.
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activity, peptidase activity, and ion binding. In biological processes, the important GO terms were developmen-
tal process, anatomical structure formation involved in anatomical structure development, cell differentiation, 
single-organism process, cell proliferation, anatomical structure morphogenesis, and reproduction (Fig. 4A and 
Table S7). In the KEGG pathway analysis, several genes were enriched from signal transductions pathways includ-
ing the PI3K-Akt, MAPK, TGF-beta, cGMP-PKG, and Hippo signaling pathways (Fig. 4B and Table S8). In the 
enrichment of signal pathways, we identified progesterone-mediated oocyte maturation, ovarian steroidogenesis, 
and the gonadotropin-releasing hormone (GnRH), PRL, oxytocin, and estrogen signaling pathways. These belong 
to the reproductive endocrine system that is important for ovarian development and regulation of broodiness 
in chicken31. There were 17 genes were associated with the above pathways, including CYP1B1, DBH, GABBR2, 
GNA11, GUCY1A2, HSD3B2, HSP90, INHA, INHB, MMP2, MYL9, MYLK, OXTR, PRKAB2, ROCK1, ROCK2, 
and TH (Table S9). We also detected involvement of a few interesting pathways involved in cell growth and death, 
such as the cell cycle pathway, p53 signaling pathway, and apoptosis. Others have shown that these pathways were 
associated with follicular granulosa cell growth, proliferation, survival and apoptosis16,31,35–40. The genes associ-
ated with these pathways included CAPN2, CASP6, CASP7, CDC20, CDC25A, GADD45, MAPK11, ORC2, RIPK1, 
SMAD2, SKP2, THBS1, and WEE2 (Table S9).

Overview of small-RNA sequencing.  As shown in Table S8, approximately 71.33 Mb clean reads were 
obtained in six libraries, representing a high ratio of clean reads, >96.5% (Table S10). After alignment with small 
RNAs in GenBank, Rfam and the reference genome, we identified 72.82% mature miRNAs, and the remaining 
small RNAs (27.18%) included rRNA, scRNA, snRNA, snoRNA, tRNA as well as exist-miRNA-edit (Fig. 5A). 
Exist-miRNA-edit, which represents the set of miRNA containing mirSNPs (miRNA-related single nucleotide 
polymorphisms), was up-regulated in AO (Fig. 5B). mirSNPs exert their effect by preventing the biosynthesis of 
miRNA, and some studies have reported that mirSNPs are significantly associated with disease41,42. We identified 
a total of 2,827 miRNAs in six small RNA libraries (Fig. S1B), and the length of most miRNAs were 18~24 nucle-
otides (Fig. 5C). Total 2,235 and 2,369 miRNAs were detected from AO and NO, respectively. A total of 1,777 
miRNA were co-expressed in NO and AO, while 592 and 458 miRNA were specifically expressed in NO and AO, 
respectively (Fig. S3C). Ten mature miRNAs with the highest expression comprised approximately 50% of all 
miRNAs, showing a relatively abundant distribution (Fig. 5D), while miR-21, miR-26a, miR-125b, miR-101, and 
miR-199 were the most abundant miRNAs overall, together accounting for 33% of the total.

Figure 2.  Overview of RNA sequencing in the chicken ovary. (A) The boxplot of FPKM (Fragment Per 
Kilobase of transcript per Million mapped reads) for protein-coding and lncRNA transcripts; (B) The 
distribution of read lengths for protein-coding and lncRNA transcripts. (C) The proportions of exons’ number 
per transcript for protein-coding and lncRNA transcripts. (D) The GC content of protein-coding and lncRNA 
transcripts.
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Analysis of differentially expressed miRNAs.  There were 116 significantly differentially expressed miR-
NAs (DEMs) including 37 that were up-regulated (31.9%) and 79 that were down-regulated (68.1%) in AO of 
BC (Fig. 3B). A total of 9,081 target protein-coding genes for DEMs were identified. Among them, 508 genes 
had transcripts identified as DEGs and also significantly negatively correlated with miRNA expression, and were 
assigned as intersection genes, which were more likely to be predicted miRNA target genes32. We performed GO 
and pathway enrichment analysis of intersection genes to identify biological functions of miRNAs. These genes 
were mainly associated with biological processes including anatomical structure development, single-organism 
process, cell differentiation, cell proliferation, localization, and reproduction (Fig. S6A). The KEGG results 
revealed that the enriched pathways involved PI3K-Akt signaling, cGMP - PKG signaling, FoxO signaling, cell 
cycle, Hippo signaling, MAPK signaling, apoptosis, TGF-beta signaling, estrogen signaling, and oxytocin signa-
ling pathways (Fig. S6B).

Figure 3.  The Hierarchical Cluster Analysis of differentially expressed protein-coding transcripts (A), miRNAs 
(B), and lncRNA transcripts (C).

Figure 4.  GO/pathway analysis of differentially expressed protein-coding transcripts. (A) Top 20 significantly 
changed GOs of protein-coding transcripts in biological processes; blue and kermesinus show up- and down-
regulation in the atrophic ovary of broody chickens, respectively. (B) Top 20 significantly changed pathways 
associated with protein-coding transcripts.
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Construction of miRNA-gene-pathway relationship network.  Among the intersection genes, 16, 
involved in reproductive endocrine system, and cell growth and death pathways, corresponded with 31 DEMs 
(Table 1). Cell division cycle 25 A (CDC25A), growth arrest and DNA damage-inducible 45 (GADD45), and 
matrix metallopeptidase 2 (MMP2) genes play roles in multiple pathways. To further understand and visualize the 
interactions and investigate the function of corresponding DEMs, an miRNA-gene-pathway network was con-
structed (Fig. 6) using the data from Table 1. Through the interaction analysis, we identified potential functions 
of a few miRNAs in the ovary: (1) gga-miR-34c, gga-miR-3532, gga-miR-6583, and gga-miR-6615 were closely 
associated with reproductive processes and ovarian steroidogenesis; (2) gga-miR-100, gga-miR-148a, gga-miR-
216a, and gga-miR-301b may play important roles in cell proliferation and apoptosis; (3) gga-miR-1620, gga-miR-
34b, and gga-miR-499 were associated with multiple pathways including reproductive processes, cell cycle, p53 
pathway, and apoptosis.

Analysis of differentially expressed lncRNA.  We identified 959 lncRNA transcripts that were differen-
tially expressed between the two kinds of ovaries, including 56 that were down-regulated (5.84%) and 903 that 
were up-regulated (94.16%) in AO (Fig. 3C). Through cis- and trans-regulatory relationship analysis, we detected 
1,001 potential target protein-coding genes of the differential lncRNA transcripts. Functional analysis showed 
that these target genes were significantly enriched in 6,267 GO terms (959 under molecular function, 570 under 
cellular component, and 4,738 under biological process), and many terms were related to morphogenesis, meio-
sis, signal transduction, and gene expression. For example, the top 20 terms of biological process involved positive 
regulation of meiosis I, negative regulation of anion transmembrane transport, labyrinthine layer morphogenesis, 
embryonic placenta morphogenesis, regulation of activation of Janus/JAK2 kinase activity, and termination of 
G-protein coupled receptor signaling pathway (Fig. S7A). In addition, the target genes were enriched in 270 path-
ways, several of which were associated with ovarian development including PI3K-Akt signaling, MAPK signaling, 
TGF-beta signaling, dopaminergic synapse, cGMP - PKG signaling, Hippo signaling, Wnt signaling, oxytocin 
signaling, GnRH signaling, estrogen signaling, and oocyte meiosis pathways (Fig. S7B). These results indicated 
that lncRNAs took part in several biological processes in the chicken ovary.

Figure 5.  Overview of small RNA sequencing in the chicken ovary. (A) Portions of small RNA types in the 
clean reads. The percent of miRNA is approximately 73%, and the other 28% included rRNA, scRNA, snRNA, 
snoRNA, tRNA, simple repeats, exon sense/antisense and intron sense/antisense. (B) Relative frequency of 
different types of small RNAs in the atrophic ovary (AO) and normal ovary (NO). (C) Size distribution of 
all miRNAs. The X-axis depicts their length (nt), and the Y-axis represents frequency (%). (D) The relative 
proportion of the top 10 miRNAs in the total amount of miRNA.
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Construction of competing endogenous RNA (ceRNA) network.  Based on the data for dif-
ferentially expressed protein-coding transcripts, miRNA, and lncRNA transcripts, we used three softwares 
RNAhybrid(v2.1.2) + svm_light(v6.01), Miranda(v3.3a) and TargetScan(Version:7.0) to identify biological 
targets of each miRNA from the protein-coding and lncRNA transcripts that showed a significantly negative 
correlation with miRNA expression, subsequently obtained the protein-coding transcript -miRNA and lncRNA 
transcript-miRNA pairs, then constructed the competing endogenous RNA (ceRNA) network (Fig. 7), which 

Differentially 
expressed genes Pathway Related differentially expressed miRNA

CASP6 Apoptosis gga-miR-1620, gga-miR-216a

CASP7 Apoptosis gga-miR-34b-5p, miR-1297

CDC25A Progesterone-mediated oocyte 
maturation, Cell cycle novel-m0284-3p

CYP1B1 Ovarian steroidogenesis gga-miR-6583-5p, miR-6006

GABBR Estrogen signaling pathway gga-miR-34b-5p

GADD45 Cell cycle, p53 signaling pathway gga-miR-100-3p, miR-7648

HSD3B2 Ovarian steroidogenesis miR-200, miR-466, novel-m0329-3p,
novel-m0490-3p

SMAD2 Cell cycle gga-miR-34b-3p, miR-200

MMP2 Estrogen signaling pathway, 
GnRH signaling pathway

gga-miR-1620, gga-miR-34b-5p,
gga-miR-34c-5p, gga-miR-499-3p,
mirR-214, miR-499

MYL9 Oxytocin signaling pathway gga-miR-6583-5p, miR-6583,
novel-m0512-5p

MYLK Oxytocin signaling pathway miR-200

ORC2 Cell cycle gga-miR-301b-5p

PRKAB2 Oxytocin signaling pathway gga-miR-3532-3p, gga-miR-6615-3p

RIPK1 Apoptosis miR-204, miR-6006

SKP2 Cell cycle gga-miR-499-3p, miR-466, miR-499

TP73 p53 signaling pathway gga-miR-148a-5p, gga-miR-301b-5p, novel-m0081-5p, novel-m0144-3p,
novel-m0237-3p

Table 1.  Sixteen intersection genes and their corresponding pathways and differentially expressed miRNAs*. 
*Relative abundance of the gene or miRNA when comparing the performance between the broody ovary library 
and the egg-laying ovary library sequenced by deep sequencing.

Figure 6.  The miRNA-gene-pathway network between sixteen intersection genes, and their corresponding 
pathways and differentially expressed miRNAs. Hexagon, round rectangle and ellipse indicate pathway, gene 
and miRNA, respectively. Red and green mean up- and down-regulation, respectively.
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showed up-regulated miRNAs with decreased expression of protein-coding and lncRNA transcripts, or 
down-regulated miRNAs with overexpression of protein-coding and lncRNA transcripts. The network consisted 
of 1,228 nodes with an average degree of 8.65, which indicated that the ceRNA network was dense (Fig. S8).

Through combining analysis of the miRNA-gene-pathway and ceRNA networks, interactions between lncRNA 
transcripts and the reproduction-related MMP2 and CYP1B1 genes were predicted (Fig. 8). Highly expressed 
lncRNA transcripts included XLOC_016063, XLOC_027660, and XLOC_033201, and poorly expressed lncRNA 
transcripts included XLOC_001347, XLOC_004327, XLOC_020715, XLOC_025328, XLOC_027566, and 
XLOC_033266. Seven highly expressed and three poorly expressed lncRNA transcripts were also predicted to 
interact with SMAD2, GADD45, and CASP6 genes, which are strongly associated with cell proliferation and apop-
tosis. In addition, these interactions referred to 8 miRNAs including gga-miR-34b-3p, gga-miR-34b-5p, gga-miR-
34c-5p, gga-miR-100-3p, gga-miR-216a, gga-miR-499-3p, gga-miR-1620, and gga-miR-6583-5p (Fig. 8).

Figure 7.  An overview of the competing endogenous RNA (ceRNA) network. Rectangle, ellipse and V indicate 
miRNA, protein-coding transcript and lncRNA transcript, respectively. Green and red indicate down- and up-
regulation, respectively.

Figure 8.  Predicted interaction between lncRNA transcripts and MMP2, CYP1B1, SMAD2, GADD45, and 
CASP6 genes. Aqua green and pink denote lower and higher expression levels in the atrophic ovary (AO), 
respectively.
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Validation of RNA-seq data.  Five protein-coding genes, five miRNAs, and five lncRNA transcripts 
from the ceRNA network were selected for validation of the RNA-seq results using real time quantitative PCR 
(RT-qPCR). The results were consistent with the RNA-seq data (Fig. S9) and a high correlation was detected, 
with a Pearson’s correlation coefficient of 0.8013 (Fig. S10). The RT-qPCR results of four protein-coding 
gene-miRNA-lncRNA transcript pairs all showed significant reciprocal expression patterns between miRNA and 
protein-coding gene and lncRNA transcripts (Fig. S11), consistent with the results of the RNA-seq where miRNAs 
predominantly function to decrease levels of target protein-coding and lncRNA transcripts.

Discussion
Broodiness, which is a maternal behavior and instinct in most domestic fowls, reduces laying performance, a 
major economic concern in the poultry industry31. The maintenance of ovarian atrophy in broody chickens is 
directly related to the broody period length and recovery to egg-laying2. To provide a comprehensive view of the 
transcriptome level changes that occur within the atrophic ovary of broody chickens, whole transcriptome anal-
ysis was used to elucidate candidate gene function and their regulatory effectors. In total, 3,480 protein-coding 
transcripts, 116 miRNAs, and 959 lncRNA transcripts were differentially expressed in the atrophic ovaries of 
broody chickens.

The hypothalamic pituitary gonadal (HPG) axis mediates ovary development via reproductive endocrine hor-
mones including GnRH, PRL, LH, FSH, oxytocin, estradiol, and progesterone in chickens31. In the present study, 
along with a significant difference in circulating PRL, LH, and FSH, we detected differentially expressed genes 
relevant to reproductive endocrine hormones in the atrophic ovary of broody chickens. For example, 3β-hydroxy 
steroid dehydrogenase type 2 (HSD3B2) and cytochrome P450 family 1 subfamily B member 1 (CYP1B1) genes, 
which encode crucial enzymes in ovarian steroidogenesis43, were decreased in broody chickens. This finding indi-
cates that the broody chicken ovary has weakened steroidogenesis, including synthesis of estradiol and progester-
one and their related function in mediating development of follicles. The primary (PF) to secondary follicle (SF) 
transition is a key link in the early stages of folliculogenesis44. In comparison to the normal ovary with many PFs 
and SFs in egg-laying hens, the atrophic ovaries of broody chickens had numerous PFs but few SFs, suggesting that 
they lacked the primary to secondary follicle transition. Consistent with this, in the AO there was lower expres-
sion of heat shock protein 90 (HSP90), MMP2, G protein subunit alpha 11 (GNA11), and gamma-aminobutyric 
acid type B receptor (GABBR) genes, which encode important enzymes or signaling factors in intracellular signa-
ling of hormones regulating folliculogenesis45,46. We also detected other reproductive-associated genes including 
dopamine beta-hydroxylase (DBH), inhibin beta A/B (INHBA/B), and oxytocin receptor (OXTR). Compared 
with previous observations using suppression subtractive hybridization (SSH)8, we did not find AMHRII, PRLR, 
and ERα genes differentially expressed. The reason for this discrepancy is likely that tissues were collected at dif-
ferent broody stages. Qi et al.47 showed that SSH often presents a few false positives, whereas RNA-seq provides 
an unbiased methodology to investigate the gene expression pattern through deep sequencing.

Cell growth and death involve diverse complex cellular processes such as proliferation, differentiation, trans-
formation, survival, and apoptosis, and changes in related genes and kinases35–39. Cytoplasmic Smad proteins 
transduce TGF-beta signals to result in granulosa cell proliferation, thereby leading to proper follicular develop-
ment within ovarian tissues35. The mitogen activated protein kinase family (MAPK), consisting of the extracel-
lular signal regulated protein kinases, have been implicated in various cellular processes involving cell growth, 
proliferation, and development36. GADD45 is necessary for G2/M checkpoint control in the cell cycle, and is 
involved in DNA replication, cell proliferation, and survival37. Increased expression of GADD45 causes cell cycle 
arrest following DNA damage37. S-phase kinase-associated protein 2 (SKP2), which is a member of the F-box 
protein family, mediates cell proliferation and cell cycle regulation by degrading cyclins38. Receptor-interacting 
protein kinase (RIPK)-1 is a master regulator of cell survival inhibiting RIPK3-mediated necroptosis39. In the 
current study, strongly suppressed expression of SMAD2, MAPK11, SKP2, RIPL1, and GADD45 overexpression, 
along with phenotypic results collectively suggest that the broody chickens have relatively weaker cell growth and 
development in the ovary.

Compared to the abundant ovaries in egg-laying hens, the absence of yellow follicles in broody chickens was 
closely related to the reduced expression of genes significantly enriched in many signal transduction pathways 
including PI3K-Akt signaling, cGMP-PKG signaling, TGF-beta signaling, and Hippo signaling pathways, result-
ing in relatively weaker tissue development. Krishna et al. found that the PI3K-Akt pathway played an important 
role in the oocyte for resumption of meiosis and maturation of mouse oocytes and involved the Pten gene48. 
Cheng et al. observed that activation of the NO-cGMP-PKG pathway stimulated osteoblast differentiation and 
maturation in rats under a sinusoidal electromagnetic field, indicating that the cGMP-PKG pathway has signif-
icant functions in mediating cell differentiation and maturation49. According to multiple studies, the TGF-beta 
pathway promotes granulosa cell proliferation and follicular growth in the antral follicle stage31,35,47. A recent 
study showed, interestingly, that Hippo is a critical signaling pathway in regulating tissue regeneration, organ size, 
and stem cell self-renewal via suppressing cell growth50. In our study, we observed reduced expression of genes 
related to the above-mentioned pathways in AO, indicating that broodiness in chicken affected proliferation of 
granulosa cells and oocyte maturation mediated by the above pathways. In addition, the target genes of miRNAs 
and lncRNAs were also found to be enriched in the four pathways.

Expression of pro-apoptotic factors such as caspase 6 (CASP6) and caspase 7 (CASP7) was decreased. CASP6/7 
are aspartate-specific cysteine proteases, members of the caspase family associated with apoptosis, and have crit-
ical functions in apoptosis execution51. We also found that the level of calpain 2 (CAPN2), known to activate 
caspase 12 which participates in endoplasmic reticulum stress-induced apoptosis and to convert Bcl-xL to a 
pro-apoptotic molecule from an anti-apoptotic one, was reduced51. These results suggest that broodiness was 
associated with reduced apoptosis via the HPG axis on approximately the 30th day of the broody period. However, 
Jing et al. suggested that goose broodiness involves decreased granulosa cell proliferation and increased apoptosis 
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in the preliminary stage of the broody period52. Altogether, the above results suggest that the avian HPG axis has 
a stage-specific mediation of ovary development or tissue morphology during the broody period. For example, 
reduced cell proliferation and apoptosis can occur at the same time to maintain tissue homeostasis because of the 
highly atrophic status of broody chicken ovaries.

Several groups have investigated miRNA expression in tissues of broody birds. Chen et al. identified 94 and 114 
novel miRNAs in the hypothalami of the egg-laying and broody goose, respectively, and detected 52 DEMs, using 
the Solexa sequencer53. Yu et al. showed that conjoint comparisons in three kinds of preovulatory follicles in broody 
and egg-laying geese revealed 44 DEMs using Illumina Hiseq. 250052. Our findings corroborate the previous in that 
miRNAs with the highest expression in the chicken ovary were also highly abundant in the goose ovary15. The high 
conservation of miRNA between species implies that these miRNAs have critical biological functions. We detected 
116 DEMs, many of which are related to ovarian function. For example, miR-34b and miR-34c, two well-known 
miRNAs, are targets of p53 and cooperate in suppressing adhesion-independent growth and proliferation in mouse 
ovarian surface epithelial cells54. MiR-18, miR-98, miR-128, miR-135, and miR-148 affect ovarian cell steroidogen-
esis, including the production of progesterone, testosterone, and estradiol17. Recently, the miR-200 family was 
implicated in ovarian cancer initiation and progression via stage-specific regulation55. Moreover, we revealed the 
potential function of a few miRNAs in the chicken ovary through pathway analysis of intersection genes. Our 
results provide novel information regarding the regulatory roles of these miRNAs.

In recent years, lncRNA have received increased attention for their involvement in various aspects of tis-
sue development (for example, bursa of fabricius and muscle)24,25. This experiment is the first to show expres-
sion profiles of lncRNA transcripts in the chicken ovary and DE lncRNA transcripts in response to broodiness 
using whole transcriptome sequencing. Through functional analysis, 1,001 target genes of DE lncRNA tran-
scripts were enriched in 6,267 Go terms and 270 pathways, the results of which demonstrate that lncRNAs have 
important roles in ovarian function. Through interaction analysis of protein-coding transcripts, lncRNA tran-
scripts, and miRNAs, we also discovered that lncRNA transcripts could compete for miRNAs binding sites with 
protein-coding genes and subsequently influence their expression. The genes associated with cell proliferation, 
such as GADD45 and SMAD235,37, and those related to reproductive processes including CYP1B1 and MMP243,45, 
could be modulated by several lncRNAs. Moreover, CASP6, a key factor in apoptosis execution51, has a relatively 
lower expression in the AO of BC and was found to be under the control of the highly expressed lncRNAs. This 
provides direct evidence that these lncRNAs, as regulators of gene expression, could modulate multiple subsys-
tems involved in ovarian development in response to broodiness.

Integration of multi-omics can generate new knowledge that is not accessible by analysis of single datasets 
alone56,57. For example, Robertson et al. demonstrated that the integration of three datasets improved classifica-
tion accuracy to ~89% from the average of individual datasets at ~68.5%58. Justin et al. integrated diverse genomic, 
transcriptomic, and phosphoproteomic datasets to identify altered processes in the phosphorylation status of 
prostate cancer cells, and provided a reliable reference for drug prioritization59. In this study, we improved the 
validity of functional analysis of DE miRNAs using intersection genes. In addition, we constructed a ceRNA rela-
tionship network by integrating multiple omics analyses, and subsequently detected miRNA and lncRNA highly 
relevant to ovary development in broody chickens.

Because of high sensibility, RNA-seq is also a powerful tool to determine transcriptional structure and alter-
native splicing of genes31,60. In our study, we detected numerous novel protein-coding transcripts and 79.63% 
protein-coding genes that had novel transcripts, suggesting that the expression of these protein-coding genes 
has obvious tissue-specificity in chicken ovary. Due to its widespread usage and molecular versatility, alternative 
splicing emerges as a central element in gene regulation that increases the diversity of genes expression and func-
tion61. Previous studies evidenced that changes individual alternative splicing isoform are small, but numerous 
splicing programs resulted in strong effects on cell function61–64. Our study detected a large number of alternative 
splicing events including TSS, TTS and SKIP, implying that vast novel protein-coding transcripts identified were 
mainly generated by these alternative splicing events, which play critical roles in the development and mainte-
nance of laying hens ovaries.

Conclusion
In summary, we characterized mRNA, miRNA, and lncRNA transcript profiles of the chicken ovary by RNA-seq. 
We identified and characterized three kinds of DE genes that were involved in ovary physiology in broody chickens. 
We also constructed regulatory networks of the molecular mechanisms of ovarian atrophy. This study expanded 
our understanding of the molecular mechanisms underlying reproductive system development and maintenance 
in laying hens. Such information may also have relevance to understanding reproductive disorders in humans.

Materials and Methods
Ethics statement.  All animal care and experimental procedures were approved by the Institutional Animal 
Care and Use Committee of Sichuan Agricultural University (No. YYS130125). All research work was conducted 
in strict accordance with the Sichuan Agricultural University (SAU) Laboratory Animal Welfare and Ethics 
guidelines.

Animals.  Total 400 laying Dongxiang blue-shelled (a native breed exhibiting high broodiness) hens were 
reared at the poultry farm of Sichuan Agricultural University (Sichuan, China). At 380 days of age, birds were 
selected randomly and divided into two groups: egg-laying and broody. All selected birds had identical genetic 
background and appearance, and chickens in each group had a similar body weight. Egg-laying hens had a similar 
egg-laying pattern including the ovipository cycle and daily egg-laying time. Broody birds persistently nested and 
incubated for approximately 30 consecutive days, and their ovaries presented as atrophic.
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Morphology, hormones, and immunohistochemistry assays.  Six chickens from each group were 
anesthetized with sodium pentobarbital and euthanized. Complete ovaries were collected and placed in dissect-
ing pans, and morphological characteristics and weight data were recorded. The number of white follicles (WF, 
1–5 mm in diameter and have not entered the hierarchy), small yellow follicles (SYF, 5–10 mm in diameter and 
have not entered the hierarchy), and large yellow follicles (LYF, preovulatory follicles, >10 mm in diameter and 
have entered the hierarchy) were counted65,66. Stroma with cortical follicles <1 mm in diameter were dissected 
out of the ovaries, fixed in 4% paraformaldehyde with phosphate buffer (pH 7.4), embedded in paraffin, sec-
tioned, and mounted on slides for hematoxylin and eosin staining. Histological characteristics of the stroma were 
observed using Advanced Research Software (Nikon) and an Eclipse 80i microscope (Nikon). A volume of 2 mL 
of blood was collected using venipuncture from each bird. After centrifugation at 2000× rpm for 10 min, pure 
plasma was immediately isolated from the blood supernatant and stored at −20 °C. We measured the plasma 
concentration of prolactin (PRL), luteinizing hormone (LH), and follicle stimulating hormone (FSH) using 
chicken-specific ELISA Kits (Abcam Inc., Cambridge, UK), following the manufacturer’s protocols.

RNA extraction, library construction, and sequencing.  Total RNA was isolated from three normal 
ovaries (NO) of egg-laying hens (EH) and three atrophic ovaries (AO) of broody chickens (BC) using Trizol 
RNA extraction reagent (Invitrogen Corp., CA, USA), following the manufacturer’s protocol. The concentration 
and purity of total RNA were assessed with spectrophotometry at wavelengths of 260, 280, and 230 nm using the 
NanoVue Plus Spectrophotometer, and the integrity of total RNA was evaluated with 2% agarose gel electropho-
resis. The cDNA libraries of RNA (mRNA/lncRNA) and small RNA were generated from 10 μg and 2 μg of total 
RNA, respectively24. rRNA was removed using an Epicentre Ribo-zero rRNA Kit (Epicentre, USA). Sequencing 
was performed using Illumina HiSeqTM 2500 by Gene Denovo Biotechnology Co. (Guangzhou, China).

Analysis of protein-coding and lncRNA transcripts.  The raw data were subjected to quality check 
using FastQC (v0.11.4) (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). To obtain high quality 
clean reads, we removed low quality reads containing more than 50% of low quality (Q-value ≤ 20) bases, reads 
containing more than 10% of unknown nucleotides, and reads containing adapters from raw reads. After the 
rRNA mapped reads were removed using Bowtie 267, mapping reads to the rRNA database, the remaining reads 
were aligned with the chicken reference genome using TopHat2 (version 2.0.3.12)68. The reconstruction and iden-
tification of transcripts was carried out with the software Cufflinks69, TopHat2, Cuffmerge, and Cuffcompare. 
The programs Coding-Non-Coding-Index (CNCI) (version 2)70, Coding Potential Calculator (CPC)71 (http://
cpc.cbi.pku.edu.cn/) and phylogenetic codon substitution frequency (PhyloCSF)25 were used to predict the 
protein-coding potential of new transcripts with default parameters. The intersection of the results without 
protein-coding potential yielded lncRNA transcripts. The target genes for lncRNA transcripts were predicted 
through cis- and trans-regulation analysis24. The expression level of all transcripts was normalized using FPKM 
(Fragments Per Kilobase of transcript per Million mapped reads) with the software RSEM72. Transcripts with a 
false discovery rate (FDR) <0.05 and fold change ≥2 were then identified as significant differentially expressed 
protein-coding or lncRNA transcripts using edgeR package (http://www.r-project.org/). The details were supplied 
in additional file 3.

miRNA analysis.  To obtain clean reads, raw reads were further filtered according to the following rules: 
(1) Removing low quality reads containing more than one low quality (Q-value ≤ 20) base or containing 
unknown nucleotides (N); (2) Removing reads without 3′ adapters; (3) Removing reads containing 5′ adapters; 
(4) Removing reads containing 3′ and 5′ adapters but no small RNA fragment between them; (5) Removing 
reads containing polyA in the small RNA fragment; and (6) Removing reads shorter than 18 nt (not including 
adapters). The clean reads were aligned with the GenBank database (Release 209.0), the Rfam database (11.0), 
and the reference genome to identify and remove rRNA, scRNA, snoRNA, snRNA, tRNA, repeat sequences, and 
fragments from mRNA degradation. The remaining reads were searched against miRBase 21.0 to identify known 
miRNAs in chicken and known miRNAs in other species. Based on their genome position and hairpin structures 
predicted by the software Mireap_v0.2, novel miRNA candidates were identified73. The miRNA expression level 
was calculated and normalized to transcripts per million (TPM). We identified miRNAs with a FDR < 0.05 and 
fold change ≥2 as significant differentially expressed. TargetScan (Version 7.0), Miranda (v3.3a), and RNAhybrid 
(v2.1.2) + svm_light (v6.01) were used to predict targets of miRNA. The details were supplied in additional file 3.

Functional enrichment analysis.  Gene Ontology (GO) analysis of the differentially expressed and target 
genes was performed with the software DAVID25. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway 
analysis for differentially expressed and target genes was carried out with the software KOBAS v2.0 using a hyper-
geometric test24. The results with P-value < 0.05 were considered to be significantly enriched.

Interaction analysis for protein-coding, miRNA, and lncRNA transcripts.  Based on the 
miRNA-lncRNA transcript and miRNA- protein-coding transcript relationships and competitive combination 
with miRNAs, we constructed an lncRNA transcript -miRNA- protein-coding transcript ceRNA network. The 
ceRNA theory is applied to investigate the functions of lncRNA34. A lncRNA transcript can bind a given miRNA 
and thereby derepress the target protein-coding transcript24. Cytoscape 3.4.0 was used to analyze and visualize 
the interaction analysis.

Validation by real time quantitative PCR (RT-qPCR).  Five protein-coding genes and lncRNA tran-
scripts were selected to validate RNA-seq results using RT-qPCR. First-strand cDNA was synthesized from 
500 ng total RNA with the PrimeScript RT reagent Kit (Perfect Real-Time; TaKaRa, Dalian, China) following 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://cpc.cbi.pku.edu.cn/
http://cpc.cbi.pku.edu.cn/
http://www.r-project.org/
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recommendations of the manufacturer. The β-actin gene was used as the endogenous control for normalization 
and all primers are shown in Table S1. RT-qPCR assays were also performed to determine miRNA expression, and 
the U6 snRNA served as a housekeeping gene. Briefly, after miRNA were separated from ovaries using the mir-
Vana miRNA isolation kit (Abcam Inc., Cambridge, UK), 3 μg of miRNA were subjected to reverse transcription 
with the One Step PrimeScript® miRNA cDNA Synthesis Kit (Tiangen, China). All reactions were carried out in 
the CFX96 qPCR system (Bio-Rad, USA) with triplicate reactions for each sample74. The quantification of relative 
expression of protein-coding genes, lncRNA transcripts, and miRNAs was performed using the 2−ΔΔCt method. 
The Pearson’s correlation between RNA-seq and RT-PCR results was determined with SAS 9.3 (SAS Inst., Cary, 
North Carolina, USA).

Statistical analysis.  Results are expressed as means ± standard deviation of the mean. Data were subjected to 
one-way analysis of variance (ANOVA) with Duncan’s Multiple Range test used for pairwise comparisons, using 
SAS 9.3 (SAS Inst., Cary, North Carolina, USA). Values were considered to be significantly different at P < 0.05.

Availability of data and materials.  The raw data has been submitted to the National Center for 
Biotechnology Information (NCBI) Sequence Read Archive (SRA), and the accession number is PRJNA412674.
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