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Graphical Abstract

Midbrain samples of Parkinson’s disease (PD) and control (CTR) patients were
subjected to a multi-omic analysis. The expression of miRNAs, transcripts and
proteins was explored, followed by data integration and functional analyses. This
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comprehensive assessment of PD-affected and CTR human midbrains revealed
multiple molecular targets and networks that are relevant to the disease mecha-
nism of advanced PD.
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Abstract
Background:Parkinson’s disease (PD) is the secondmost commonneurodegen-
erative disorder whose prevalence is rapidly increasing worldwide. The molec-
ular mechanisms underpinning the pathophysiology of sporadic PD remain
incompletely understood. Therefore, causative therapies are still elusive. To
obtain a more integrative view of disease-mediated alterations, we investigated
the molecular landscape of PD in human post-mortem midbrains, a region that
is highly affected during the disease process.
Methods: Tissue from 19 PD patients and 12 controls were obtained from the
Parkinson’s UK Brain Bank and subjected to multi-omic analyses: small and
total RNA sequencing was performed on an Illumina’s HiSeq4000, while pro-
teomics experiments were performed in a hybrid triple quadrupole-time of flight
mass spectrometer (TripleTOF5600+) following quantitative sequential window
acquisition of all theoretical mass spectra. Differential expression analyses were
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performedwith customized frameworks based onDESeq2 (for RNA sequencing)
and with Perseus v.1.5.6.0 (for proteomics). Custom pipelines in R were used for
integrative studies.
Results:Our analyses revealed multiple deregulated molecular targets linked to
known disease mechanisms in PD as well as to novel processes. We have identi-
fied and experimentally validated (quantitative real-time polymerase chain reac-
tion/western blotting) several PD-deregulated molecular candidates, including
miR-539-3p, miR-376a-5p, miR-218-5p and miR-369-3p, the valid miRNA-mRNA
interacting pairs miR-218-5p/RAB6C and miR-369-3p/GTF2H3, as well as mul-
tiple proteins, such as CHI3L1, HSPA1B, FNIP2 and TH. Vertical integration of
multi-omic analyses allowed validating disease-mediated alterations across dif-
ferent molecular layers. Next to the identification of individual molecular tar-
gets in all explored omics layers, functional annotation of differentially expressed
molecules showed an enrichment of pathways related to neuroinflammation,
mitochondrial dysfunction and defects in synaptic function.
Conclusions: This comprehensive assessment of PD-affected and control
humanmidbrains revealedmultiple molecular targets and networks that are rel-
evant to the diseasemechanism of advanced PD. The integrative analyses ofmul-
tiple omics layers underscore the importance of neuroinflammation, immune
response activation, mitochondrial and synaptic dysfunction as putative thera-
peutic targets for advanced PD.

KEYWORDS
data integration, miRNAs, multi-omics, Parkinson disease

1 BACKGROUND

Parkinson’s disease (PD) is the fastest-growing neurode-
generative disorder and affects up to 2% of individuals aged
over 60 years.1 While the chronic and progressive motor
dysfunction ismostly due to degeneration of dopaminergic
neurons in the nigrostriatal pathway, PD is now recognized
to be a systemic disorder involving multiple other regions
of the nervous system.2 The sporadic form accounts for
most cases of PD, whereas only up to 3% of cases com-
prise the autosomal forms.3 Several environmental and
genetic factors are known to increase the disease risk.4
Recent studies point to a multifactorial pathogenesis that
may differ between patients, suggesting that PD is not
one homogeneous disease entity, but rather a syndrome
with a unifying clinical phenotype and numerous molecu-
lar subgroups. The existence of non-motor symptoms that
appear many years before the onset of motor manifes-
tations suggests that molecular mechanisms may have a
long lead-up period and result in chronic degeneration.5
One of the pathological hallmarks of PD is the presence
of Lewy-bodies (LB), intracytoplasmic inclusions that are

majorly composed of the protein alpha-synuclein (αSyn),
but also contain ubiquitin and neurofilaments.6 Such pro-
teinaceous inclusions occur in both familial and sporadic
forms of PD, suggesting that defects in the protein handling
machinery are directly related to the pathogenesis of the
disease.7
Our current understanding of disease progression is still

elusive, but considers the involvement of different disease
mechanisms in different stages of the disease. Environ-
mental factors are likely to represent triggers that start a
pathological cascade of events that lead to the facilitation
of molecular alterations, which are further aggravated as
the disease progresses.5 Furthermore, mechanisms related
to the regulation of gene expression have been extensively
linked to the development and progression of a variety
of brain diseases in recent years. For instance, alterations
of miRNA expression have been linked to the develop-
ment and progression of a variety of brain diseases, includ-
ing PD,8 where deregulated miRNAs have been identi-
fied in nervous system tissues and in peripheral fluids.9,10
Decreased levels of miR-133b were identified in the mid-
brain of patients with PD and in mouse models of PD.11,12
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Alterations in the levels of miR-34b/c were found in sev-
eral regions of PD-affected brains. These miRNAs can
mimic impairments in mitochondrial function and oxida-
tive stress, disease mechanisms believed to be crucial for
the development of PD.13 Two miRNAs (miR-7 and miR-
153) were also shown to regulate the expression of αSyn.
Interestingly, the former has been found to be altered in
the striatum and substantia nigra of patients with PD, as
well as in murine models of PD.14,15
Exploring individual profiles of the transcriptome, the

microRNAome, or the proteome in PD-affected brains
is a powerful strategy to understand neurodegenerative
events that underlie the disease. For instance, defects
in iron metabolism,16 in autophagy,17 mitochondrial
dysfunctions,18 and dysfunctions in synaptic function16,19
were all captured in previous transcriptomic and/or pro-
teomics studies. Moreover, a number of promising targets
were identified by such studies and have been regarded
as potential therapeutic targets or disease biomarkers for
PD (e.g. NR4A2, ULK1, OR51E2, NRF2, FTL, GGH and
BSCL2).16–21 Nevertheless, singular omic profiling also
encompasses a number of limitations, as it provides only a
snapshot of the pathological events that might be a part of
a much bigger network of deregulation, and fails to cap-
ture changes occurring up-/down-stream to the selected
omic level (e.g. miRNA regulation or post-translational
modifications). Only a few studies have attempted to
combine high-throughput profiling techniques to explore
the molecular changes that take place in postmortem PD-
affected brains, but the number of techniques employed
in parallel was limited.22–25 In order to present a more
complete picture of the molecular events taking place
in PD, here we present a comprehensive and integrative
assessment of postmortem PD-affected and control (CTR)
midbrains, capturing the multi-omic landscape of the
disease, that is, genomic, miRNAomic, transcriptomic
and proteomic levels. Each molecular layer was analysed
individually and in an integrative fashion, aiming to
depict deregulated pathways that permit the exploration
of molecular alterations taking place in PD-affected
brains. Overall, our findings point to putative molecular
networks involved in the pathophysiology of PD, which
might improve disease monitoring and delineate novel
druggable targets for this devastating disease

2 METHODS

2.1 Human postmortemmidbrain
samples

Human midbrain samples were provided by the Parkin-
son’s UK Brain Bank (Imperial College London, Lon-

don, England). In total, 19 PD and 12 CTR samples were
obtained, shipped and processed in two different batches.
Frozenmidbrain tissue blocks were transported and stored
under controlled temperature conditions. The samples
were conceded to theDepartment of Neurology, University
Medical Center Göttingen, Göttingen, Germany, and ethi-
cal approval was given by the Multicenter Research Ethics
Committee (07/MRE09/72). Table 1 encloses a summary
of clinical features about the subjects. An extended table
with all clinical information available for the subjects is
presented in Dataset 6 in the Supporting Information. For
sampling, midbrain blocks were transferred to a cryostat
chamber and kept at−20◦C. Each blockwas punchedwith
a 20-GQuincke Spinal Needle (BectonDickinson),≈20mg
tissue was collected into reaction tubes and kept at −80◦C
until further use.

2.2 RNA and DNA isolation from
humanmidbrain samples

Total RNAwas isolated from human specimens using TRI-
zol (Invitrogen) following the manufacturer’s instructions
(Methods in the Supporting Information). After extraction,
RNA samples were incubated at 55◦C for 2 min in order
to completely dissolve the RNA, and DNAse treatment
(Life Technologies) was performed. RNA samples were
cleaned with the RNA Clean&Concentrator-5 Kit (Zymo
Research). RNA integrity was assessed with the Agilent
6000 NanoKit in the 2100 Bioanalyzer (Agilent). DNA iso-
lation from human midbrain samples was performed with
the QIAamp DNA Mini Kit following the manufacturer’s
instructions.

2.3 RNA sequencing experiments

RNA sequencing was performed in the NIG-NGS Inte-
grative Genomics Core Unit, University Medical Cen-
ter Göttingen. Small RNA libraries were prepared using
the TruSeq Small RNA LibraryPrep Kit (Illumina) with
minor modifications (Methods in the Supporting Informa-
tion). The quality/integrity of RNA libraries was assessed
in the Fragment Analyzer (Agilent). All sequenced sam-
ples exhibited comparable RNA integrity. Both small
and total RNA sequencing were performed on the Illu-
mina HiSeq4000 platform (Illumina), generating 50 bp
single-end reads (small RNA sequencing: 10–20 mil-
lion reads/sample; total RNA sequencing: 30–40 million
reads/sample). After sequencing, sequence images were
transformed to binary base call files with the BaseCaller
software. The files were demultiplexed to fastq files with
bcl2fastq v2.17.1.14. (Illumina). Quality check was done
with FastQC v.0.11.5.
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TABLE 1 Demographic and clinical characteristics of analysed patient cohorts

Discovery cohort Replication cohort
CTR PD CTR PD

Number of patients 10 13 2 6
Sex (m/f) 4/6 8/5 0/2 4/2
Age at death 77.1 ± 3.4 [61–96] 78.3 ± 1.3 [71–87] 74.5 ± 5.3 [60–89] 82.7 ± 1.7 [73–93]
Disease duration (years) NA 13.4 ± 1.3 [7–25] NA 12.2 ± 1 [7–19]
Postmortem interval (PMI) 20.6 ± 1.2 [12–25] 14 ± 1.4 [3–24] 13 [13] 17.5 ± 1.1 [10–24]

Notes: Data are presented as mean ± SEM, and values in squared brackets represent the range. Statistical tests for nominal variables (sex) were performed using
Fisher’s exact test and for continuous variables (age and PMI) leveraged Student’s t-test, under a significance level of 5%. Differences between CTR and PD groups
within each cohort were not significant for sex (p-value = .4136 and p-value = .4286, for the discovery and replication cohorts, respectively) and age at death
(p-value = .7893 and p-value = .6731, for the discovery and replication cohorts, respectively). PMI values were significantly different in the discovery cohort (p-
value = .00811), but not in the replication cohort (p-value = .07209). These differences were not reflected in RNA library size (Table S4) and selected deregulated
proteins (Table S5).
Abbreviation: CTR, controls; PD, Parkinson’s disease; PMI: postmortem interval from death until autopsy/brain sampling.

2.4 RNA sequencing data processing
and mapping

After small and total RNA sequencing, the data was
processed with a customized in-house pipeline (Meth-
ods in the Supporting Information). After adapter
trimming/demultiplexing, reads were mapped to the
reference genome (genome build GRCh37.p5; miR-
NAs/piRNAs/other non-coding RNAs known sequences).
The reads were mapped in the non-splice-junction-aware
mode. No mismatches for the reads < 19b were allowed.
For reads between 20b and 39b, one mismatch was
allowed, and for reads between 40b and 59b, two mis-
matches were tolerated. All other parameters were set as
default in RNA-STAR.

2.5 Sequential window acquisition of all
theoretical mass spectra

After protein lysate preparation with Urea/Thiourea/
Chaps lysis buffer (details in Methods in the Support-
ing Information), 50 μg of protein were loaded into a 4–
12%NuPAGENovexBis-TrisMinigels (Invitrogen). Follow-
ing sample cleanup by electrophoresis (details in Meth-
ods in the Supporting Information), the bands stained
with Coomasie Brilliant Blue (ThermoFisher) were cut
out, diced, added of dithiothreitol alkylated with iodoac-
etamide for reduction and digested with trypsin overnight.
Tryptic peptides were extracted from the gel and the solu-
tion was dried in a Speedvac. After spectral library gen-
eration (Methods in the Supporting Information), protein
digests were analysed on an Eksigent nanoLC425nanoflow
chromatography system (AB Sciex) hyphenated to a
hybrid triple quadrupole-time of flight mass spectrom-
eter (TripleTOF 5600+). Qualitative liquid chromatog-

raphy/tandem mass spectrometry (LC-MS/MS) analysis
was performed using a Top25 data-dependent acquisition
method (Methods in the Supporting Information). Three
technical replicates per reversed-phase fraction were anal-
ysed to construct a spectral library. During quantitative
sequential window acquisition of all theoretical (SWATH)
analysis, three replicate injections were acquired for each
sample.

2.6 Mass spectrometry data processing

Protein identification was achieved using Protein Pilot
Software v.5.0 build4769 (AB Sciex) at thorough settings.
Spectral library generation and SWATH peak extraction
were achieved in PeakViewSoftware version 2.1 build 11041
(AB Sciex) using the SWATH quantitationmicroApp (v.2.0
build2003). Following retention time correction by the
iRT standard, peak areas were extracted using information
from the MS/MS library at a false discovery rate (FDR) of
1%.26 Finally, the resulting peak areaswere summed to pep-
tide area values and next to protein area values.

2.7 Differential expression analyses of
small and total RNA sequencing data

Two complementary computational frameworks based on
DESeq227 were used for the differential expression (DE)
analysis of small/total RNA-seq data. Pipelines differed in
the pre-processing procedure (Methods in the Supporting
Information). p-values were derived by the Wald test and
adjusted for multiple testing with Benjamini–Hochberg
employing a 10% FDR to establish deregulated candidates.
The Grubb’s-test was used to identify putative outlier sam-
ples at .05 significance level.
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2.8 Proteomics differential expression
analyses

The DE analysis of the proteomics was performed with
Perseus v.1.5.6.0.28 This application performs multiple
hypothesis testing corrections using a permutation-based
FDR approach, where Analysis of Variance and p-values
are computed between the measured and permuted data
using Student’s t-test statistical hypothesis test. FDR values
were calculated as fractions of accepted hits from the per-
muted data over the measured one. Proteins were consid-
ered statistically differentially expressed with an FDR < .1.

2.9 MiRNA target prediction and
multi-omics data integration

Following differential analyses, miRNAs identified by
small RNA sequencingwere integrated to target transcripts
identified by total RNA sequencing experiments. Details
about miRNAs target genes prediction are depicted in
Methods in the Supporting Information. Similarly, integra-
tion between gene and protein expression data was done
for genes identified in the total RNA sequencing experi-
ments with a protein product also identified by SWATH-
MS experiments.

2.10 Gene ontology and pathway
enrichment analyses

Gene ontology term and pathway enrichment analyses
were performed using several common functional anno-
tation databases (i.e., GO-biological processes (BP) and
cellular component (CC), KEGG (Kyoto Encyclopaedia
of Genes and Genomes) and protein–protein interac-
tion (PPI) analyses were performed in ShinyGO and
STRING29,30). Details about selected databases and scripts
are depicted in Methods in the Supporting Information.
Enrichment analysis was done separately for up-/down-
regulated entities under a significance level of FDR < .1.

3 RESULTS

In the present analysis, we leveraged a comprehensive
multi-omics dataset of a cohort of midbrain samples
including those of patients with PD and those of individ-
uals without any indication of neurodegeneration (CTR).
We obtained human midbrain tissue samples from 19 PD
and 12 CTR individuals from the Parkinson’s UK Brain
Bank in two batches. The largest batch—comprising 13
PD and 10 CTR cases—was used as the discovery cohort

and processed to obtain protein, RNA and DNA lysates,
whichwere further subjected to amulti-omic analysis (Fig-
ure 1A). Our discovery cohort dataset comprised 57 992
total RNA, 31 186 small RNA (of which 4383 are miR-
NAs) and 2257 proteins (Figure 1B). The second, indepen-
dent batch of samples, 6 PD and 2 CTR cases—here refer-
enced as replication cohort—was used for the verification
of expression levels of selected candidates identified by the
DE analyses in the discovery cohort.

3.1 Multi-omics expression patterns
and Bayesian hierarchical clustering
analyses

Sampleswere hierarchically grouped according to the level
of expression of each of the omics datasets (Figure 1C–H
and Figure S6). The 100 most variable transcripts, small
RNAs and proteins across the discovery cohort and the
independent replication cohort resulted in mixed sample
clusters between PD and CTR, indicating a high expres-
sion diversity in both groups (Figure 1C,E,G and Figure
S6A–C). A Bayesian hierarchical clustering analysis of
the normalized mapped counts of transcriptomics, small
RNA and proteomics expression data in the PD group only
showed different levels of heterogeneity with a decreasing
level of positive correlation between subjects, starting from
the transcriptome over the small RNA composition up to
the proteome (with 64, 61 and 57 positively correlated pairs
of patients for transcriptomics, small RNA and proteomics,
respectively). Although sub-clusters of expression patterns
with a higher correlation magnitude were discernible,
cluster compositions were not similar within multi-omics
layers. Furthermore, sub-clusters did not correlate with
patterns of respective clinical/histological parameters, sug-
gesting that molecular diversity in PD may be indepen-
dent of the clinical/histological phenotype (Figure 1I–K
and Methods in the Supporting Information).

3.2 Genetic background of PD patients

To describe the genetic background of PD patients that
were selected for this study and to exclude bias frommuta-
tions known to cause familial PD, we performed both
gene panel sequencing and multiplex ligation-dependent
probe amplification (MLPA) (Figure S1). Here, the pres-
ence of mutations/duplications/triplications in genes pre-
viously associated with PD was assessed. MLPA results
revealed no alterations in copy numbers in any of the
analysed genes/exons (Figure S1B, Table S1). A panel
of 29 genes/exons previously linked to PD or dystonia
(DYT) phenotypes (Figure S1C, Table S2) was employed
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F IGURE 1 Overview of multi-omics profiles. (A) Experimental design for the isolation of RNA, DNA and proteins from human
midbrain sample blocks. The extraction of tissue biopsies was performed with a spinal needle. Adjacent tissue biopsies from each sample
were used for the different isolation techniques. (B) Barplot represents the number of mapped entities for each omics dataset. The y-axis
represents the natural log of the mapped entities. (C–H) Heatmaps of the top 100 most variants and significantly differentially expressed
transcripts, small RNAs and proteins for the discovery cohort (based on frameworks A and B, a total of 667 genes, 4 miRNAs and 22 proteins).
The diagrams display the z-score computed from the normalized counts for each individual. Column dendrograms were obtained based on
the selected omics’ molecular profiles, and the row groups depict the samples’ effect. Both clusters were determined using Euclidean distance
and a complete hierarchical clustering. (I–K) Unbiased Bayesian hierarchical clustering of PD samples according to the total and small RNA,
and proteomics expression profiles. Clinical parameters for each PD patient are represented in the lower panel of the illustrations. The
column dendrograms depict the unsupervised clustering based on the correlation between patients. CTR: control; PD: Parkinson’s disease;
PMI: postmortem interval; Age: age at death; NP diagnosis: neuropathological diagnosis; Gender: F: females, M: males; LBDBS: Lewy body
disease brainstem variant; LBDE: Lewy body disease early-neocortical stage; LBDN: Lewy body disease neocortical stage; miRNA: microRNA

for targeted next-generation sequencing analysis of the PD
patient cohort. No pathogenic or likely pathogenic vari-
ants were identified using gene panel sequencing. One
patient (PD6) presented a variant of uncertain signifi-
cance (VUS) for the POLG gene (single nucleotide variant,
NM_001126131.1:c. 2542G > A).

3.3 Expression profiles of small and
total RNA and integrative approaches

After isolation of total RNA, we analysed the transcrip-
tomic profiles and miRNA expression patterns in our
cohorts using small and total RNA sequencing (Figures 2
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F IGURE 2 RNA-seq data schematic workflow and analysis results for total RNA-sequencing. (A) Illustration of the workflow of the
bioinformatics pipelines used for differential expression analysis of small and total RNA sequencing data. The analyses start with the raw data
expressed as integer reads for each sample and small RNA/gene. These were pre-processed using two distinct frameworks “A” and “B”
(details in Supporting Information). Then, the frameworks were further evaluated for differential expression through DESeq227 and
functional annotation of differential results using enrichment analysis tools available in ShinyGO.29 (B,C) Volcano plots portraying the
differential expression of total RNA sequencing data between PD and CTR subjects, for frameworks “A” and “B”, respectively. The x-axis
represents log2(fold change) (log2FC) and y-axis −log10(p-adjusted value). Under p-adjusted < .1, we found 641 and 126 differentially
expressed genes for framework “A” and “B”, respectively. Genes attending these criteria are coloured in blue and red, for negative and positive
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and 3A; Figure S2A). For the DE analysis, we leveraged
two bioinformatics frameworks, which we call “A” and
“B” (Figure 2A). These frameworks differed in the pre-
processing stage: “A”was data-driven andperformed filter-
ing using the distribution quantile information, while “B”
took a more supervised approach and removed the nega-
tive CTR omics, that is, omics with zero effect on the vari-
ance (Methods in the Supporting Information). Following
small RNA sequencing, mapping results showed that most
sequencing counts were composed of miRNAs in both PD
and CTR conditions (90.39% and 92.61% of all mapped
counts for different small RNA species, respectively) (Fig-
ure 3B). Using the same RNA source, mRNA libraries were
prepared using a strand-specific, massive-parallel cDNA
library preparation protocol. Sequencing read counts were
mapped and assigned to the reference genome, accounting
for a total of 46 500 genes with valid read values before fil-
tering.
For both frameworks, data quality assessments were

conducted using unsupervised learning methods (Figures
S3B–F and S4A–E). Principal component analysis and t-
distributed stochastic neighbour embedding of the small
RNA seq data revealed that the control (CTR12) did not
cluster with the rest of the samples (Figures S3D and S4C).
The retrieved neuropathological report for this sample
indicated the presence of AD-type Tau pathology-Braak-
stage II,31 and multiple small demyelinating plaques,
which also suggested that it was a potential asymptomatic
multiple sclerosis case.32 Following an outlier comparative
analysis via the Grubbs’ test (p-value = .033), this sample
was regarded as an outlier and removed from further anal-
yses (Figures S3E and S4D).
For all DE analyses presented here, we defined sig-

nificantly different genes and miRNAs for both frame-
works based on p-adjusted < .1. For framework “A”, DE
analyses revealed 641 deregulated genes (512 up- and 129
down-regulated in PD) but no DE miRNAs (Figures 2B
and 3B,D; Dataset 1 in the Supporting Information).
Application of framework “B” resulted in 126 DE genes
(105 up- and 21 down-regulated in PD) and 4 significantly

DE miRNAs (miR-539-3p; miR-376a-5p; miR-218-5p; miR-
369-3p) all of which were up-regulated in PD (Figure 2C
and 3B,E; Dataset 2 in the Supporting Information). In
addition, the frameworks shared 101 common genes, all
with the same regulation directionality regarding PD and
CTR. Our results highlight the usage of two distinct anal-
ysis pipelines for datasets encompassing multiple char-
acteristics: framework “A” was suitable for diverse data
with high variability between biological groups, such as
our gene expression data (Figure S5A),whereas framework
“B” was more sensitive to omic data with low expression
and less dispersion, which is true for our miRNA expres-
sion data (Figure S5B).
For integrative assessment of the RNA sequencing

datasets, we conducted a miRNA-target prediction anal-
ysis of the four significantly DE miRNAs (miR-539-3p;
miR-376a-5p; miR-218-5p; miR-369-3p) using databases for
validated and predicted targets (Methods in the Support-
ing Information). We identified six predicted and four
validated gene targets for these miRNAs that were also
present at deregulated levels in our total RNA sequenc-
ing data (Table S6). Among the identified pairs, miR-369-
3p/general transcription factor IIH subunit 3 (GTF2H3)
and miR-218-5p/Ras-related protein Rab-6C (RAB6C) pre-
sented a discordant expression with an up-regulation of
themiRNAs and down-regulation of transcripts in PD, rep-
resenting a valid interaction between miRNAs and their
target genes. Additionally, we performed an exploratory
integrative analysis that considered significant genes and
all of the mapped miRNAs (independent of their signifi-
cance level) for both frameworks. Here, most of the reg-
ulated genes had a corresponding targeting miRNA as a
valid interactor (discordant expression) (Figure 3I–L). The
expression levels of the most variant miRNAs and genes
with valid miRNA pairs for both discovery and replica-
tion cohorts were visualized using boxplots (Figure S16).
Framework “A” yielded 4795 unique pairs of miRNAs and
gene symbols (2459 with concordant levels of expression,
and 2336 discordant ones), whereas framework “B” yielded
800 pairs (346 with concordant levels of expression and

log2FC, respectively. Highlighted genes based on the integrative analyses for RNA sequencing experiments. (D) Comparison of enriched false
discovery rate (FDR) gene ontology (GO) categories obtained by frameworks “A” and “B” for the significantly up-regulated genes (FDR < .1,
yielding 500 and 427 enriched GO categories for framework “A” and “B”, respectively). Only commonly enriched categories were considered
for the scatterplot. The top enriched GO categories are highlighted for framework “A” (−log10(FDR) > 8.7, a total of 16 classes, in blue), “B”
(−log10(FDR) > 3.3, a total of 15 classes, in orange) and both (in green). Marginal plots represent densities of enriched GO classes for each
framework and ensemble. The axis values are in the base-10 log scale. Additionally, the GO terms not common for both frameworks were
mapped to zero in the x- and y-axis. (E) Top 15 GO‒biological processes categories enriched for genes up-regulated in PD obtained with
frameworks “A” and “B”, under FDR < .1. Bars represent log10 transformed adjusted p-values. (F) GO‒cellular component categories
enriched for genes down-regulated in PD obtained with framework “A”, under FDR < .1. Bars represent log10 transformed adjusted p-values.
(G) Top-10 significant KEGG signalling pathways for frameworks “A” (blue) and “B” (orange), under FDR < .1. Chemokine signalling
pathway was enriched in both frameworks “A” and “B” (see Figure S14 for the full pathway). CTR: control; PD: Parkinson’s disease; GO: gene
ontology; BP: biological process; CC: cellular compartment; KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery rate
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F IGURE 3 Integration of RNA sequencing experiments and analysis results of small RNA sequencing data. (A) Horizontal bars
depicting the percentages of the average quantities of the different small RNA species detected in the small RNA libraries as a readout for the
quality of the sequencing technique for the PD patients and CTR subjects. (B) Results obtained by frameworks “A” (blue) and “B” (orange) in
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454 discordant ones) (Figure 3B,I–L). Based on DE and
integrative results, candidate miRNAs and genes were
selected for validation by quantitative real-time poly-
merase chain reaction (qRT-PCR). This included the four
miRNAs identified by framework B, which we found con-
sistently and significantly upregulated in PD (Figure S7).
In addition, we validated two of the miRNA target-genes
captured by our analyses (RAB6C andGTF2H3), and seven
additional genes which were either highly deregulated or
established PD pathophysiological drivers (Figure S8C).
Overall, seven of those nine candidate genes presented sig-
nificant regulation (p-value < .05), whilst all nine genes
displayed concordant gene regulation patterns in valida-
tion qRT-PCR and RNA sequencing experiments (Figure
S8A–C).

3.4 Verification of clinical feature
effects and cell type distribution

To verify whether clinical features or cell type distribution
influence the results presented above, we leveraged corre-
lation analyses and cell type deconvolution methods.33,34
First, we tested for correlations between clinical param-
eters (Dataset 6 in the Supporting Information) versus
library quality results. RIN and PMI revealed no signifi-
cant correlation over the whole cohort and biological sub-
groups (R = [−.2704, −.0048]; p-valuecohort = .9826; p-
valuePD = .9389; p-valueCTR = .4498). In addition, clini-
cal features (i.e. RIN, PMI and disease duration) did not
correlate with RNA library quality measures like % of
GC content and number of total sequences (Table S4),
or significantly validated proteins (Figure S9, Table S5).
Consecutively, to analyse the distribution of different cell
types in the human brain tissue, we used RNA sequencing
decompositionmethods (Methods in the Supporting Infor-
mation). Data deconvolution techniques disclosed sev-
eral neuronal and immune cell types that populated the
analysed samples. As expected for midbrain tissue, astro-

cytes, neurons and oligodendrocytes were the most com-
mon cell types present (Figure S10), however no signifi-
cant differences were detected in the distribution of cell
types in PD or CTR. Furthermore, a specific deconvolu-
tion for immune cells was performed and indicated infil-
tration/proliferation or increased differentiation towards
the granulocyte/monocyte lineage in the analysed mid-
brains (Table S3). Finally, we investigated the presence of
sex-related effects with DE analyses using “framework A”
(Methods, Figure S11, Dataset 4 in the Supporting Infor-
mation), which revealed no significant differences in the
composition of the discovery cohort in terms of sex (p-
value = .4136; Table 1). Sex-regressed results greatly over-
lapped with the analysis without sex adjustment: 81% of all
genes identified in the main analyses remain significant
after controlling for sex, and 20 out of 23 candidates under-
lined by the integrative analyses in our study were signif-
icantly expressed in both approaches. No pathways were
enriched for the genes identified strictly when correcting
for sex. In addition, the majority of sex-specific genes were
not significantly deregulated in both approaches (Figure
S11, Dataset 4 in the Supporting Information). Based on the
correlation studies with clinical parameters, gender infor-
mation and cell decomposition analyses, no clinical fea-
tures or cell proportions were considered as covariates in
the DE analysis presented here.

3.5 Functional annotation for RNA
sequencing results and weighted
correlation network analysis

Functional annotation of the DE genes in PD revealed sev-
eral biological processes that were shared between frame-
works that have been known or suspected to be relevant
to the pathogenesis of PD (Figure 2D–G). Most of these
were related to immune and inflammatory responses (53%
and 42% for each framework, respectively) (Figure S12).
Subsequently, terms related to response to stress/apoptosis

each step of the differential expression and integration analyses for RNA sequencing data. (C) Predicted targets for signature-miRNAs. Hub
target genes that are common to the three miRNAs are highlighted in green. (D,E) Volcano plots portraying the differential expression of
small RNA sequencing data between PD and CTR subjects, for frameworks “A” and “B”, respectively. The x-axis represents log2(fold change)
(log2FC) and y-axis −log10(p-adjusted value). Four up-regulated miRNAs with framework “B” were found under p-adjusted < .1. Small RNAs
attending these criteria are coloured in red for positive log2FC. (F–H) Top 15 GO‒biological processes (GO-BP), GO‒cellular component
(GO-CC) and KEGG Pathway terms enriched for the predicted targets of the differentially expressed miRNAs, respectively, under FDR < .1.
All bars represent log10 transformed adjusted p-values. (I–L) Differentially expressed genes obtained from frameworks “A” and “B”. All
mapped microRNAs (miRNAs) were integrated with their respective validated targets (Methods in the Supporting Information). For each
panel, the analysis for up- and down-regulated miRNAs in PD is depicted. The y-axis denotes the log2(fold change) of the miRNAs (in red)
and genes (in green). From these pairs, we highlighted genes with a valid interacting miRNA (opposite regulation) based on their high
differential level. CTR: control; PD: Parkinson’s disease; DE: differentially expressed; FC: fold change; GO: gene ontology; BP: biological
process; CC: cellular compartment; KEGG: Kyoto Encyclopedia of Genes and Genomes; miRNA: microRNA; piRNA: Piwi-interacting RNA;
rRNA: ribosomal RNA; snoRNA: small nucleolar RNA; sncRNA: small non-coding RNA
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and metabolic/biosynthetic processes characterized the
DE genes obtained with framework “A”, each account-
ing for 5% of all enriched terms (Figure S12A). In con-
trast, framework “B” identified differentiation and devel-
opment and cytoskeleton organization (8% and 6% of the
enriched categories, respectively) (Figure S12B). KEGG
pathway analysis35 showed enrichment for several path-
ways involved in infectious diseases (e.g. HTLV-1 infection,
tuberculosis), several immune-related pathways (cytokine-
cytokine receptor interaction, B-cell receptor signalling
pathway), but also cancer-related processes (transcrip-
tional misregulation in cancer, JAK-STAT and, NF-kappa
B signalling) for the up-regulated genes from framework
“A” (Figure 2G). One commonly enriched KEGG path-
way, chemokine signalling pathway,was identified for both
frameworks. For down-regulated genes, which were con-
siderably fewer than the up-regulated ones, no GO-BP
term reached significance (FDR < .1). Nevertheless, GO-
CC enrichment revealed severalmitochondria-related pro-
cesses for down-regulated genes obtained with framework
“A” (Figure 2F).
In order to explore the biological role of the four dereg-

ulated miRNAs obtained using framework “B”, we per-
formed functional enrichment analyses with their pre-
dicted target genes (Figure 3C). Neuron-related pathways
were the most common among enriched GO categories
(Figure 3F–H): neuron system development and neuro-
genesis related pathways were the most significant GO-
BP terms, while neuron part, synapse and neuron projec-
tion were the most enriched GO-CC annotations. More-
over, KEGG pathways related to axon guidance and glu-
tamatergic synapse were also highly significant for the tar-
get genes of deregulatedmiRNAs. A network visualization
(Figure S15) disclosed eminently enrichedKEGGpathways
with several shared genes, for example,MAPK andRas sig-
nalling pathways.
In addition to functional annotation, we performed a

weighted correlation network analysis (WGCNA) of the
discovery cohort gene counts with a power parameter of
14 (Methods in the Supporting Information). This anal-
ysis yielded 130 gene modules, from which eight were
selected for further analysis based on their significance
between biological conditions (p-value < .05; Dataset 5 in
the Supporting Information). WGCNA results were also
integrated with significantly DE miRNAs (miR-539-3p;
miR-376a-5p; miR-218-5p; miR-369-3p) through validated
targets dataset (Figure 5). Pathway analysis for the gene
content of these modules (Figure 5; Figure S13) revealed
similar pathways as previously seen in GO and KEGG
analyses. These included modules strongly enriched for
terms as nervous system development and neuronal/glial
differentiation (Module ME1), inflammatory and immune
response (Modules ME28 /ME30), transcriptional regula-

tion (Module ME11), cell metabolism and chromatin orga-
nization (Module ME26).

3.6 Protein expression profiling,
functional annotation, integration with
RNA sequencing data

In order to profile the proteomics changes in our sam-
ples, we subjectedmidbrain tissues of our discovery cohort
to SWATH-MS (Figure S2B). Following preparation of an
annotated peptide spectral library, we were able to detect
and quantitate a total of 2257 proteins across all samples at
1% FDR.
DE analyses after normalization for the discovery cohort

revealed 22 significantly deregulated proteins between the
PD and CTR groups. In the PD group, 17 proteins were up-
regulated while five proteins were down-regulated (Fig-
ure 4A; Dataset 3). Analysis of PPI networks including
all significantly deregulated proteins revealed several hub
proteins and interactors, including TH, selenium-binding
protein 1 (SELENBP1), fumarylacetoacetase (FAH), fatty
acid-binding protein 5 (FABP5), HSPA1B, MAP2K2, FNIP2
and peroxiredoxin-1 (PRDX1)(Figure 4B). The significantly
deregulated proteins were matched to the transcriptomics
results (Figure 4C,D), and the four most deregulated genes
(up- and down-regulated in PD) with their respective sig-
nificant protein products were highlighted (up-regulated:
chitinase-3-like-protein 1 (CHI3L1), DNAJB1, C1QC and
SERPINA1; down-regulated: ALDH1A1, ACTA2, TAGLN
and DES; (|log2FC| > 1.4). Only CHI3L1 appeared signif-
icantly up-regulated in the PD group, in both proteomics
and total RNA sequencing. Similar to the integration of
transcripts and miRNA, all mapped proteins were now
related to the transcriptomic analysis and miRNA data,
and this revealed several links with previous datasets
(Figure 4E–H). Functional enrichment of proteins up-
regulated in PD showed the involvement of pathways
related to inflammatory and immune responses (12 of the
top 20 most significantly enriched categories) (Figure 4I).
Despite the small number of down-regulated proteins in
the PD group, high-level GO term grouping yielded a func-
tional enrichment to the category’s responses to stress,
cellular localization and regulation of molecular function
(Figure 4J). Consecutively, the expression of selected can-
didates was verified in an independent replication cohort
(Figures S16 and S17).
Finally, protein candidates were selected for valida-

tion by Western Blotting based on proteomics DE results
and integrative approaches within multi-omic datasets.
Six proteins were selected based both on the deregula-
tion shown in proteomics experiments and on the rele-
vance to PD pathology (namely, CHI3L1, HSPA1B, USP12,
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F IGURE 4 Proteomics analyses of midbrain samples. (A) Volcano plot showing all detected proteins in midbrain samples of PD and
CTR subjects. Differentially expressed proteins (total of 22) between CTR and PD indicated in blue (down-regulated in PD) and in red
(up-regulated in PD). Horizontal line depicts the cut-off for significance (FDR = .1). (B) STRING analysis for the differentially expressed
proteins. Clusters were defined by the Markov Algorithm in STRING 11.0,30 using default settings. Hub proteins (3 or more links) are
highlighted in green. (C,D) Differentially expressed genes obtained from frameworks “A” and “B” (p-adjusted < .1) and genes whose
corresponding protein was significantly deregulated in the same direction (FDR < .1; 11 and 13 genes in frameworks A and B, respectively),
integrated with all mapped proteins. The y-axis denotes the log2(fold change) of the genes (in green) and proteins (in purple). From these
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TH, FNIP2 and ALDH1A1). The down-regulation of TH
and FNIP2 was confirmed by Western Blotting (Figure
S9E–G). In addition, we also validated the up-regulation
of CHI3L1 and HSPA1B (Figure S9B–D). We observed con-
cordant trends that ALDH1A1 levels were lower andUSP12
levels were increased in PD patients compared to CTR sub-
jects, on average (although not statistically significant; p-
valueALDH1A1 = .09; p-valueUSP12 = .5) (Figure S9B–E).

4 DISCUSSION

The lack of disease-modifying therapies in PD is a con-
stant reminder of the need to better understand the molec-
ular mechanisms underlying its pathology. A better char-
acterization of the molecular changes in PD could allow
more effective/etiology-driven therapies for this neurode-
generative disorder. Profiling the molecular landscape of
PD-affected brains may reveal pathological events taking
place in the course of the disease, both at the cellular and
systemic levels, pinpointing deregulated molecular path-
ways and novel druggable targets. In this study, we lever-
aged the potential of multi-omic tissue analysis to char-
acterize pathology-related molecular alterations in post-
mortem midbrain tissue of PD patients and age-correlated
controls.
As our analysis aimed to identify pathways that char-

acterize sporadic PD, we first excluded the presence of
genetic alterations (known to cause monogenic forms of
PD) in our samples. Comprehensive mutational screening
using gene panel sequencing and by MLPA indicated the
absence of genetic abnormalities for known PD genes in
the discovery PD cohort (Figure S1, Table S1). A single-
nucleotide VUS in the POLG gene was identified in one
PD patient who belonged to the independent replication
cohort; therefore, it was not included in the main analy-
sis. Similar nucleotide variances in the POLG gene have
been linked to alterations in PD predisposition in Finnish
and Chinese populations, but mechanistic evidence of its
contribution to the pathophysiology of PD is lacking.36,37
Our findings confirmed that the discovery cohort is com-
posed of idiopathic PD cases and excludes a major influ-
ence of genetic alterations in our profiling results. In addi-

tion,we foundno significant differences in the cohort com-
position in terms of sex (Table 1), and no significant influ-
ence when controlling for sex in the DE analysis (Figure
S11). Most importantly, almost all of the candidates that we
identified by our integrative analyses (20 out of 23) were
present when correcting or not for sex, while most of the
sex-specific genes did not present significant regulation in
the analysed cohort (Figure S11). Overall, these findings
confirm that sex differences did not exert major influences
in the analyses presented here.
Next, unbiased hierarchical clustering analyses demon-

strated a high heterogeneity and did not permit cluster-
ing of subjects according to disease entity in the top most
variant samples (Figure 1C,E,G; Figure S6A–C) and iden-
tified DE transcripts and small RNAs (Figure 1D,F; Fig-
ure S6D–F). In contrast, DE proteins revealed a strong
clustering of biological subgroups in the discovery cohort
(Figure 1H). In the clustering analysis of the PD cohort,
the transcriptomics analysis showed the highest homo-
geneity among subjects, whereas small RNAs and pro-
teins were more heterogeneous (Figure 1I–K), arguing for
changes induced by post-translational modifications. The
number of post-mortem samples in this project was too
small to identify distinct patient subgroups; however, we
recently analysed the diversity of miRNA in cerebrospinal
fluid (CSF) of patients with PD, which revealed distinct
molecular subgroups that were independent of the clini-
cal phenotype.38 A future analysis of a larger number of
samples could bemore suited to identify distinct subgroups
and will represent an important prerequisite for the devel-
opment of personalized therapeutic approaches based on
the molecular phenotype in PD.
DE analysis of RNA sequencing data was conducted

using two different frameworks for the pre-processing
stage (Figure 2A), each one having a different focus, for a
broader and more complete investigation of different RNA
sequencing datasets with distinct count distributions (Fig-
ure S5). While framework “A” considered a distribution-
driven approach appropriate for sparse data, framework
“B” had a variance-based supervised procedure. A con-
siderable number of genes were found to be significantly
deregulated in framework “A”, while no statistically signif-
icant miRNAs could be detected. In contrast, application

pairs, genes are highlighted based on their high differential level (top four genes with largest differential level, |log2FC| > 1.4). (*) highlights
CHI3L1, a candidate identified significantly up-regulated in both transcriptomics and proteomics datasets. (E–H) Combination of the
resulting pairs of small RNAs and their respective target genes from frameworks “A” and “B” (independently of their significance), with the
22 significantly expressed proteins and proteins whose corresponding gene was significantly deregulated in the same direction
(p-adjusted < .1; 18 and 3 proteins in frameworks A and B, respectively). The y-axis denotes the log2(fold change) of the miRNAs (in red),
genes (in green) and proteins (in purple). (I,J) Enriched GO‒biological process categories for up- and down-regulated proteins in PD,
respectively. CTR: control; PD: Parkinson’s disease; DE: differentially expressed; FC: fold change; GO: gene ontology; BP: biological process;
CC: cellular compartment; miRNA: microRNA
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F IGURE 5 Visualization of top significant WGCNA gene modules and DE miRNAs. WGCNA analysis revealed 8 significant gene
modules (p-value < .05) between PD and CTR. Through the validated miRNA targets database, the network was extended to the significantly
DE miRNAs (in yellow) and edges between genes and miRNAs were constructed. The red and blue nodes represent significantly up- and
down-regulated genes (p-adjusted < .1) in frameworks “A” and “B”, respectively. Grey nodes represent genes in WGCNA modules with no
significance (p-adjusted > .1). Gene nodes of bigger size (DMGDH, FAM167B, GTF2H3, ALDH1A1, CHAC1, SERPINA1, PARVG, ASCL2 and
DTD2) are highlighted as relevant gene candidates due to their significant differential expression and integration with miRNAs and proteins
(see Figures 2–4). Furthermore, gene ontology analysis of genes in each WGCNA module revealed several significant biological processes
(FDR < .1; Figure S10), which were summarized and represented in each of the illustrated WGCNA modules (terms depicted inside module
circles). Modules with high distribution of up-regulated genes (e.g. ME28 and ME30) translated high significance in inflammatory and
immune response pathways. The remaining WGCNAmodules and genes in these modules (p-value > .05) can be found in the Dataset 5 in the
Supporting Information. CTR: control; PD: Parkinson’s disease; DE: differentially expressed; miRNA: microRNA; WGCNA: weighted
correlation network analysis

of framework “B” resulted in multiple deregulated genes
and miRNAs (Figure 2D). Analysis of the RNA sequenc-
ing data using two different frameworks provided a holis-
tic view of the data sets and revealed subtle levels of dereg-
ulation that might not have been captured if only one or
the other system had been used. Because our data spanned
multiple omics layers, we examined all deregulated candi-
dates (independent of log2FC) for integration analysis and
then focused on the top hits for individual omics analyses
(results with other log2FC thresholds can be found in Table
S7). Overall, this depicts the importance of choosing the
most suitable bioinformatic paradigm covering the variety
of human expression data (Figure S5).
Differential transcriptome analyses revealed that there

are more up- than down-regulated genes in PD (Fig-
ure 2B,C), which is in line with a recent meta-analysis on
substantia nigra transcriptome.39 Transcriptomic overex-
pression was on average more common in the PD groups
both at the single gene level and also when analysing chro-
mosomal segments with expressed sequencing tags. Inter-

estingly, despite the different transcripts obtained with
each framework, both the regulation directionality and the
enrichment results were very similar in both settings. Up-
regulated genes in PD were largely enriched to inflam-
matory and immune responses, but also to terms related
to stress and apoptotic responses, cytoskeleton organi-
zation, differentiation and development and metabolic-
related processes (Figure 2E; Figure S12A,B). Processes
related to immune cell proliferation and defence response
were more enriched in framework “A” than they were in
“B”, which might be due to the smaller number of signifi-
cantly deregulated genes yielded by the latter (Figure 2D).
Similarly, KEGG pathway enrichment results are related
either to inflammation/immune responses, or to a variety
of infectious diseases (Figure 2G), likely because pathways
of infectious diseases contain genes related to immune cell
activation and inflammation. One particular pathway—
chemokine signalling pathway—which is directly related
to inflammation/leukocyte recruitment,40 was shared by
both frameworks (Figure 2G; Figure S12).
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Moreover, transcriptomics analysis through frame-
work “A” also yielded functional enrichment for
stress/apoptosis and metabolic/biosynthetic processes
(Figure S12A,B), reflecting features of neurodegeneration
occurring in PD-affected midbrains.2 Metabolic dys-
function has been frequently linked to the pathogenesis
of PD41 and dopaminergic neurons are known to be
especially sensitive to oxidative stress and mitochondrial
dysfunction.42 Strikingly, PD down-regulated genes also
showed enrichment for numerous mitochondrial pro-
cesses, known to be markedly impaired in autosomal
recessive forms of PD43 (Figure 2F). Framework “B” led
to enrichment for differentiation and development, and
a similar enrichment was observed for the deregulated
miRNAs. Cell cycle-related proteins play an important role
in the survival of mature neurons, and also in neuronal
apoptotic processes.44 Overall, those findings support
the connection between the miRNA and gene expression
datasets, encouraging the integrative efforts employed in
this study.
For the small RNA data, we were able to identify four

differentially expressed miRNAs using framework “B”, all
of which were up-regulated in PD (Figure 3G). Similar
findings also suggested an overall up-regulation of cir-
culating miRNAs in PD.45,46 Remarkably, all candidates
depicted here have already been linked to PD and other
neurodegenerative diseases. miR-218-5p was found up-
regulated in peripheral blood mononuclear cells (PBMCs)
of PD patients and its levels were reversed after deep brain
stimulation therapy.47 In the CSF of Alzheimer’s disease
(AD) patients, miR-218-5p was found to be decreased.48
miR-376a-5p was found increased both in PD PBMCs
and in vitro. Interestingly, it regulates genes that are
involved in mitochondrial dysfunction and were previ-
ously linked to PD pathogenesis (TFAM; PGC1α),46 but
also SIRT2,49 a protein implicated in PD for its effects
in α-syn aggregation.50 It has also been postulated as a
biomarker for PD, since its levels in PD PBMCs also seem
to correlate with disease severity.51 One study showed ele-
vated levels of miR-369-3p in PD postmortem substan-
tia nigra,52 while alterations in the striatal levels of miR-
539-3p were reported in a rodent model of PD.53 Func-
tionally, these miRNAs were linked to neuron-related
gene ontology terms, indicating the neuronal origin of
these miRNAs (Figure 3J–L). Additionally, terms related
to cell-cycle, proliferation, differentiation and develop-
ment were highly enriched. These are known to also play
a vital role in the survival and maintenance of mature
neurons54 and are directly influenced by miRNA levels
during neurodegeneration.53 In concordance with the DE
analyses, WGCNA results also revealed a strong enrich-
ment of up-regulated genes in inflammation-related mod-
ules (Figure 5), as well as modules related to nervous sys-

tem development, cell metabolism and transcriptional reg-
ulation (Figure 5 and Figure S13). Highlighting the impor-
tance of these pathways, the results of the WGCNA also
underscore the role of the four deregulated miRNAs iden-
tified in the DE analysis.
To obtain a more holistic view, the RNA sequencing

datasets comprising transcriptome and microRNAome
were analysed in an integrative fashion (Figure 3E–I). PD
up-regulated genes included transcription factor E2F2,
implicated in hemisphere-dependent PD pathology55
and neuroinflammation after spinal cord injury,56
Glutathione-specific gamma-glutamylcyclotransferase-1
(CHAC1), reported to regulate unfolded protein response57
and linked to paraquat-induced neurotoxicity,58 and
CXCR4, a chemokine receptor linked to neuroinflam-
mation which is expressed in dopaminergic neurons.59
The latter was experimentally validated and showed
strong up-regulation in the PD samples analysed here
(Figure S8B). DRD2 and OR51E2 presented marked down-
regulation in PD. The former has been found in altered
levels in PD substantia nigra and has been regarded as
a susceptibility locus for PD,39,60 whereas the latter is
postulated as a therapeutic target for PD. It is involved
in neuromelanin pigmentation in dopaminergic neurons
and found down-regulated in PD-affected brains.21,61
When considering only significantly differentially

expressed miRNAs and transcripts, the list was reduced
to two valid miRNA-target gene pairs: miR-218-5p/RAB6C
and miR-369-3p/GTF2H3 (Table S4). Importantly, we
have validated the expression of those four candidates
by qRT-PCR, adding further evidence to the relevance of
these pairs for the pathophysiology of the analysed PD
brains. The RAB6C is a member of Rab GTPases, which
are pivotal regulators of intracellular protein transport
and vesicle trafficking.62 RAB6C has been implicated in
autophagy and proteostasis and increased levels of Rab6
isoforms have been linked to protein aggregation in vitro63
Importantly, Rab GTPases are substrates of LRRK2, the
most commonly mutated gene in familial cases of PD.
Disruption of Rab phosphorylation in the LRRK2 site
leads to neurotoxicity in vitro and dopaminergic neurode-
generation in vitro.64 The GTF2H3 is directly involved
in RNA transcription and nucleotide excision repair.65
Although GTF2H3 has not been directly implicated in
PD, dysfunctions in nucleotide excision repair play an
important role in chronic neurodegenerative disorders.66
Moreover, members of its family (TFIIH) have been shown
to play a role in oxidative stress and mitochondrial DNA
alterations in PD.67 Altogether, these candidates underline
pathways that are involved in the pathogenesis of PD and
support the involvement of gene expression regulation by
miRNAs as a disease mechanism. The regulation of these
targets is supported by the independent replication cohort
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(Figure S9), and the experimental validations of selected
genes (Figures S7 and S8).
Finally, proteomic profiling ensured a more complete

characterization of disease-relevant post-translational
mechanisms. In line with transcriptomics, most differen-
tially regulated proteins were increased in PD (Figure 4A).
As expected, we found a marked down-regulation in
tyrosine hydroxylase (TH), the rate-limiting enzyme
for dopamine synthesis and a hallmark of dopaminer-
gic neuron depletion in PD.2,68 PPI networks revealed
other important hub-proteins (Figure 4B), such as the
SELENBP1, FAH, FABP5 and PRDX1. Remarkably, we
previously identified selenium as part of a bioelement-
signature in the CSF that allowed for differentiation
between PD and CTR samples.69 FAH and PRDX1 were
reported to play a role in oxidative stress damage in PD,
and the latter has also been postulated as a new thera-
peutic target for PD because of its role in the generation
of reactive oxygen species.70,71 FABP5 has been linked to
postnatal neurogenesis,72 and also to neuronal oxidative
damage in vitro.20 Another important PD up-regulated
protein that was experimentally validated was heat shock
70 kDa protein 1B (HSPA1B), a chaperone known for
its role in protein folding and degradation as well as
neuronal apoptosis (Figure S9B,C)73. Chaperones are
known to interact with αSyn,74 and defects in that sys-
tem contribute to αSyn misfolding and the formation of
inclusions/protein aggregates in PD.75
Significantly deregulated proteins were substantially

fewer than deregulated transcripts, most likely because
only the most abundant/uniquely identified proteins
within all samples were considered for quantification. Fur-
thermore, proteomics andRNAsequencing results are fun-
damentally very different, starting with the nature of the
signals and the coverage of those techniques limiting the
overlap between such datasets.76 However, their integra-
tion resulted in a better understanding of the regulation
of identified candidate molecules, for example by com-
parison of individual protein expression levels to respec-
tive RNA sequencing results (Figure 4C,D) and by analysis
of expression levels in the independent replication cohort
(Figure S16).
An important finding was the identification of CHI3L1

which was up-regulated in both transcriptomics and
proteomics datasets, and was validated by both qRT-
PCR and Western Blot. It also showed the highest lev-
els of up-regulation in both analyses after integration
(Figure 4C). CHI3L1, also known as YKL-40, is widely
expressed in immune cells and regulates inflammatory
responses, tissue injury and repair.77 Remarkably, it has
been previously identified in CSF studies as a potential
circulating biomarker for several neurodegenerative dis-
eases, including AD, amyotrophic lateral sclerosis and

PD.78–80 It was also considered as a pivotal marker for
immune/inflammatory changes in tauopathies.81 Func-
tional analysis highlighted the GO-BP immune effec-
tor process as the most enriched term for the up-
regulated proteins in PD (Figure 4I), matching the mas-
sive immune/inflammatory activation reported for RNA
sequencing results and the deregulation of several immune
mediators in the proteomics dataset. Remarkably, func-
tional alterations related to neuroinflammation/immune
response activation were captured across all omics results
presented in our study and were independent of data han-
dling paradigms. Neuroinflammation has already been
considered to be a predictive feature for the appearance
of non-motor symptoms and cognitive decline in patients
with PD,82 and inflammation-related mechanisms seem to
accompany the pathophysiological events of PD even from
earlier stages.5,83 A recent study showed that neuroinflam-
matory mechanisms are triggered with the release of αSyn
from apoptotic neurons, aggravating the disease through
a number of pathways that include microglial activation,
mitochondrial damage and inflammasome formation.84
Overall, the integrative results from diverse omics layers
depicted in this study provide further evidence for the
role of neuroinflammation in PD pathology and suggest its
exploitation as a therapeutic target.
It is important to stress that factors modulating pro-

tein metabolism (e.g., synthesis and degradation rates of
proteins) were out of the scope of this study and were
therefore not considered for the integrative analyses pre-
sented here, although they likely contribute to the over-
all picture. The analysis of the phospho-proteome and the
metabolome was also not included because of the post-
mortem nature of the source material. Limitations also
apply to the number of analysed subjects and the nature of
the material analysed, because high-quality post-mortem
tissues with excellent clinical characterization are scarce,
particularly for CTR subjects without neurodegenerative
pathology. Nevertheless, we demonstrated that quality
CTR measures, such as RIN and PMI, showed no corre-
lation to data quality (Table S4), similar to what has been
reported previously.85–87 Furthermore, clinical parameters
in PD had no major effect on the differential results (Table
S5), and there was no difference in cell type composition
between samples (Figure S10), excluding a major effect
of these factors on the results. While information about
medication for the analysed PD cohort was incomplete,
the clinical data presented here does not indicate the
effects of medication on disease progression. Moreover,
Levodopa—the most common symptomatic antiparkinso-
nian treatment—has been shown to not alter the course of
PD in terms of progression.88,89
A caveat of our data is that we analyse a snap-

shot of advanced PD stages, that is, patients with a
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disease duration of 7–25 years. As all analyses strongly
underscored the role of neuroinflammation, we do not
expect that an increase in sample number would change
this overall picture. Nevertheless, an analysis of larger
cohorts will be muchmore powerful for subgroup identifi-
cation and may identify additional molecular targets char-
acterizing subtypes of PD pathology.

5 CONCLUSIONS

In summary, our integrative multi-omics analyses identi-
fied multiple levels of deregulation in human midbrains
affected by PD, several of them overlapping across the
different datasets. We identified and experimentally val-
idated four deregulated miRNAs: miR-539-3p, miR-376a-
5p, miR-218-5p and miR-369-3p. These miRNAs contribute
to the regulation of transcription and inflammatory path-
ways, highlighting these mechanisms in the context of PD
pathology. We also identified and validated two miRNA-
target gene interacting pairs (miR-218-5p/RAB6C andmiR-
369-3p/GTF2H3). The deregulation of these players under-
lines the involvement of vesicle trafficking, proteostasis
and oxidative stress in the pathogenesis of PD. Established
PD-related proteins, such as TH, were also captured in our
study, along with less evident candidates, such as CHI3L1,
FNIP2 and HSPA1B.
The integrative view of diverse multi-omics layers con-

firmed an important enrichment of neuroinflammation-
related molecules, underscoring the pivotal role for neu-
roinflammation in the pathogenesis of advanced PD and
delineating a yet unaddressed drug target in this disease
stage.90 Further mechanistic and clinical studies would be
required to substantiate the pathological importance of our
findings in the context of earlier disease stages.
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