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Understanding patterns of spontaneous mutations is of fundamental interest in studies of human genome evolution and
genetic disease. Here, we used extremely rare variants in humans to model the molecular spectrum of single-nucleotide
mutations. Compared to common variants in humans and human–chimpanzee fixed differences (substitutions), rare
variants, on average, arose more recently in the human lineage and are less affected by the potentially confounding effects
of natural selection, population demographic history, and biased gene conversion. We analyzed variants obtained from
a population-based sequencing study of 202 genes in >14,000 individuals. We observed considerable variability in the per-
gene mutation rate, which was correlated with local GC content, but not recombination rate. Using >20,000 variants with
a derived allele frequency £10–4, we examined the effect of local GC content and recombination rate on individual variant
subtypes and performed comparisons with common variants and substitutions. The influence of local GC content on rare
variants differed from that on common variants or substitutions, and the differences varied by variant subtype. Fur-
thermore, recombination rate and recombination hotspots have little effect on rare variants of any subtype, yet both have
a relatively strong impact on multiple variant subtypes in common variants and substitutions. This observation is con-
sistent with the effect of biased gene conversion or selection-dependent processes. Our results highlight the distinct biases
inherent in the initial mutation patterns and subsequent evolutionary processes that affect segregating variants.

[Supplemental material is available for this article.]

Mutation is one of the most fundamental processes in biology. It is

the ultimate source of genetic variation and one of the driving

forces of evolution. Mutation also plays a significant role in the

etiology of human diseases. There is considerable interest in un-

derstanding the underlying pattern and molecular spectrum of

spontaneous mutations. Historically, two approaches were applied

to estimate the single-nucleotide mutation rate in humans. The

first analyzes divergent sites between humans and another species,

typically chimpanzee. According to Kimura’s neutral theory, the

majority of substitutions are neutral and therefore the extent of

between-species divergence can be used to estimate the neutral

mutation rate (Kimura 1983). Many groups have applied this ap-

proach to estimate the spontaneous mutation rate in humans

(Drake et al. 1998; Nachman and Crowell 2000; Kumar and Sub-

ramanian 2002; Silva and Kondrashov 2002). However, several

forces, including natural selection, biased gene conversion (BGC),

and demographic history, can alter fixation probabilities and re-

shape the spectrum and genomic distribution of between-species

substitution patterns. A second, more direct approach, pioneered

by Haldane (1935), uses incidence rates of dominant disorders in

humans to estimate the mutation rate (Sommer 1995; Sommer and

Ketterling 1996; Kondrashov 2003; Lynch 2010). This approach,

however, is limited by the fact that only a small subset of new

mutations manifest as disease variants (Nachman 2004).

The mutation rates from these studies represent a genome-

wide average. However, there is extensive variability among differ-

ent genes or genomic regions in both between-species divergence

and within-species diversity (Wolfe et al. 1989; Nachman and

Crowell 2000; Sachidanandam et al. 2001; Smith and Lercher

2002; Kondrashov 2003; Hodgkinson et al. 2009). This suggests

that spontaneous mutation rates are not constant throughout the

genome, although the reasons behind this variability are unclear.

Local nucleotide composition is a frequently studied feature

that could contribute to mutation rate variability. One study

showed that AT > GC (an A base replaced with a G or a T base
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replaced with a C) common variants segregate at a higher frequency

in regions with higher GC content (Webster et al. 2003), and others

similarly reported increased fixation bias toward GC base pairs in

GC-rich regions (Lercher and Hurst 2002a; Lercher et al. 2002).

However, analyses of GC content and variant patterns often

reported contradicting findings. For example, while some studies

showed that GC content is positively correlated with both di-

vergence rates between humans and chimpanzee (Smith et al. 2002;

Webster et al. 2003; Arndt and Hwa 2005; Duret and Arndt 2008)

and within-human nucleotide diversity (Sachidanandam et al.

2001; Hellmann et al. 2005), another study found a negative cor-

relation (Cai et al. 2009). Furthermore, while some studies reported

increasing GC > AT substitution rates with increasing GC content

(Smith et al. 2002; Webster et al. 2003), others showed a decrease

(Arndt and Hwa 2004; Duret and Arndt 2008). These inconsistencies

could be partly explained by differences in the allele frequency, and

therefore the evolutionary time scale of the variants analyzed in

different studies. Consequently the observed patterns could be the

result of confounding factors, such as selection and demography,

instead of alterations in the actual mutation rate.

Recombination is known to influence patterns of common

variation and substitution rates. Correlations between recom-

bination rate and nucleotide diversity or between species sub-

stitution rates have been observed in humans (Nachman et al. 1998;

Nachman 2001; Lercher and Hurst 2002b; Hellmann et al.

2003, 2005; Spencer et al. 2006; Duret and Arndt 2008; Cai et al.

2009; Lohmueller et al. 2011), Drosophila (Begun and Aquadro

1992; Begun et al. 2007; Kulathinal et al. 2008), and several plant

species (Dvorak et al. 1998; Kraft et al. 1998; Stephan and Langley

1998; Tenaillon et al. 2004). Three major theories exist to explain

these observations. First, recombination may be directly muta-

genic, leading to increased mutation rates in regions of high re-

combination and thus higher diversity (Lercher and Hurst 2002b;

Hellmann et al. 2003, 2008). Second, while background selection

and selective sweeps reduce haplotype diversity, recombination

generates new haplotypes by shuffling variants onto different

backgrounds, thereby maintaining diversity in regions of high

recombination rates (Kaplan et al. 1989; Charlesworth et al. 1993,

1995; Hudson and Kaplan 1995; Nachman 2001). A third expla-

nation is BGC, a recombination-associated process that preferen-

tially repairs AT/GC mismatches produced during recombination

to GC bases, leading to preferential fixation of GC alleles (for re-

view, see Duret and Galtier 2009). Over time, the observed effect of

BGC can mimic that of natural selection, leading to an excess of

‘‘weak’’ (W) A/T bases converted to ‘‘strong’’ (S) G/C bases as if the

latter were under positive selection (Berglund et al. 2009; Galtier

et al. 2009; Necsulea et al. 2011). The reports hypothesizing a

mutagenic effect of recombination relied on common variants and

substitutions (Lercher and Hurst 2002b; Hellmann et al. 2003,

2008). Several lines of evidence argue against the mutagenic re-

combination theory and instead suggest that a selection-dependent

mechanism or BGC can explain the observed correlation between

diversity and recombination rate (Duret and Arndt 2008; Berglund

et al. 2009; Galtier et al. 2009; Lohmueller et al. 2011).

Previous studies using common variants within humans and

substitutions between humans and chimpanzees are effectively

dealing with mutations accumulated over many generations. Their

patterns, therefore, reflect the cumulative influence of many pro-

cesses, including natural selection, population demographic history,

and BGC. A major challenge in the field is to elucidate the extent to

which these forces alter the distribution of variants over time and to

distinguish their relative contributions. To minimize the effects of

selection, many studies restrict their analysis to noncoding regions of

the genome. However, widespread signatures of recent positive selec-

tion, even within supposedly neutral regions (Williamson et al. 2007),

suggest that noncoding regions may also be influenced by selection.

Rare variants represent a newly available and expanding re-

source that can overcome some of these limitations. Rare variants are

relatively young, predominantly because they are the result of recent

mutation events. Therefore, rare variants are typically less affected

by population demographic history or natural selection (Messer

2009). Furthermore, as BGC acts only on variants after they have

arisen in the population (Duret and Galtier 2009), it does not

influence innate mutation rates. Rare variants, therefore, are an

appropriate resource for studying the spectrum and genomic distri-

bution of mutations while minimizing the potentially confounding

influences. In addition, while family-based whole-genome se-

quencing has begun to identify de novo mutations that provide

more direct measures of mutation rates (The 1000 Genomes Project

Consortium 2010; Conrad et al. 2011; Campbell et al. 2012; Kong

et al. 2012), the identified mutations sparsely cover the genome. For

example, if whole-genome sequencing of each parent-offspring trio

yields ;40 de novo mutations (Conrad et al. 2011), 500 such trios

would need to be sequenced to accumulate roughly 20,000 muta-

tions. These mutations, however, would occur once per 150 kb on

average, and the data would lack the spatial resolution necessary to

detect the effect of local genomic context on a finer scale.

We studied a set of rare variants discovered via targeted rese-

quencing of 202 genes in >14,000 unrelated individuals. We ana-

lyzed the per-gene mutation rate as well as the probability of each

site to contain a variant of a specific subtype relative to local GC

content, recombination rate, and recombination hotspots. In or-

der to compare mutation rate inferences based on rare variants

with those obtained by within- and between-species data, we

compared rare variant patterns to common variant data from The

1000 Genomes Project Consortium and substitution sites between

humans and chimpanzee. These three variant classes cover dif-

ferent evolutionary time scales, and the differences between them

allow us to examine the distinct influence of genomic context on

the initial mutation process, the subsequent rise of some muta-

tions to become common variants, and eventual fixation.

Results

Variant counts and densities among rare variants, common
variants, and substitutions

We obtained rare variants from a previously described sequencing

study targeting the exons and flanking intronic regions of 202

genes in >14,000 individuals to a median depth of 273 (Nelson

et al. 2012). The genes are drug targets relevant in 12 complex

diseases; and the subjects were recruited for genetic association

studies of these diseases (Nelson et al. 2012). Several complemen-

tary methods were used to assess the quality of rare variants in

these data. Among singleton variants, the false positive and neg-

ative rates were estimated to be 2.0% and 2.7%, respectively, with

lower error rates estimated for more common variants (Nelson

et al. 2012). For this study we focused on the 195 autosomal genes,

with ;700 kb targeted regions in ;2000 targeted exons, which

contained a total of 20,053 rare variants with a derived allele fre-

quency (DAF) #10�4 in the European subset (N = 12,515). Each

variant was categorized into one of seven possible variant subtypes

based on the ancestral and derived allele states: AT > GC, GC > AT,

CpG GC > AT, AT > CG, GC > TA, AT > TA, and GC > CG (Table 1). The
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notation of AT > GC indicates a site where the ancestral base A has

a G as the derived allele, or ancestral base T has a derived allele C.

We summarized variant counts by subtype (Table 1). Nearly

13% of CpG sites have a rare GC > AT variant, compared with only

1.71% of non-CpG GC bases, consistent with the known hyper-

mutability of CpG dinucleotides (Nachman and Crowell 2000;

Kondrashov 2003; Hwang and Green 2004). Among rare variants,

there were nearly twice as many S > W variants (those converting a

G/C base pair into an A/T base pair) as the opposite W > S variants

(Table 1). This mutational AT bias is consistent with previous obser-

vations (Lynch 2010), and can be mainly explained by the relatively

high frequency of GC > AT variants at CpG dinucleotides (Table 1).

For comparison, we also analyzed common variants and

substitutions. We randomly sampled intergenic regions from the

human genome to obtain common variants and substitutions for

analysis while matching the genomic context of the rare variant

data set (see Methods). Sampling intergenic regions allowed us to

minimize effects of selection. To achieve comparable statistical

power, we sampled a similar number of common variants and

substitutions as the rare variants. In all, we obtained 22,566 var-

iants from the European subset of The 1000 Genomes Project

Consortium with a DAF > 5% and 21,912 human-lineage-specific

divergent sites between humans and chimpanzee (Table 1).

The relative proportion of variant subtypes differed among

the three variant classes. Figure 1 shows the total variant proportion,

defined as the number of variants of a given subtype over the total

number of variants in that variant class. The relative proportion of

AT > GC variants increased progressively from rare variants to sub-

stitutions, while CpG GC > AT transitions correspondingly de-

creased (Fig. 1). Other variant subtypes showed little change across

the three variant classes. These observed proportions, however, are

influenced by the different sets of sites analyzed for rare variants and

for common variants/substitutions, and cannot be directly inter-

preted as the relative mutation rates across subtypes. For example,

mutation rates at CpG sites are affected by methylation status, yet

sites near promoters tend to be hypomethylated compared with

intergenic regions (Molaro et al. 2011).

The conditional variant proportion, defined as the number

of a given variant subtype divided by the total number of bases

that could produce the given subtype, was higher in all rare var-

iant subtypes compared with common variants and substitutions

(Table 1). The higher ‘‘absolute’’ conditional variant proportion

in rare variants is expected, as the rare variants were discovered in

>12,000 individuals. Importantly, the ‘‘relative’’ magnitudes across

rare variant subtypes are expected to more closely reflect the relative

spontaneous mutation rate than common variants or substitu-

tions. The results for rare variants in Table 1, therefore, provide

more accurate estimates of the relative mutation rates among

different mutation subtypes.

The per-gene mutation rate was influenced by GC content
but not recombination rate

We analyzed the per-gene mutation rate for 193 genes (out of the

195 autosomal genes), calculated previously by Nelson et al.

(2012), using the method described by Coventry et al. (2010) and

Wakeley and Takahashi (2003). There were considerable fluctua-

tions in the mutation rate across genes (Fig. 2A). To assess the

impact of genomic context on this variability, we calculated aver-

age GC content and recombination rate within the transcribed

region of each gene (Fig. 2B and C, respectively). There was a weak

but significant positive correlation between mutation rate and GC

content (Pearson’s r = 0.22, P = 0.0031) (Fig. 2D, dashed line). Re-

combination rate, however, was not significantly correlated with

mutation rate (Pearson’s r = 0.039, P = 0.60) (Fig. 2E, dashed line).

To ensure that outliers did not drive these results, we excluded

genes that fell outside of two standard deviations from the mean

Table 1. Variant counts and conditional variant proportions across variant subtype for rare variants, common variants, and substitutions

Variant type

Transitions Transversions

Total Ti/Tv W > S/S > WAT > GC CpG GC > AT GC > AT AT > CG GC > TA AT > TA GC > CG

Rare variants 4778 3951 5338 1215 1796 1023 1952 20,053 2.35 0.54
(1.28%) (12.8%) (1.71%) (0.32%) (0.52%) (0.27%) (0.57%) (2.79%)

Common variants 6060 3684 5845 1519 2078 1261 2119 22,566 2.23 0.65
(0.10%) (1.08%) (0.11%) (0.025%) (0.038%) (0.021%) (0.038%) (0.19%)

Substitutions 6154 2805 5815 1679 2092 1183 2184 21,912 2.07 0.73
(0.27%) (2.18%) (0.30%) (0.075%) (0.10%) (0.053%) (0.11%) (0.51%)

Counts of all variant subtypes across rare variants, common variants, and substitutions are shown. Conditional variant proportion for each variant
subtype, defined as the number of observed variants divided by the number of bases that could give rise to the given variant, is shown below in
parentheses. W > S/S > W was defined as the total number of weak to strong (W > S) variants divided by the total number of strong to weak (S > W)
variants, including CpG GC > AT variants. Ti/Tv is the ratio of transitions to transversions. CpG-induced GC > TA and GC > CG variants are included in the
GC > TA and GC > CG variant subtypes, respectively.

Figure 1. Comparison of total variant proportions of the seven variant
subtypes across the three variant classes. The total variant proportion is
shown for each of the seven variant subtypes, defined as the number of
variants of a given subtype over the total number of variants in that variant
class. The three variant classes were rare variants, common variants, and
substitutions.

Schaibley et al.

1976 Genome Research
www.genome.org



GC content or mutation rate (N = 8) and the recombination rate

(N = 10). There was a slight increase in the correlation with GC

content and little in the correlation with recombination rate

(dotted line in Fig. 2D and 2E, respectively). As previously reported

(Kong et al. 2002), GC content and recombination rate themselves

are positively correlated (Pearson’s r = 0.18, P = 0.017). Multiple

linear regression including both GC content and recombination

rate as covariates did not change the results from either regression

alone, and recombination rate was still not significantly correlated

with mutation rate (GC content P-value =

0.002, recombination rate P-value = 0.66).

Using logistic regression to analyze
per-site variant patterns

The per-gene mutation rates analyzed

above were calculated using all variant

subtypes in aggregate; however, previous

studies suggest that GC content and re-

combination rate may have different ef-

fects on specific variant subtypes (Lercher

and Hurst 2002a; Arndt et al. 2005; Duret

and Arndt 2008; Berglund et al. 2009).

Estimating subtype-specific mutation

rates on a per-gene or per-exon basis lacks

a sufficient number of sites, especially for

subtypes with relatively few observed

variants (such as transversions). Therefore,

we combined the ;700 K targeted sites

over all 195 genes, using a per-site logistic

regression strategy to examine the effect of

local GC content and recombination rate

on the probability of observing a variant of

a given subtype (see Methods).

The dependent variable of the lo-

gistic regression was obtained by scoring

each site as either variant or invariant. If

the site was scored as variant, it was fur-

ther categorized into one of seven variant

subtypes based on the ancestral and de-

rived alleles. The log odds of a site being

variant was regressed on GC content and

recombination rate, calculated in 1-kb

windows surrounding each individual

site.

GC content affected rare variants
differently from common variants
and substitutions

Overall, the probability of observing any

rare variant was positively influenced by

GC content (b = 0.68, P-value < 10�16).

However, individual subtypes showed

mostly negative or relatively small positive

effects of GC content (Fig. 3). The obser-

vation that individual subtypes could

show opposite regression results to all

variants combined may seem counter-

intuitive, but is an example of Simpson’s

Paradox, where trends observed in sub-

sets of the data can be the opposite of

what is observed in the entire data set (Agresti 2002). CpG-in-

duced GC > AT variants, one of the major variant subtypes, tended

to lie in GC-rich regions (50%–65% GC content), whereas AT > GC

transitions tended to occur in GC-poor regions (30%–45% GC con-

tent) (Supplemental Fig. 1). The unbalanced distribution of GC

content across variant subtypes, combined with the much higher

mutation rate at CpG dinucleotides, drove the observed positive

slope for all variants combined (Supplemental Fig. 1). When all

CpG sites (variant or invariant) were removed and the regression

Figure 2. Variability of mutation rates across 193 genes and relationships with genomic context.
(A) Per-gene mutations rates (310�7 per base pair per generation) for 193 genes, estimated previously
by coalescent modeling (Nelson et al. 2012), are shown ordered from lowest to highest. The black line
indicates the average of 193 genes (1.02 3 10�8 per base pair per generation). (B) Per-gene average GC
content ordered as in A. (C ) Per-gene average recombination rate (log10 cM/Mb) ordered as in A.
(D) Relationship between GC content and mutation rate. The dashed line represents the linear re-
gression fitting. After removing outliers (gray filled points), the regression was recalculated (dotted line).
(E) Relationship between recombination rate (log10 cM/Mb) and mutation rate. The dashed line rep-
resents the linear regression fitting. Outliers were removed (gray filled points) and the regression was
recalculated (dotted lines).

Mutation patterns revealed by rare variants
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run, the relationship between total rare variants and GC content

became negative and was no longer significant (b =�0.17, P-value =

0.028). A similar finding was noted previously for substitution data

(Duret and Arndt 2008). These results highlight the importance of

studying variant subtypes, as analysis of all variants in aggregate

could miss the underlying pattern of individual subtypes.

Comparison of rare variants and common variants or sub-

stitutions revealed subtype-specific differences among the three

variant classes (Fig. 3). For AT > GC and AT > CG rare variants, there

was a relatively strong negative relationship between variant pro-

portions and GC content (Fig. 3A,B). These same trends, however,

were not observed in AT > GC and AT > CG common variants or

substitutions, for which the trends were weaker, and sometimes

positive (Fig. 3A,B). In contrast, for GC > AT and GC > TA variants,

there were relatively strong negative effects on common variants

and substitutions, yet the effects on rare variants were smaller or

absent (Fig. 3E,F). Together, these results show that GC-rich re-

gions tend to have fewer W > S rare variants and fewer S > W

common variants or substitutions than GC-poor regions. There

was a strong negative effect on CpG GC > AT, consistent across rare

variants, common variants, and substitutions (Fig. 3D). We also

observed consistent negative effects on AT > TA (Fig. 3C) and GC >

CG variants (Fig. 3G) across variant classes.

Recombination affects patterns of common variants
and substitutions, but not rare variants

The influence of recombination rate on total rare variants (b = 0.15,

P-value = 3.58 3 10�4) and individual variant subtypes was rela-

tively small (Fig. 4). In comparison, the effect was much stronger

on total common variants (b = 0.95, P-value < 10�16) and total

substitutions (b = 0.34, P-value < 10�16), as well as on all variant

subtypes (Fig. 4). There was a strong positive effect on W > S

common variants and substitutions (Fig. 4A,B), consistent with the

expected impact of BGC on variant patterns in the human ge-

nome. For the other common variant subtypes (Fig. 4C–G), the

effect was positive but weaker than W > S variants. In contrast, the

effect on substitutions was negative (Fig. 4C–F) or slightly positive

(Fig. 4G). While the positive trends seen in W > S common variant

subtypes could be explained solely by BGC, the positive effects in

other subtypes suggest that either selective sweep or background

selection could also be acting on these variants. Importantly, the

lack of effect on rare variants suggests that mutation rates are not

altered by recombination rate.

Since the deCODE recombination map published in 2002 has

limited resolution, with 1257 meioses (Kong et al. 2002), we also

adopted the higher-resolution deCODE map published in 2010,

with 15,257 meioses and a higher marker density (Kong et al.

2010), and reanalyzed the effect of recombination rates on variant

subtypes (Supplemental Table 1). The results are largely consistent

with the results using the 2002 rates. For rare variants, no subtype

was strongly affected by the 2010 recombination rates, just like the

results with the 2002 rates. For substitutions, five of the seven

subtypes had the same effect direction in the two versions of re-

combination rate used. For common variants, the regression co-

efficients were positive for all subtypes, which is what we observed

with the 2002 rates. Importantly, the AT > GC and AT > CG sub-

types showed the strongest effects, consistent with the influence

of BGC.

Recombination hotspots influence common variants,
but have little effect on rare variants or substitutions

Previous studies suggested that the distance to a recombination

hotspot accounts for most of the observed correlation between

nucleotide diversity and recombination rate (Spencer 2006;

Figure 3. Regression results for GC content across variant subtypes for
rare variants, common variants, and substitutions. The relationship be-
tween local GC content and the observed conditional variant proportion
for seven variant subtypes: (A) AT > GC, (B) AT > CG, (C ) AT > TA, (D) CpG
GC > AT, (E) GC > AT, (F) GC > TA, and (G) GC > CG. Filled points show the
conditional variant proportions in each GC content bin, scaled by the
intercept of the logistic regression

nX > Y ;i

Nx;i
ea, where a is the intercept calcu-

lated in the regression, nX > Y is the count of the given X > Y variant sub-
type, and NX:i is the number of X ancestral invariant sites that could
produce the given subtype in the i th GC content bin. Symbol size rep-
resents the proportion of the given variant subtype falling into a given GC-
content bin. The solid lines show the fitted logistic regression curve, where
b is the slope fitted in the logistic regression and xi is the GC content in the
i th bin. The gray dashed line represents the baseline of no effect, b = 0.
Legends in each subplot show the regression slope calculated for each
variant class and its significance. (***) P-value < 0.0001, (**) P-value <
0.001, (*) P-value < 0.01.
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Spencer et al. 2006). To examine the effect of recombination hot-

spots, we calculated for each site its absolute distance to the nearest

recombination hotspot (DTH) as reported in the population-based

estimates from the HapMap Project (McVean et al. 2004; Myers et al.

2005). Median per-site DTH was consistent across all variant classes

(median and standard deviation of log-transformed absolute DTH

for rare variants: 4.43 6 0.65, common variants: 4.32 6 0.60, and

substitutions: 4.32 6 0.60). The regression results using DTH,

shown in Figure 5, were largely consistent with those for re-

combination rate (Fig. 4). We observed relatively weak relationships

between DTH and rare variants for total (b = �0.042, P-value =

1.61 3 10�4) and all variant subtypes (Fig. 5). The strongest of

these, GC > AT rare variants, had a negative relationship with DTH,

but it was weaker than the relationship observed in common

variants (Fig. 5E). DTH had a negative effect on total common

variants (b = �0.15, P-value < 10�16) and for each of the seven

variant subtypes (Fig. 5). For substitutions, however, the negative

effects were either weaker than those seen for common variants

(Fig. 5A,D,G) or positive (Fig. 5B,C,E,F).

Figure 4. Regression results for recombination rate across variant sub-
type for rare variants, common variants, and substitutions. The relation-
ship between local recombination rate (log10 cM/Mb) and the observed
conditional variant proportion for seven variant subtypes: (A) AT > GC,
(B) AT > CG, (C ) AT > TA, (D) CpG GC > AT, (E) GC > AT, (F) GC > TA, and
(G) GC > CG (plotted as in Fig. 3). Filled points show the conditional
variant proportions, scaled by the intercept of the logistic regression.
Symbol size represents the proportion of the given variant subtype falling
into a given recombination rate bin. The solid lines show the fitted logistic
regression curve, where b is the slope fitted in the logistic regression and xi

is the recombination rate in the i th bin. The gray dashed line represents
the baseline of no effect, b = 0.

Figure 5. Regression results for DTH across variant subtypes for rare
variants, common variants, and substitutions. The relationship between
DTH (log10 bp) and the seven variant subtypes: (A) AT > GC, (B) AT > CG,
(C ) AT > TA, (D) CpG GC > AT, (E) GC > AT, (F) GC > TA, and (G) GC > CG
(plotted as in Fig. 3). Filled points show the conditional variant pro-
portions, scaled by the intercept of the logistic regression. Symbol size
represents the proportion of the given variant subtype falling into a given
DTH bin. The solid lines are the fitted logistic regression curve, where b is
the slope fitted in the logistic regression and xi is the DTH in the i th bin.
The gray dashed line represents the baseline of no effect.
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An alternative approach to assess the effect of recombination

hotspots is to compare the variants inside recombination hotspots

with those outside. Of the 20,053 rare variants, 1636 are inside

hotspots, and the remaining 18,417 are outside. The conditional

variant proportion is similar between the inside and outside groups,

both for all rare variants combined and for individual subtypes

(Supplemental Table 2), directly suggesting that recombination

hotspots are not inherently mutagenic. Correspondingly, regression

analyses of rare variants using inside versus outside of a recom-

bination hotspot as the independent variable showed very weak

effects for all subtypes (Supplemental Table 3). For common vari-

ants, AT > GC and AT > CG variants had two of the strongest positive

regression results among the common variant subtypes (Supple-

mental Table 3). This pattern, in addition to the results from the

recombination rates, is consistent with the effect of BGC. For sub-

stitutions, the strongest effect is in the AT > GC subtype, with

a positive regression result, similar to the common variants.

Validation and robustness of regression results

To test how well our results for 195 genes compare with data sets

with more complete exome coverage, we analyzed the variants in

the European subset (N = 3510) of the Exome Sequencing Project

(ESP), recently described by Tennessen et al. (2012). The majority

of the regression results from the 195 genes agreed with the results

from the whole-exome data (based on 99% confidence intervals)

(Table 2). In addition, we used several strategies to test the robust-

ness of our regression results. Since coding variants are more likely

to be under selection, we separately analyzed the rare variants in

coding exons (N = 8738) and those in flanking intronic regions (N =

4642), and saw little difference in regression results (Supplemental

Tables 4, 5). We also calculated GC content in several window sizes

and saw little difference in the results (Supplemental Fig. 2). Since

logistic regression is based on a specific probability model, we

used permutations to confirm that the model-based P-values for

rare variants are accurate (Supplemental Table 6), and used sub-

sampling (Supplemental Fig. 3) and bootstrapping (Supplemental

Fig. 4) techniques to verify that the magnitude of the rare variant

regression results were unbiased. We also jointly tested the effect of

genomic context using multivariate regression models and com-

pared the results with those of univariate models for rare variants,

common variants, and substitutions (Supplemental Tables 7–9).

Additionally, we showed that sequencing coverage has little effect

on the regression results for rare variants (Supplemental Table 10).

Finally, to assess the impact of potential errors in the ancestral to

derived allele orientation, we compared the ancestral sequence

definition we adopted, based on a four-species sequence align-

ment, with the naive method of using the chimpanzee reference

allele as the ancestral allele (Supplemental Methods). Permutation

analyses showed that even errors on the order of 3%–5%, such as

those that would be imposed using this naive method, had little

effect on the results (Supplemental Fig. 5). Detailed information

regarding these analyses is included in the Supplemental Results

and Methods.

Discussion
In this study, we used rare variants as a model to examine mutation

patterns of different variant subtypes in the human genome. We

also used common variants and human–chimpanzee substitutions

to analyze the ongoing biases toward fixation, involving natural

selection and neutral evolutionary processes. Our results suggest

that both mutation rates and fixation biases are affected by local

GC content. However, fixation processes, and not mutation per se,

are affected by the recombination rate.

Using rare variants to analyze spontaneous mutation rates

was previously suggested in anticipation of the emergence of rare

variant data from the next-generation sequencing studies (Messer

2009). Rare variants arose more recently in the population. For

example, the variants we analyzed, with DAF # 10�4, arose an

average of ;10 generations in the past, assuming a current pop-

ulation size of 50,000 individuals and a population growth rate of

0.001 (Slatkin 2000). In populations undergoing recent expansion

(Coventry et al. 2010) such low-frequency variants will be even

younger. As a result, rare variant patterns are primarily governed by

mutation itself. Unless the force of selection is strong, natural se-

lection, population demographic history, and BGC will not alter

the observed patterns of rare variants.

We considered analyzing synonymous and nonsynonymous

variants separately to further minimize the effects of natural se-

lection. However, our logistic regression approach works on

individual variant and invariant sites. It is difficult to analyze

synonymous and nonsynonymous variants separately because

each ancestral allele could mutate to three other nucleotides, and

one needs to enumerate the potential synonymous and non-

synonymous variants that could occur at each site. As an alternative,

we separately analyzed coding and noncoding rare variants and did

not find any significant difference between these two functional

classes, consistent with theoretical analysis showing that the effect

of selection is attenuated among rare variants (Messer 2009).

Table 2. Regression coefficients for rare variants in the 195 gene data set compared with the ESP whole-exome data set

Variant subtypes

GC content Recombination rate DTH

195 genes ESP 195 genes ESP 195 genes ESP

Total 0.68 (0.069) 0.64 (0.012) 0.15 (0.043) 0.34 (0.0076) �0.042 (0.011) �0.057 (0.0020)
AT > GC �1.048 (0.15) �0.64 (0.028) 0.014 (0.089) 0.14 (0.017) �0.025 (0.023) �0.057 (0.0044)
AT > CG �0.56 (0.29) �0.17 (0.057) �0.014 (0.18) 0.13 (0.034) �0.060 (0.044) �0.051 (0.0091)
AT > TA �0.98 (0.32) �0.21 (0.062) �0.065 (0.19) 0.21 (0.037) 0.023 (0.049) �0.034 (0.0099)
CpG GC > AT �2.64 (0.17) �3.072 (0.024) L0.13 (0.10) 0.17 (0.014) �0.047 (0.025) �0.077 (0.0039)
GC > AT 0.024 (0.14) �0.26 (0.025) 0.19 (0.081) 0.20 (0.015) �0.089 (0.021) �0.058 (0.0041)
GC > TA �0.80 (0.25) �0.91 (0.048) 0.024 (0.15) 0.15 (0.029) �0.054 (0.039) �0.061 (0.0077)
GC > CG �0.53 (0.24) �0.96 (0.043) 0.054 (0.14) 0.13 (0.026) 0.025 (0.037) �0.055 (0.0069)

b coefficients and standard error (in parentheses) for all variant subtypes from the original rare variant analysis in 195 genes compared with those from the
ESP whole-exome sequencing data analysis. Values shown in bold indicate coefficients that are significantly different between the two data sets, based on
99% confidence intervals (not shown).
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The average per-gene mutation rate, based on exome se-

quence data from 193 genes, was 1.02 3 10�8 per base pair per

generation (Nelson et al. 2012), which is similar to recent estimates

from family-based sequencing studies (The 1000 Genomes Project

Consortium 2010; Campbell et al. 2012; Kong et al. 2012).

Previous studies examining the effect of genomic context on

mutation rate relied on local context measures computed in fixed-

length genomic windows. This window-based approach is difficult

to implement in exome sequencing data, because such data cover

short intervals with variable length, representing targeted exons,

separated by large gaps, representing introns. This leads to prob-

lems in defining window width and estimating average parameter

values. In our study, most target regions are small (85% < 500 bp),

and calculating rates for low frequency events, such as transver-

sions, in these windows would be highly inaccurate. We therefore

adopted a logistic regression approach, using data for individual

base positions and aggregating data across sites. This approach has

several advantages. It eliminates the need to account for gaps in

coverage from intronic and intergenic regions, and provides suf-

ficient numbers of sites to study the effect of genomic context on

individual variant subtypes.

Multiple results suggest that recombination rate has a rela-

tively small effect on mutation patterns, but a significant impact

on common variants in the population. First, we did not observe

a correlation between per-gene mutation rate and recombination

rate. Second, the effect of recombination rate on rare variant sub-

types was small, especially when compared with the effect on

common variants and substitutions. AT > GC and AT > CG com-

mon variants and substitutions were both strongly affected by

recombination rate, consistent with the role of BGC altering pat-

terns of standing variation in the human genome. BGC has no

effect on mutation rates, but over time, is expected to lead to

a fixation bias toward GC bases at AT/GC polymorphic sites (Duret

and Galtier 2009). A recent study reported a strong bias of W > S

substitutions in human accelerated regions and this bias increased

with increasing male recombination rate (Berglund et al. 2009).

Furthermore, BGC can drive deleterious GC alleles to fixation

(Galtier et al. 2009) and lead to the apparent increase in sub-

stitution rate with increasing recombination rate (Meunier and

Duret 2004; Duret and Arndt 2008; Berglund et al. 2009; Galtier

et al. 2009). These conclusions based on local recombination rates

were supported by the analysis of recombination hotspots. While

our results cannot completely rule out a mutagenic effect due to

recombination, they suggest that if such an effect does exist, it is

relatively small in comparison to the influence of BGC.

Background selection and selective sweeps can also drive

positive correlations between diversity and recombination rate

(Smith and Haigh 1974; Kaplan et al. 1989; Charlesworth et al.

1993; Hudson and Kaplan 1995; Cai et al. 2009; Lohmueller et al.

2011). These selection-dependent mechanisms are unlikely to af-

fect rare variants because they are too young in the population. In

addition to the impact of recombination rate on AT > GC and AT >

CG common variants and substitutions, we also saw relatively

strong effects on other variant subtypes. Therefore, we cannot rule

out the effect of these other recombination-associated processes.

GC content varies throughout the genome, with long

stretches of DNA exhibiting relatively stable GC content, known as

isochores (Eyre-Walker and Hurst 2001). Previous studies propose

that mutation bias or fixation bias drives the apparent regional

variation in GC content and maintenance of isochores (Smith et al.

2002; Webster et al. 2003; Duret and Arndt 2008). Our results are

consistent with this hypothesis, suggesting that GC-rich regions of

the genome may maintain base composition by simultaneously

decreasing GC-enriching, W > S, mutations and reducing the fix-

ation of GC-depleting, S > W, common variants.

Understanding the relationship between local genomic con-

text and mutation processes has several practical implications.

More precise estimates of de novo mutation rates can improve

genotype calling from short sequencing reads by providing better

prior distributions for mutation spectrum. Moreover, our results

can help to identify potentially functional de novo mutations by

highlighting new variants that are unlikely to arise spontaneously.

Our study, however, has several limitations. We are not able to

identify all potential mutations, as some will not be viable in

humans. However, truly dominant lethal mutations are extremely

rare and other approaches, including direct discovery of de novo

variants via trio sequencing, will have similar limitations. Addi-

tionally, while rare variants are very young on the evolutionary

time scale, they could still be influenced by the same confounding

factors that affect common variants and substitutions, albeit to

a lesser degree. At present, however, rare variants, especially the

extremely rare variants we study here, represent one of the most

powerful data sets currently available for high-sensitivity analysis

of the rate and molecular spectrum of new mutations. Finally, our

data set involves only 195 genes and could generate a biased rep-

resentation of the genome. Indeed, these genes appear to be under

stronger purifying selection than other genes (Nelson et al. 2012).

Despite this caveat, we observed strong concordance between the

results from the 195 genes and those from an exome-wide data set,

indicating that any selection acting on these genes does not in-

fluence the relationship with genomic context and that our results

are representative of the exome.

In conclusion, our data set of >20,000 rare variants (DAF <

10�4) represent a valuable resource for studying patterns of single-

nucleotide mutation in humans. It allows us to take a new step

toward differentiating the initial mutation processes from the

subsequent forces that act more gradually, affecting fixation pro-

cesses of segregating variants. Our results reveal a substantial dif-

ference in the relative abundance and conditional proportion of

variant subtypes between rare variants, common variants, and

substitutions. GC content has a strong impact on all variant clas-

ses, although the effect is different both among variant classes and

among different subtypes. Recombination rate, on the other hand,

has relatively little effect on rare variants, but a much stronger

effect on AT > GC and AT > CG common variants and sub-

stitutions, consistent with BGC acting on existing variants. Future

research, aided by deep sequencing data over more genomic targets

in larger population samples, will be needed to acquire more pre-

cise estimates of such fundamental parameters. Eventually, these

studies will help unravel the relative contribution of diverse evo-

lutionary forces acting over different time scales. Such an un-

derstanding will also provide the knowledge necessary to study the

allelic spectrum of inherited and somatic diseases, as well as the

dynamics of human genome variation as it evolves under a variety

of environmental and demographic conditions.

Methods

Ethics statement
All study participants in the component studies provided written
informed consent for the use of their DNA in genetic studies. A
careful review was conducted to verify that the consents were
consistent with the activities of this study. In instances where the
appropriateness of the informed consent for the current study was
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not clear, further Institutional Review Board approval was sought
and obtained.

Data source and processing

Rare variants

We utilized single-nucleotide variants previously described in
Nelson et al. (2012), which can be accessed at http://www.
ncbi.nlm.nih.gov/projects/SNP/snp_viewBatch.cgi?sbid=1056695.
The variants were discovered from a targeted resequencing study
of the exons of 202 potential drug target genes (including 50 bp
flanking each exon). For this study, we analyzed 195 autosomal
genes, and focused on variants identified in individuals of Euro-
pean descent (N = 12,515). We defined rare variants as those with
a DAF # 10�4. We oriented all variants along the human ancestral
sequence, as defined by members of The 1000 Genomes Project
Consortium (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/
analysis_results/supporting/ancestral_alignments/; date accessed:
January 3, 2012). The ancestral allele definition relied on the four-
way sequence alignment among human, chimpanzee, orangutan,
and macaque genomes, and it estimated the ancestral state using
a probabilistic phylogenetic model. We analyzed the impact of
potential errors in ancestral allele definition on our results and
found that even error rates on the order of 3%–5%, such as when
naively using the chimpanzee reference allele as the ancestral
allele, did not change our results (Supplemental Methods and
Results). To minimize the potential confounding effects due to
coverage, and to enrich for high-quality variants, we selected
variant and invariant sites with $103 coverage using per-site
coverage data from a random sample of 500 individuals reported
by Nelson et al. (2012).

We subdivided variants into seven distinct subtypes based on
the ancestral and derived alleles: AT > GC, GC > AT (non-CpG),
CpG GC > AT, AT > CG, GC > TA, AT > TA, and GC > CG. GC > AT
transitions that occurred at an ancestral CpG site (CpG GC > AT)
were analyzed separately from other GC > AT variants because
hypermethylation of the cytosine base at CpG dinucleotides leads
to spontaneous deamination, resulting in C > T and G > A transi-
tions that occur with substantially higher rates than other sub-
types (Nachman and Crowell 2000; Kondrashov 2003; Hwang and
Green 2004). In addition, previous studies found that substitution
rates at CpG dinucleotides are more strongly negatively correlated
with GC content and recombination rate compared with non-
CpG-induced GC > AT transitions, suggesting that different mo-
lecular mechanisms may be involved (Arndt et al. 2005; Duret and
Arndt 2008).

GC > TA and GC > CG variants at CpG sites, which make up
the eighth and ninth variant subtypes, were analyzed separately
from non-CpG-induced GC > TA and GC > CG variants. They were
modeled in the multinomial logistic regressions with CpG as the
ancestral base (see below). As there are relatively few observed
variants of these two subtypes (;200 each in our data set), it is
difficult to accurately analyze mutation patterns and we did not
report these results. These variants, however, are included in the
GC > TA and GC > CG variant subtypes presented in Table 1, and
included when analyzing all variant subtypes combined.

Per-gene mutation rates and genomic context

We analyzed mutation rates calculated for 193 of the 195 autoso-
mal genes (two genes were excluded due to low numbers of vari-
ants), as described previously (Nelson et al. 2012). For each of the
193 genes, we calculated the average GC content and sex-averaged
pedigree-based recombination rates (Kong et al. 2002) within the
transcribed region of each gene based on definitions in RefGene.

Linear regression was performed in R (R Development Core Team
2008).

Sampling of intergenic regions to obtain common variants
and substitutions

To sample common variants and substitutions from random ge-
nomic intervals with the least selective pressure, we first defined
intergenic regions by masking all genic regions 61 kb of the
transcription start and end site of any gene based on RefGene in
hg18. We then removed all regions that were not uniquely aligned
in the four-way alignments between human, chimpanzee, orang-
utan, and macaque (ftp://ftp.ensembl.org/pub/release-54/emf/
ensembl-compara/epo_4_catarrhini/; date accessed: December 7,
2011). To match the distribution of genomic features with the
rare variant data as closely as possible, we sampled 32,279 auto-
somal regions from all possible regions according to their geno-
mic parameters. Specifically, we matched the size distribution as
well as the joint distribution of GC content and recombination
rate (Kong et al. 2002) of the selected regions to those of the
target regions in the exome sequencing of the 202 genes. We used
these regions to sample common variants. Because there were
substantially more substitutions in these regions than common
variants, we randomly subsampled 12,034 of the 32,279 regions
to obtain substitutions. The median and standard deviation of
GC content across the assayed regions was 0.49 6 0.12, 0.47 6

0.11, and 0.47 6 0.12 for rare variants, common variants,
and substitutions, respectively. The median and standard de-
viation for recombination rate (log-transformed, in units of
cM/Mb) was 0.29 6 0.17 for rare variants, common variants, and
substitutions.

Common variant data

Single-nucleotide variants from the interim phase 1 haplotype
data from The 1000 Genomes Project Consortium were used
to assemble a data set of common variants. The frequency file
for the European subset (N = 381) of the data was downloaded
from http://www.sph.umich.edu/csg/abecasis/MACH/download/
1000G-PhaseI-Interim.html; date accessed: December 20, 2011. All
variants within the selected regions, as described above, were ori-
ented ancestral to derived. Successfully oriented variants with
a DAF > 0.05 were categorized into the seven variant subtypes and
they form the common variant data set.

Substitution data

Substitutions between human and chimpanzee were obtained
using the four-way alignments between human, chimpanzee,
orangutan, and rhesus macaque (ftp://ftp.ensembl.org/pub/
release-54/emf/ensembl-compara/epo_4_catarrhini/; date accessed:
December 7, 2011). To identify substitutions, only regions where
there was a unique human, chimp, and orangutan alignment were
used. Single-base human–chimpanzee differences were sampled
from the 12,034 intergenic regions as described above. All sites were
oriented along the ancestral lineage and categorized into the seven
variant subtypes. Variant sites where the human lineage base rep-
resents the ancestral allele were excluded.

ESP rare variants

Variants from the NHLBI Exome Sequencing Project (ESP) from
5400 individuals were downloaded from the Exome Variant Server
(Exome Variant Server, NHLBI ESP, Seattle, WA, URL: http://evs.
gs.washington.edu/EVS/; date accessed: December 2, 2011]). We
also utilized sequence coverage data downloaded from the Exome
Variant Server (date accessed: December 2, 2011 and December 5,
2011) to select sites with $103 coverage. Subsequent analysis
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focused on singleton variants (DAF = 1.4 3 10�4) identified in
Europeans (N = 3510). Variants were oriented along the ancestral
allele, as before.

Logistic regression analysis

We used a logistic regression framework to model the effect of GC
content, recombination rate, and distance to recombination hot-
spot on the occurrence of rare variants, common variants, and
substitutions. We defined GC content at a given site as the per-
centage of GC bases in a 1-kb window surrounding the site (500 bp
upstream, 500 bp downstream) based on the human genome ref-
erence sequence (hg18). We calculated the average recombination
rate in a 1-kb window surrounding each site using both the 2002
deCODE sex-averaged recombination rates (Kong et al. 2002) and
the 2010 sex-averaged recombination maps (Kong et al. 2010). The
absolute distance to the center of the nearest recombination hot-
spot was calculated for each site using recombination hotspot co-
ordinates from Phase II of the HapMap Project (McVean et al. 2004;
Myers et al. 2005). These same definitions of recombination hot-
spots were used to define sites that fell inside and outside of
recombination hotspots. We excluded sites if they were within
repeats as defined by RepeatMasker. Recombination rates and
distances to hotspots were log-transformed to more closely re-
semble a normal distribution.

To examine the impact on total mutation (all subtypes
combined), we regressed the logit of the probability of a site
containing a rare variant of any subtype against GC content, re-
combination rate, or DTH using separate logistic regression models
for each genomic context variable. Each logistic regression has
the form

ln
p

1� p

� �
¼ aþ bz;

where p is the probability that the site contains a rare variant and
z is either GC content, recombination rate, or DTH at that site. We
assessed the significance of the regression using a Wald test on the
b parameter. We fit similar regression models for common variants
and substitutions.

Next, to analyze the effect of genomic context on specific
variant subtypes, we employed a multinomial logistic regression
model that jointly analyzes the probability of all possible variant
subtypes for a given ancestral state. Additional details are in the
Supplemental Methods. Logistic and multinomial regression was
performed in R (R Development Core Team 2008), using the mlogit
package for multinomial regression.
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