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a b s t r a c t 

Meta-analysis is a valuable tool for the synthesis of evidence across a wide range study types including high- 

throughput experiments such as genome-wide association studies (GWAS) and gene expression studies. There are 

situations though, in which we have multiple outcomes or multiple treatments, in which the multivariate meta- 

analysis framework which performs a joint modeling of the different quantities of interest may offer important 

advantages, such as increasing statistical power and allowing performing global tests. In this work we adapted 

the multivariate meta-analysis method and applied it in gene expression data. With this method we can test 

for pleiotropic effects, that is, for genes that influence both outcomes or discover genes that have a change in 

expression not detectable in the univariate method. We tested this method on data regarding inflammatory bowel 

disease (IBD), with its two main forms, Crohn’s disease (CD) and Ulcerative colitis (UC), sharing many clinical 

manifestations, but differing in the location and extent of inflammation and in complications. The Stata code is 

given in the Appendix and it is available at: www.compgen.org/tools/multivariate-microarrays . 

• Multivariate meta-analysis method for gene expression data. 
• Discover genes with pleiotropic effects. 
• Differentially Expressed Genes (DEGs) identification in complex traits. 
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Specification Table 

Subject Area: Biochemistry, Genetics and Molecular Biology 

More specific subject 

area: 

Bioinformatics 

Method name: Multivariate meta-analysis 

Name and reference of 

original method: 

This is a co-submission. The original method is: 

https://doi.org/10.1016/j.ygeno.2019.09.019 

Resource availability: The Stata code is available at www.compgen.org/tools/multivariate-microarrays and in 

supplementary material 

Method details 

In gene expression experiments, the mRNA levels of thousands of genes are measured 

simultaneously in tissue samples. After the initial pre-processing steps that may differ among 

methods (normalization etc.), the identification of differentially expressed genes (DEGs 1 ; genes that 

are differentially expressed, that is, up- or down-regulated, under different conditions) is a procedure 

usually reduced to a statistical test for the equality of means between groups (e.g. t -test). Concerning

meta-analysis of microarray and RNAseq studies there are three broad categories of statistical methods 

that make use of effect sizes, p-values or ranks. For several reasons, the effect size approach which

is based on common practices in meta-analysis, is preferable (in particular for the problem at hand)

and thus it was advocated early in the literature [1] . However, to handle the problem of small sample

size and non-normal data, most authors suggest a type of correction for calculating the statistical

significance. 

There are situations though, in which we have a comparison of more than two groups. In general,

we may encounter multiple outcomes, multiple risk factors or multiple treatments. For instance, in 

a meta-analysis of microarray studies, there are cases in which different medications (treatments) 

are administered or different exposures (risk factors) are recorded. In another potential example 

several (related) diseases are investigated against a common healthy group (multiple outcomes). 

Such examples include diseases of similar etiology like autoimmune diseases (Multiple Sclerosis, 

Rheumatoid Arthritis and Type I Diabetes Mellitus), or diseases with similar manifestations, like 

Crohn’s disease (CD 

2 ) and Ulcerative colitis (UC 

3 ). In all cases, we are usually interested in finding

differentially expressed genes common in all conditions, or genes that differ among the conditions. 

However, the estimates obtained are not independent since a common comparison group is included, 

and the usual methods for univariate meta-analysis are not adequate, especially when it comes 

to comparing the estimates. The above-mentioned problems are dealt with in the framework of 

multivariate meta-analysis, in which we are interested in performing a joint modeling of the different

quantities of interest [2–4] . The multivariate meta-analysis enables the researcher to perform global

tests in order to avoid the inflation of type I error rate due to multiple comparisons. Additionally,

one can estimate the covariance matrix for the parameters of interest, which could be of importance

when one wants to perform a comparison for the equality of the two estimates and construct a

confidence interval for the difference or some other function of the estimates [5] . Finally, a major

advantage of multivariate meta-analysis is that it can accommodate, under the missing at random 

(MAR 

4 ) assumption, studies reporting only one of the parameters of interest, resulting in the so-

called borrowing strength from external studies [6] . In all cases, applying a multivariate methodology

and pooling data from multiple sources may prove important in increasing the power of the analysis

and allowing, under a unified analysis, the identification of genes that play a central role in these

conditions. 
1 DEGs - Differentially Expressed Genes. 
2 CD - Crohn’s Disease. 
3 UC - Ulcerative Colitis. 
4 MAR - Missing at random. 

https://doi.org/10.1016/j.ygeno.2019.09.019
https://www.compgen.org/tools/multivariate-microarrays


K.E. Vennou, D. Piovani and P.I. Kontou et al. / MethodsX 7 (2020) 100834 3 

 

e  

c  

m  

i  

m  

a

 

i  

1  

d  

a

 

W  

g

 

w  

s

 

a

 

w  

s

 

e  

m  

T  

R  

H  

m  

e  

v  

w  

H

 

A

 

We used Stata 5 [7] , a general-purpose statistical software package widely used in biostatistics,

pidemiology and econometrics. Stata allows user-written commands and there is an active

ommunity of scientists supporting the development of new methods. We implemented the

ultivariate meta-analysis method for gene expression data and we applied it to data regarding

nflammatory bowel disease (IBD 

6 ), with its two main forms, CD and UC, sharing many clinical

anifestations, but differing in the location and extent of inflammation and in complications. The

pplication of the method and the results of the meta-analysis are discussed in detail in [8] . 

The model we use is based on the standard model of multivariate meta-analysis [2–4] . We are

nterested in comparing the mean difference of a continuous outcome ( X ), measured in study i =
,2,…k . The effect sizes for the comparison of the two different disorders, are the standardized mean

ifferences, which is referred to as Cohen’s d [9] . It measures the difference in gene expression in CD

nd UC patients against controls (healthy subjects), respectively, and it will be estimated by: 

ˆ d 1 i = 

X̄ 1 i − X̄ 0 i 
S pool ed ,i 

and 

ˆ d 2 i = 

X̄ 2 i − X̄ 0 i 
S pool ed ,i 

(1)

here X 1 i , X 2 i and X 0 i are the means of the expression of the particular gene in CD, UC and control

roups respectively. S pooled,i is the pooled standard deviation, in study i , given by: 

S pooled,i = 

√ 

( n 0 i − 1 ) S 2 0 i 
+ ( n 1 i − 1 ) S 2 1 i 

+ ( n 2 i − 1 ) S 2 2 i 

n 0 i + n 1 i + n 2 i − 3 
(2)

ith n 1 i , n 2 i and n 0 i being the sample size of each group and S 1 i , S 2 i and S 0 i the gene expression

tandard deviation for each group. 

The variance of the effect size estimates d 1 i and d 2 i will be estimated by: 

v ̂  a r 

(
ˆ d 1 i 

)
= s 2 1 i = 

1 

n 1 i 
+ 

1 

n 0 i 
+ 

ˆ d 2 
1 i 

2 n i 
, v ̂  a r 

(
ˆ d 2 i 

)
= s 2 2 i = 

1 

n 2 i 
+ 

1 

n 0 i 
+ 

ˆ d 2 
2 i 

2 n i 
(3)

nd the covariance between the estimates of d 1 i and d 2 i will be 

c ̂ o v 

(
ˆ d 1 i , ˆ d 2 i 

)
= 

1 

n 0 i 
+ 

ˆ d 1 i ˆ d 2 i 
2 n i 

(4)

ith n i = n 0 i + n 1 i + n 2 i being the total sample size of the study [10] . The calculation of the within-

tudies covariance is very important since it plays a crucial role in the multivariate method. 

Several statistical methods have been proposed to handle the issues of small sample sizes

fficiently and calculate accurate p -values and confidence intervals. These methods include resampling

ethods such as bootstrap and permutation, Bayesian methods and penalized or regularized t -tests.

he bootstrap and permutation are easily applied but would require enormous computational time.

egularized t -tests on the other hand, require additional modifications for the multivariate setting.

ere, we resort to an old but reliable alternative that has been shown to perform well, at least for

oderate sample sizes (i.e. ~ 5–10 per condition). The idea is based on the fact that the sample

stimates of the standardized mean difference d has the tendency to overestimate the absolute

alue in small samples. This bias introduced by d can be corrected using the so-called Hedges’ g ,

hich generates an unbiased estimate. A correction factor, called J , is employed to convert from d to

edges’ g . 

ˆ g 1 i = J ( υi ) ̂  d 1 i , ˆ g 2 i = J ( υi ) ̂  d 2 i (5)

lthough approximate formulae exist, the exact formula for J is given by [11] : 

J ( υi ) = 

�
( υi 

2 

)
√ 

υi 
2 �

(
υi −1 

2 

) (6)
5 Stata - Statistical software package created by StataCorp. 
6 IBD - Inflammatory Bowel Disease. 
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where υι = n 0 i + n 1 i + n 2 i − 3. When g is used, the variances will also change to: 

v ̂  a r 
(

ˆ g 1 i 
)

= ( J ( υi ) ) 
2 v ̂  a r 

(
ˆ d 1 i 

)
, v ̂  a r 

(
ˆ g 2 i 

)
= ( J ( υi ) ) 

2 v ̂  a r 

(
ˆ d 2 i 

)
(7) 

Similarly, 

c ̂ o v 
(

ˆ g 1 i , ̂  g 2 i 
)
= ( J ( υi ) ) 

2 c ̂ o v 

(
ˆ d 1 i , ˆ d 2 i 

)
(8) 

In the multivariate random-effects meta-analysis, we assume that g i = ( g 1 i , g 2 i ) is distributed

following a multivariate normal distribution around the true means, according to the marginal model: 

g i ∼ MV N ( g , C + �i ) (9) 

By �i we denote the within-studies covariance matrix: 

�i = 

[
s 2 

1 i 
ρW 

s 2 i s 1 i 
ρW 

s 2 i s 1 i s 2 
2 i 

]
(10) 

The diagonal elements of �i are the study-specific estimates of the variance ( Eq. (3) ), whereas

the off-diagonal elements correspond to the pairwise within-studies covariances ( Eq. (4) ), for instance

cov ( g 1 i , g 2 i ) = ρw 

s 1 i s 2 i . It is important to note that the elements of �i are considered known quantities.

In contrast, by C we denote the between-studies covariance matrix, which is to be estimated during

the fitting process: 

C = 

[
τ 2 

1 
ρB τ1 τ2 

ρB τ1 τ2 τ 2 
2 

]
(11) 

A sometimes useful simplification can be made in Eq. (11) if we assume that the between-studies

variances are equal [6] . In such case by letting τ = τ 1 = τ 2 , C reduces to: 

C = 

[
τ 2 ρτ 2 

ρτ 2 τ 2 

]
(12) 

This is particularly useful in comparison of several treatments and in cases where the direct

comparisons are scarce, since with this parameterization the total number of estimated parameters 

is reduced. In any case, the final marginal model on which we base the inference is: [
g 1 i 
g 2 i 

]
∼ MV N 

{[
g 1 
g 2 

]
, 

[
s 2 

1 i 
+ τ 2 

1 ρw 

s 1 i s 2 i + ρB τ1 τ2 

ρw 

s 1 i s 2 i + ρB τ1 τ2 s 2 
2 i 

+ τ 2 
2 

]}
(13) 

This model can be fitted in any statistical package capable of fitting random-effects weighted

regression models with an arbitrary covariance matrix, such as SAS 7 , R 

8 , or Stata. Stata code for fitting

the model is presented in the Appendix using mvmeta which performs inferences based on either

Maximum Likelihood (ML 9 ), the Restricted Maximum Likelihood (REML 10 ) or the multivariate method

of moments (MM 

11 ), which is the method of choice due to its non-iterative nature [12] . 

As we already mentioned, a major advantage of this model is that it can accommodate, under

the MAR assumption, studies reporting only one of the parameters of interest, resulting in borrowing

strength from external studies [6] . Another advantage is that, with the estimated variance–covariance

matrix, it can be used to perform global tests for the effect sizes. For instance, we can test the null

hypothesis that both estimates of g and g are equal to zero ( H : g = 0, g = 0). The test statistic,
1 2 0 1 2 

7 SAS - Statistical Analysis System, a statistical software developed by SAS Institute. 
8 R - Programming language and free software environment supported by the R Foundation for Statistical Computing. 
9 ML - Maximum Likelihood. 

10 REML - Restricted Maximum Likelihood. 
11 MM - Method of Moments. 
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 , follows a chi-square ( χ2 ) distribution on 2 degrees of freedom and it can be obtained using the

elta method: 

W = 

[
ˆ g 1 
ˆ g 2 

]T [
v ̂  a r 

(
ˆ g 1 

)
c ̂ o v 

(
ˆ g 1 , ̂  g 2 

)
c ̂ o v 

(
ˆ g 1 , ̂  g 2 

)
v ̂  a r 

(
ˆ g 2 

) ]−1 [
ˆ g 1 
ˆ g 2 

]
∼ χ2 

2 (14)

ith this statistic one can test for pleiotropic effects, that is, for genes that influence both outcomes.

ore importantly, the test may discover genes that have a change in expression that is not detectable

n the univariate setting. A similar test has been proposed for joint estimation of gene main effects

nd gene-environment interactions in GWAS 12 [13] and by members of our team for identifying

leiotropic effects in bivariate meta-analysis of GWAS [14] . 

Another useful test, would be that of the equality of the estimates. In this case the null hypothesis

 H 0 ) would be: D = g 1 − g 2 = 0 and it can be tested using the Wald test (or an equivalent chi-square

est): 

ˆ D √ 

v ̂  a r 
(

ˆ D 

) = 

ˆ g 1 − ˆ g 2 √ 

v ̂  a r 
(

ˆ g 1 − ˆ g 2 
) ∼ N ( 0 , 1 ) (15)

he variance of D , would be obtained easily by the delta method: 

v ̂  a r 
(

ˆ g 1 − ˆ g 2 
)

= v ̂  a r 
(

ˆ g 1 
)

+ v ̂  a r 
(

ˆ g 2 
)

− 2 c ̂ o v 
(

ˆ g 1 , ̂  g 2 
)

(16)

This test is similar to the test for the genetic model of inheritance in genetic association studies

 15 , 16 ] and it can also, in principle, be used to perform a comparison of the two estimates and

onstruct a confidence interval for the difference or some other function of the estimates. 

As in every high-throughput method involving multiple testing, additional correction methods

eed to be applied afterwards to account for multiple-comparisons (multiple genes in this case) and

arious correction methods have been proposed for this task. These methods are grouped into two

ategories, the ones that control the family-wise error rate (FWER 

13 ) and the ones that control the

alse Discovery Rate (FDR 

14 ). The most common approach is to control the family-wise error rate

sing the Bonferroni [17] correction, which is easily applied and intuitive, but very conservative. Other

opular methods used for multiple testing corrections are the methods proposed by Holm [18] , Sidak

19] and Holland [20] . The most commonly used method in high-throughput experiments, however,

s the method proposed by Benjamini and Hochberg, which instead of controlling FWER, controls the

DR [21] . FDR-controlling procedures are designed to control the expected proportion of rejected null

ypotheses that were incorrect rejections. FDR-controlling procedures have greater power (i.e. they

re able to detect more differences as statistically significant), at the cost of an increased Type I error

ate. Stata implements easily most of the corrections mentioned above. 

The method as presented here was applied to data regarding IBD, with its two main forms, CD

nd UC [8] . The datasets that were used in the multivariate meta-analysis contained data for 25,409

nique genes/loci from 251 CD patients, 175 UC patients and 159 healthy individuals, originating

rom 4 studies. The multivariate meta-analysis identified 249 statistically significant DEGs in patients

ith CD and 38 in patients with UC, at an FDR of 1%. The DEGs identified to be common to both

iseases were 20. With the use of the global test ( W ) we identified 260 statistically significant DEGs

hat rejected the null hypothesis that both g 1 , and g 2 are equal to zero. From the 260 statistically

ignificantly DEGs, 53 were found to be statistically significant only by the global test and not in

ny of the diseases. These genes could not have been identified using univariate methods. The global

est ( D ) was used as well, but only two genes (TRIP6 and IGHG1) were found to have equal change

n the expression levels. Afterwards, we used these DEGs for further investigation with the help of

ioinformatics overrepresentation analysis (ORA 

15 ) methods, that identified significant pathways [8] . 
12 GWAS - Genome-Wide Association Studies. 
13 FWER - Family-Wise Error Rate. 
14 FDR - False Discovery Rate. 
15 ORA – Overrepresentation analysis. 
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The method was applied to microarray data; however, it can easily be applied also to RNAseq data.

As we already mentioned, a major difference of Microarrays and RNAseq lies in the pre-processing

steps, but for the purposes of a meta-analysis the analyst will not have to deal with that; one will

assume that the data are processed and normalized. In general, data from microarrays and RNAseq are

analyzed using the same meta-analysis methods [ 22 , 23 ], and in some cases, they are even combined

together [24] . Taking these into account, we can safely assume that the method will work easily with

RNAseq data, except for the case of a very small number of replicates ( n = 2 or 3 per condition, which

of course will be a problem also for microarrays). In this case, even though the correction method we

used is reported to perform well, other more advanced options may be preferable (for instance to use

a bootstrap correction). 

To conclude, we have presented an application of the multivariate meta-analysis to gene expression 

data. The Stata code is given in the Appendix and it is available at www.compgen.org/tools/

multivariate-microarrays . Contrary to common microarrays data formats, the code requires that 

samples are listed one per line, whereas the expression for the various genes (or probes) are given in

columns. Moreover, numerical variables indicating the type of the sample (in the particular example: 

Healthy, UC, CD) and the actual study, are needed. It is the user’s responsibility to ensure that the

variables are coded appropriately. We need to mention that the method does not need all outcomes

to be measured in every study. As we noted earlier, under the MAR assumption the method can

incorporate studies that consider only g 1 , only g 2 , or both and in this case the increase in power

is larger. However, for the proper estimation of between studies covariance, it is advised that a

reasonable number of studies should report both outcomes. The code also works if a gene is present

only in one study, but in this case the results are based only on the data provided by the particular

study. Nevertheless, we also coded Eqs. (14) and ( 15 ) to report such results in order to prevent

information loss. The code is provided as a .do file and in its current form reads a fixed-name .dta file

and outputs the results in two separate files, one for genes for which meta-analysis was conducted

and one for those that appear only in a single study. The user may change the file names accordingly.

Moreover, the range of genes which will be analyzed are hardcoded, but this is easy to change. In

its current form the code can handle two correlated outcomes but changing the inner loop in order

to incorporate more outcomes is trivial. Extending the method to allow for more difficult settings,

like network meta-analysis for mixed-treatment comparisons [25] , will need additional modifications, 

especially when it comes to model specification. 
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