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Abstract: Consumption of cereals and cereal-based products represents 47% of the total food energy
intake in Cape Verde. However, cereals also contribute to dietary exposure to metals that may pose a
risk. Strengthening food security and providing nutritional information is a high-priority challenge
for the Cape Verde government. In this study, toxic metal content (Cr, Ni, Sr, Al, Cd, and Pb) is
determined in 126 samples of cereals and derivatives (rice, corn, wheat, corn flour, wheat flour, corn
gofio) consumed in Cape Verde. Wheat flour samples stand out, with the highest Sr (1.60 mg/kg),
Ni (0.25 mg/kg) and Cr (0.13 mg/kg) levels. While the consumption of 100 g/day of wheat would
contribute to 13.2% of the tolerable daily intake (TDI) of Ni, a consumption of 100 g/day of wheat
flour would contribute to 8.18% of the tolerable weekly intake (TWI) of Cd. Results show relevant
Al levels (1.17–13.4 mg/kg), with the highest level observed in corn gofio. The mean Pb average
content in cereals is 0.03–0.08 mg/kg, with the highest level observed in corn gofio. Al and Pb levels
are lower in cereals without husks. Without being a health risk, the consumption of 100 g/day of
wheat contributes to 17.5% of the European benchmark doses lower confidence limit (BMDL) of Pb
for nephrotoxic effects; the consumption of 100 g/day of corn gofio provides an intake of 1.34 mg
Al/day (13.7% of the TWI) and 8 µg Pb/day (20% of the BMDL for nephrotoxic effects). A strategy to
minimize the dietary exposure of the Cape Verdean population to toxic metals from cereals should
consider the continuous monitoring of imported cereals on arrival in Cape Verde, the assessment of
the population’s total diet exposure to toxic metals and educational campaigns.

Keywords: Cape Verde; cereals; metals; dietary intake; risk assessment

1. Introduction

The Macaronesian region consists of a collection of four volcanic archipelagos in the
North Atlantic Ocean (Cape Verde, Azores and Madeira in Portugal and the Canaries
in Spain). The four archipelagos share features such as a volcanic origin, a contrasting
landscape, a gentle climate and a particularly rich biodiversity. The archipelago of Cape
Verde is located on the West African coast, 500 km from Senegal, and comprises ten
islands, nine of which are inhabited and one of which is uninhabited. The population of
the island of Santiago is approximately 260,000 inhabitants, while that of São Vicente is
76,000. The Cape Verdean diet is characterized by the consumption of significant amounts
of cereals and cereal-based products. According to the preliminary results of the 2015
Ínquérito Ás Despesase e Receitas Familiares (IDRF), the ingestion of cereals occupies
the highest annual per capita consumption expenditure (about 11,611$) compared to
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other food products consumed. However, internal cereal production satisfies only 6.9%
of the population’s consumption needs, contributing to the highly vulnerable state of
the country regarding food security. Food security in Cape Verde is also affected by
agroclimatic variations and external market fluctuations. National cereal production in
2019 was estimated at about 1000 tons, almost 70% below the mean average of the previous
five years [1]. Therefore, about 85% of the domestic cereal demand (mostly rice and
wheat for human consumption) was covered by imports. The cereal import requirements
in the 2019/2020 marketing year (November to October) were forecasted at an above-
average level of 87,000 tons [1]. From 2016 to 2020, the cereal imports reached a total of
419,749.30 tons, with an emphasis on corn (159,979.30 tons), rice (144,799.33 tons) and wheat
grain (91,623.39 tons). The market supply of cereals stems both from food aid through
cooperative relations with development partners and through commercial imports [2].
Current domestic corn production does not meet the internal demand, and so the cereal
must be imported for food and fodder [3]. Moreover, the main drivers of food insecurity
in Cape Verde are the effects of dry weather events (such as drought) and pest attacks on
cereal and fodder production [1]. As mentioned above, food insecurity in Cape Verde has a
structural and multifactorial nature: It demonstrates a structural deficit in national food
production, strong dependence on the international market and economic accessibility
weaknesses. Strengthening the Food Security and Nutrition Information System (FSNIS) is
an important challenge for the Cape Verde government [4].

According to the Food and Agriculture Organization (FAO), in 2017, about 13% of
the population was undernourished. The data available indicate that 20% of rural families
lived in a situation of food insecurity, with 13% in a moderate position and 7% in a
severe position [2]. Cape Verde is in a nutritional transition period characterized both
by the high consumption of fat, refined carbohydrates, cholesterol and sugar, and by the
low consumption of fruit and vegetables, causing a rapid and significant increase in the
prevalence of being overweight and obese [5]. However, the consumption of cereals and
cereal-based products is still relevant, representing 47% of the total food energy intake. In
Cape Verde, the cereal balance for 2002/2003 estimated a cereal consumption of 242 kg/year
per person, comprising 123 kg of corn (337 g/day), 67 kg of rice (184 g/day) and 52 kg of
wheat (142 g/day).

Although the nutritional value of cereals is noteworthy, cereals may also contain
elements that are harmful to health [6,7], as is the case with elements such as Al, Cd,
Cr, Ni, Pb and Sr. Each of these elements has standards of tolerable daily/weekly intake
(TDI/TWI) and/or benchmark dose (lower confidence limit) (BMDL) levels set by reference
bodies in food safety, such as the European Food Safety Authority (EFSA) and the World
Health Organization (WHO) (Table 1).

Table 1. Reference intakes of the analyzed elements.

Element Parameter Guideline Value References

Cr (III)
TDI

0.3 mg/kg bw/day [8]
Ni 13 µg/kg bw/day [9]
Sr 0.13 mg/kg bw/day [10]
Al

TWI
1 mg/kg bw/week [11]

Cd 2.5 µg/kg bw/week [12]

Pb BMDL 0.63 1 µg/kg bw/day
1.50 2 µg/kg bw/day

[13]

TDI, tolerable daily intake; TWI, tolerable weekly intake; BMDL, benchmark dose level; bw, body weight;
Nephrotoxicity 1 and Cardiovascular effects 2.

Al is a neurotoxic metal with no function in the human body [14]. Prolonged exposure
to Al is related to neurodegenerative diseases such as Alzheimer’s, and the estimation of its
dietary exposure is the subject of previous studies [15–17]. In 2008, the EFSA estimated the
dietary intake of Al in the European population to be 0.2–1.5 mg/kg of body weight per
week for an adult weighing 60 kg, and concluded that cereals and cereal derivatives are
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among the main foods that contribute to Al dietary intake [18]. In 2010, González-Weller
estimated the total intake of Al in the Canary Islands to be 10.171 mg/day [15].

Cd is a toxic element with a long half-life and a tendency to bioaccumulate [19].
Its presence in cultivation soils favors its transfer to and accumulation in cereals [20].
Known to compete in the body with other essential divalent cations, it affects the renal
system, causing irreversible damage to the renal tubules [21,22]. In 2006, Rubio et al. [23]
assessed dietary exposure to Cd in the Macaronesian archipelago of the Canary Islands,
estimating the intake of Cd from cereals at 1.065 µg/day, and identifying cereals as one of
the food categories contributing the most to the dietary intake of Cd. In 2012, the EFSA
also identified cereals as one of the food categories that contributes most to the dietary
intake of Cd in the European population [24].

Cr is mainly found in the trivalent ion form in food. Although oral Cr (III) is not
particularly toxic [25], high intakes of Cr can trigger chronic kidney failure, dermatitis,
bronchitis and asthma [26,27]. While cereals were found to contribute most to the dietary
intake of Cr (0.087 mg/day) in the Canary Islands archipelago [28] compared to other
food categories, a study by Filippini et al. [29] concluded that beverages, cereals and meat
provided the highest dietary contributions of Cr in a northern Italian population.

Ni is essential for plants [30], and grains and grain-based products are considered
the most important contributors to Ni exposure in the European diet, even though Ni
is only regulated in drinking water and not in other food groups [9]. Individuals with
hypersensitivity to Ni or with kidney disease are susceptible to damage from a high dietary
intake of Ni [26].

Sr is an element that is found in food; however, there are no reported cases of food
poisoning from Sr to date. Nevertheless, Sr competes with essential elements such as phos-
phorus [31], and recent studies in experimental animals reported hepatotoxic effects associated
with Sr [32]. The total intake of Sr in the Canary Islands archipelago was estimated at 1.923
mg/day, and cereal intake was estimated at 1.276 ± 0.711 mg/kg w.w. [28].

Pb is a neurotoxic metal that accumulates in the body, causing serious damage to the
central nervous system (CNS) as well as contributing to kidney disease, gastrointestinal
tract disorders and Alzheimer’s [13]. Pb traces can be found in large quantities in food and
drinking water [33,34], especially in fruits, vegetables and cereals due to the deposit of Pb
particles from the atmosphere. Bread and rolls (8.5%), tea (6.2%) and tap water (6.1%) are
among the food categories found to contribute to high Pb exposure in Europe [35]. While
Pb intake of the Canarian population was estimated at 72.8 µg/day in 2005 [33], in 2012,
mean lifetime dietary exposure in the European population was estimated at 0.68 µg/kg
b.w. per day based on middle bound mean lead occurrence [35].

Food risk surveillance and food safety strategies encourage the monitoring of metal in
each of the food groups consumed by different populations. The aims of the present study
are to determine the levels of Al, Cd, Cr, Ni, Pb or Sr in commonly consumed cereals and
cereal-based products in the Cape Verde islands, and to assess their subsequent risk.

2. Material and Methods
2.1. Samples

A total of 126 samples of cereals (rice, corn and wheat) and cereal-based products
(corn flour, wheat flour and corn gofio) (Table 2) that are marketed and consumed in Cape
Verde were acquired from two different islands of the Cape Verde archipelago, specifically,
Santiago and São Vicente (Figure 1). Gofio is a traditional artisan food derived from cereals,
mainly corn, that is made by first roasting the cereal in its husk and then grinding it until a
powder similar to flour is obtained [36–38].
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Table 2. Analyzed cereal and derived product samples.

Type No. Samples Sampling Location Origin

Rice
56 Santiago Brazil, Vietnam, Thailand, Japan, USA (California),

Cape Verde (Mindelo), Pakistan5 São Vicente

Corn gofio 6 Santiago
Unknown1 São Vicente

Corn flour
10 Santiago Portugal, The Netherlands
1 São Vicente

Wheat flour
17 Santiago Portugal, France
2 São Vicente

Corn
13 Santiago Argentina, France, Russia, South America
2 São Vicente

Wheat
2 Santiago Russia, France, Cape Verde (Mindelo), Spain

11 São Vicente
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Figure 1. Map of the Cape Verde islands showing the sampling areas (São Vicente and Santiago) (Source: Google Maps).

Sampling took place from 2017 to 2019 at establishments that import and sell cereal on
the Santiago and São Vicente islands. Because most of the samples were not commercialized
in packages, but instead, were mainly sold by weight in local markets, it was not possible
to obtain the origin of each individual sample. Nevertheless, according to Entidade
Regulatora Independiente da Saúde (ERIS) from Cape Verde, the origins of the cereal
samples distributed in Cape Verde are diverse (Table 2).

2.2. Sample Treatment

One gram of each sample was added to pressure vessels (HVT50, Anton Paar, Graz,
Austria) previously washed with laboratory detergent and Milli-Q quality distilled water.
Then, 4 mL 65% nitric acid (Sigma Aldrich, Darmstadt, Germany) and 2 mL hydrogen
peroxide (Sigma Aldrich, Darmstadt, Germany) were added to the samples. The pressure
vessels were closed and placed in a microwave oven (Multiwave Go Plus, Anton Paar, Graz,
Austria) for subsequent digestion according to the conditions described in Table 3. After
the samples were digested, they were transferred to 10 mL volumetric flasks and made up
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with Milli-Q quality distilled water. Finally, they were transferred to airtight jars with a lid
for later measurement.

Table 3. Microwave digestion process instrumental conditions.

No. Ramp (min) Temperature (◦C) Time (min)

1 15 50 5
2 5 60 4
3 5 70 3
4 3 90 2
5 20 180 10

Microwave processing power: 850 W; Limit temperature: 200 ◦C; Cooling temperature: 50 ◦C.

2.3. Analytical Method

The determination of metal content was conducted by Inductively Coupled Plasma
Atomic Emission Spectrometry (ICP-OES) model ICAP 6300 Duo Thermo Scientific (Waltham,
MA, USA), with an Auto Sampler automatic sampler (CETAX model ASX-520).

The instrumental conditions of the method comprised the following: RF power of
1150 W; gas flow (nebulizer gas flow, make up gas flow) of 0.5 L/min; injection of the sample
to the 50-rpm flow pump; stabilization time of zero s [39,40]. Instrumental wavelengths
(nm) of the analyzed elements were Al (167.0), Cd (226.5), Cr (267.7), Ni (231.6), Pb (220.3)
and Sr (407.7).

The quantification limits of the toxic metals, calculated as ten times the standard
deviation (SD) resulting from the analysis of 15 targets under reproducibility conditions [41],
were: 0.012 mg/L (Al), 0.001 mg/L (Cd), 0.008 mg/L (Co), 0.003 mg/L (Ni), 0.001 mg/L
(Pb) and 0.003 mg/L (Sr).

The quality control of the method (Table 4) was based on the recovery percentage
obtained with reference material (SRM 1515 Apple Leaves, SRM 1548a Typical Diet, SRM
1567a Wheat Flour) under reproducible conditions. The recovery percentages obtained
with the reference material were above 94% in all cases. The statistical analysis did not
detect significant differences (p < 0.05) between the certified concentrations and the concen-
trations obtained.

Table 4. Recovery study results and reference materials used.

Metal Material Concentration Found (mg/kg) Certified Concentration (mg/kg) R (%)

Al
SRM 1515 Apple Leaves

286 ± 9 285.1 ± 26 99.7
Sr 25.0 ± 2.0 24.6 ± 4.0 98.3
Cr 0.29 ± 0.03 0.30 ± 0.00 97.8
Ni SRM 1548a Typical Diet 0.37 ± 0.02 0.38 ± 0.04 102.3
Pb 0.044 ± 0.000 0.044 ± 0.013 98.9
Cd SRM 1567a Wheat Flour 0.026 ± 0.002 0.026 ± 0.008 98.4

2.4. Statistical Analysis

The IBM Statistics SPSS 24.0 computer software for Windows was used for statistical
analysis. Two studies were conducted in order to check the significance of the differences
(p < 0.05) in the metal contents both between cereals and derived product types and between
locations. Kolmogorov-Smirnov and Shapiro-Wilk tests were used to check normality, and
Levene’s test was applied to check the homogeneity of the variances based on the mean,
median and trimmed mean. Data followed a non-normal distribution, and consequently,
the Kruskal-Wallis nonparametric test was applied [42]. A one-way study was conducted
with the fixed factor “Cereal type” and six levels of variation: rice, corn gofio, corn flour, wheat
flour, corn, wheat. The Mann-Whitney test was also conducted (95% confidence interval) to
determine significant differences in the concentrations of elements according to the cereal
type or product. Another one-way study was conducted with the fixed factor “Location”
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and two levels of variation: Santiago, São Vicente. Finally, another Mann-Whitney test was
used, and 166 data were analyzed with a 95% confidence interval.

2.5. Calculation of Dietary Intake

The assessment of dietary exposure was based on the calculation of the estimated
daily intake (EDI) and the subsequent obtained percentage contribution to the reference
value (TDI for Cr, Ni and Sr; TWI for Al and Cd; BMDL for Pb) of each of the metals under
study (Table 1).

EDI (mg/day) = Mean consumption (kg/day) × Element concentration (mg/kg fresh weight)

Contribution (%) = [EDI/Reference value] × 100

3. Results and Discussion

Figure 2 shows box plots with the mean concentrations (mg/kg fresh weight), standard
deviations (SD) and comparisons of the concentrations between the different cereals and
the derived products.
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Al was found in the highest concentrations in all analyzed cereal samples, most clearly
in corn gofio, where it reached a mean average concentration of 13.4 ± 12.7 mg/kg fresh
weight. This concentration differs significantly from the rest of the cereals (p < 0.05).
Liu et al. [43] concluded that cereal husks contain higher concentrations of metals than the
grain. Accordingly, the differences in the Al content recorded here in corn gofio may be due
to the use of the whole cereal, including the husk, in the manufacture of this corn-derived
product [35], which may explain the higher Al content. However, despite the toxicological
considerations of this neurotoxic element, current European legislation does not include
maximum levels of Al in food.
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The wheat flour samples are worth mentioning, as they presented the highest levels
of Sr (1.60 mg/kg fresh weight), Ni (0.25 mg/kg fresh weight) and Cr (0.13 mg/kg fresh
weight). The Second French Total Diet Study (TDS) had a mean level of Sr in breakfast
cereals of 0.842 mg/kg fresh weight [44]; this value was lower than the level obtained in
the wheat samples of the present study. In addition, Cubadda et al. [45] reported lower
Ni levels in flour and wheat (0.035 mg/kg) than those observed in this study. However,
Mathebula et al. [46] observed a mean Cr level in wheat of 2.629 mg/kg fresh weight,
higher than the mean level recorded in this study.

As observed for Sr, Ni and Cr, the wheat flour samples also presented the highest
mean concentration of Cd (0.02 ± 0.01 mg/kg fresh weight). Tejera et al. [47] recorded
mean Cd concentrations of 0.027 mg/kg fresh weight in wheat flour, values similar to those
recorded in the present study. However, regarding wheat grain, Škrbić et al. [48] observed
Cd levels in Serbian wheat of 2.4–252 µg/kg fresh weight, higher than those registered in
the wheat analyzed here (0.01 ± 0.01 mg/kg fresh weight).

As for Pb, the highest mean level was observed in the corn gofio samples, with a
mean concentration of 0.08 ± 0.05 mg/kg fresh weight. Furthermore, this concentration
may indicate that Pb tends to accumulate in the husk of cereals, since in cereal-based
products manufactured without the husk, the Pb levels were lower. A study conducted
by Bilo et al. [49] on rice and rice husks concluded that rice husks accumulated higher
concentrations of toxic metals than rice. This suggests that gofio, being a derivative
produced from whole-grain cereal, including the husk, may have higher Pb levels than
flours produced from dehusked cereal.

The statistical analysis showed significant differences (p < 0.05) in the Pb content
between wheat and the rest of the samples, in the Al content between the rice and wheat
samples and in the Sr and Ni content of the rice and corn samples when compared to the
wheat samples.

Figure 3 presents box plots with the mean concentrations (mg/kg fresh weight),
standard deviations (SD) and the comparisons of the concentrations between the sampling
locations. The samples from São Vicente presented the highest mean concentrations of
Al, Cd, Cr, Ni, Sr and Pb. Considering that these differences may be due to multiple
factors [48,50], it is suggested that in future risk-assessment studies, correlations between
metal levels and the origin of the imports are calculated. Minimizing the dietary exposure of
the Cape Verdean population to metals of toxicological relevance involves risk management
actions, including continuous monitoring of these metals in the different food commodities
upon arrival in Cape Verde, as well as importing higher-quality cereals that also have
lower concentrations of Al, Cd, Cr, Ni, Sr and Pb. In addition, cereals with higher levels
of metals, such as Pb and Al, should not be used for the manufacture of cereal-based
products containing the husk, but rather, should be used in the manufacture of flours after
being dehusked.

In Cape Verde, the cereal balance for 2002/2003 estimated a cereal consumption of
242 kg/year per person, made up of 123 kg maize (337 g/day), 67 kg rice (184 g/day)
and 52 kg wheat (142 g/day). However, since there are no additional current data on
the consumption habits of cereals and cereal-based products, the estimations here of the
dietary exposure (Estimated Daily Intake, EDI) of the Cape Verdean population to the
metals under study were performed using a mean ration of 100 g/day of each cereal and its
derivatives (Table 5). The European reference limits (Table 1) were used for the evaluation
of the EDI of the Cape Verde population. The TDI, TWI, and BMDL were used, along with
an estimated mean average weight of an adult individual of 68.48 kg (similar to that of the
Spanish population) [51].
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Table 5. Metal dietary intake assessment and evaluation.

Element
EDI

(mg/day) Contribution EDI
(mg/day) Contribution EDI

(mg/day) Contribution EDI
(mg/day) Contribution EDI

(mg/day) Contribution EDI
(mg/day) Contribution

Rice Corn Corn Flour Wheat Flour Corn Gofio Wheat

Cr 0.002 0.01% TDI 0.008 0.04%TDI 0.001 0.005%TDI 0.002 0.01%TDI 0.009 0.04%TDI 0.01 0.05%TDI
Ni 0.02 10.00% TDI 0.02 7.89%TDI 0.008 4.21%TDI 0.01 6.32%TDI 0.02 11.6%TDI 0.03 13.2%TDI
Sr 0.02 0.24% TDI 0.04 0.45%TDI 0.01 0.16%TDI 0.08 0.87%TDI 0.08 0.87%TDI 0.16 1.80%TDI
Al 0.14 1.46% TWI 0.24 2.46%TWI 0.12 1.20% TWI 0.27 2.80% TWI 1.34 13.7% TWI 0.49 4.96% TWI
Cd 0.001 4.09% TWI 0.0007 2.86%TWI 0.0005 2.04% TWI 0.002 8.18% TWI 0.0003 1.23% TWI 0.001 4.09% TWI

Pb 0.003

7.50%
BMDL for

Nephrotoxi-
city

0.003

7.50%
BMDL for

Nephrotoxi-
city

0.003

7.50%
BMDL for

Nephrotoxi-
city

0.003

7.50%
BMDL for

Nephrotoxi-
city

0.008

20.0%
BMDL for

Nephrotoxi-
city

0.007

17.5%BMDL
for Nephro-

toxicity

3.00%
BMDL for
Cardiovas-

cular
Effects

3.00%
BMDL for
Cardiovas-

cular
Effects

3.00%
BMDL for
Cardiovas-

cular
Effects

3.00%
BMDL for
Cardiovas-

cular
Effects

8% BMDL
for Cardio-
vascular
Effects

7% BMDL
for Cardio-
vascular
Effects

Estimated daily intake (mg/day) when consuming 100 g/day; Percentage of contribution (%) to the Reference Intake (Table 1) when consuming 100 g/day. Considering a mean average weight of an adult of
68.48 kg [50].
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Thus, the consumption of 100 g/day of wheat represents a contribution percentage
of 13.2% to the TDI (tolerable daily intake) of Ni, i.e., 13 µg/kg bw/day. In the case of
sensitive individuals or people with kidney problems, a high intake of Ni may be a dietary
hazard and health risk [9]. The consumption of 100 g/day of wheat was found to provide a
contribution percentage of 17.5% of the European BMDL of Pb set at 0.63 µg/kg bw/day for
nephrotoxic effects [13]. This percentage may represent a relevant contribution to the total
intake of Pb with the consequent risk to health. Similarly, the consumption of 100 g/day
(700 g/week) of corn gofio contributes 13.7% of the TWI (tolerable weekly intake) of Al set
in Europe at 1 mg/kg bw/week [11].

The Al levels detected in the corn gofio differed between the Santiago and Sào Vicente
islands; in the case of Sào Vicente (39 mg Al/kg fresh weight), the consumption of 100 g/day
with an Al content of 39 mg/kg fresh weight would mean an intake of 3.9 mg Al/day from
this food alone, i.e., almost 39.9% of the TWI for Al.

Assuming that food risk management needs to be accompanied by a communication
plan, the authors believe that the nutritional re-education campaigns and actions provided
in the PERVEMAC2 Project could contribute to communicating and disseminating this
knowledge to the Cape Verdean population, risk managers and policy regulators. Previous
studies carried out in Cape Verde [52] have pointed to the success of involving women in
health promotion because of their decision-making power; their multidimensional role in
purchasing, processing and preparing food as the pillar of familial food security; and their
contribution via nonformal economic activities for their families. Focus group discussions
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and intensive fieldwork reinforced the higher participation of residents in the informal unit
and women in all stages, suggesting the practicability of health-promotion campaigns; this
work also showcases the potential of the social capital of the informal settlements and the
role of the woman in the family and society in Cape Verde [52].

4. Conclusions

In this study, the existence of significant differences in the content of elements an-
alyzed between different cereals is confirmed, which reaffirms the need for continuous
monitoring of both locally produced and imported cereals upon arrival in Cape Verde
as risk management and minimization strategies, while also continuing to monitor the
population’s total dietary exposure to toxic metals. Furthermore, cereals with higher levels
of metals such as Pb and Al should not be used with the husk for the manufacture of
cereal-based products, but rather, should be used in the manufacture of flours only after
removing the husk. In the case of Al, it would be advisable for the food safety authorities
to set a maximum limit for this element in cereals and cereal-based products, thus allowing
quality control and minimizing the population’s exposure to this neurotoxic element. The
evaluation of dietary exposure to the toxic metals studied here in cereals and their cereal-
based products should undoubtedly be complemented with future studies targeting other
groups of basic foods in the diet of the Cape Verde population.
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