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Abstract: By combining HPLC-DAD-QTOF-MS and HPLC-SPE-NMR, the in vitro metabolism of
vitetrifolin D, a pharmacologically active key molecule from Vitex agnus-castus in liver cell fractions,
was investigated. Twenty-seven phase I and phase II metabolites were tentatively identified from the
culture broth by HPLC-DAD-QTOF-MS. The subsequent HPLC-SPE-NMR analysis allowed for the
unequivocal structural characterization of nine phase I metabolites. Since the preparative isolation of
the metabolites was avoided, the substance input was much lower than in conventional strategies.
The study did prove that the use of hyphenated instrumental analysis methodologies allows for
the successful performance of in vitro metabolism studies, even if the availability of substances is
very limited.

Keywords: metabolism; liver microsomes; structure elucidation; HPLC-DAD-QTOF-MS; HPLC-SPE-
NMR; HR-mass spectrometry; vitetrifolin D; Vitex agnus-castus

1. Introduction

The metabolism of xenobiotics is a basic evolutionary concept that lifeforms at any
level of complexity use to successfully detoxify ingested organic matter. The molecular
mechanisms involved are scientifically well investigated. This knowledge is the funda-
ment of the pharmacokinetic characterization of new drugs in drug development. In such
research, the transformation of the applied parent compound to one or more metabo-
lites is analyzed in detail, mass balances are prepared, and the excretion pathways are
described [1,2]. If, in mammalians, a xenobiotic can reach the bloodstream, the enzymes
of the liver are mainly responsible for transforming these molecules. The general goal of
the metabolism is to improve hydrophilicity to allow for excretion via the kidneys. In the
first phase of the metabolism, functional groups are added (e.g., hydroxylation at single or
double bonds) or existing functional groups are changed (e.g., demethylation of methoxy
groups). In the second phase of the metabolism, conjugation with endogenous molecules
with a hydrophilic character (e.g., sulfation, glucuronidation) occurs. All the involved
enzymes show a relatively low, and often overlapping, substance specificity. Predicting the
metabolic pathways is, therefore, difficult and the structural characterization of metabolites
is widely accepted as inevitable in the deeper understanding of metabolic pathways [3,4].
Therefore, a particular challenge is the question of which of the substances found in the
very complex metabolic mixture are actually metabolites of the added xenobiotic. This is
particularly problematic if one cannot resort to starting compounds labeled with unstable
isotopes such as 14C. These are traditionally used in pharmacological research as analyti-
cally highly selective tracing probes, but require a synthetic approach, which is often not
easily achieved with natural substances [5–7].

Human medical metabolism studies of natural products are usually limited to the
secondary metabolites, which are used as single-substance drugs, e.g., in cancer therapy, as
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anti-infectives or as immunosuppressants [8]. The metabolic fate of compounds from herbal
medicines (“botanicals”) is not well covered by research [9,10], although its importance is
understood [11–14]. The lack of data on, and lack of understanding of, the pharmacokinetic
interaction of herbal drug constituents with the drugged organism is known as one of
the major hurdles in the development of herbal medicines as fully accepted mainstream
drugs/therapeutics. Although at least the in vitro, ex vivo, and in vivo bioactivity of
extracts or purified compounds have been evaluated in detail for many well-established
herbal medicines, the fate of the single secondary metabolites in uptake and metabolic
transformation is not deeply understood. Hence, it is necessary for modern pharmacognosy
to bridge the knowledge gap between chemical analysis/the metabolic dereplication of
medicinal plant extracts and the pharmacodynamic effects/proven bioactivities of the
applied remedies [15].

Modern high-resolution mass spectrometry (HR-MS) is one of the major technologies
utilized in the analysis of unknown organic material. It is the only technology enabling
the separation science researcher to deduce the elemental composition and, therefore,
the elemental formula of a chromatographic feature (“chromatographic peak”), which—
providing there is sufficient chromatographic resolution—represents a single molecule
species. The 2D- or 3D-chemical structure of the molecule, however, can rarely be deduced
from HR-MS data. By comparison, with databases or by the application of rulesets, such as
isotope pattern analysis or data filtering by metabolism-associated nominal mass shifts [16],
the data from HR-MS spectra can be filtered, such that the chromatographic features
can be associated with sum formulae. If sum formula data are put into the context of
compound/metabolite classes (e.g., the metabolites of a parent compound or lipids of a
certain lipid class), the tentative assignment of a chromatographic peak as a molecule of
interest is feasible [17,18].

However, as long as no comparison with a reference database or a reference standard
can confirm the identity of a candidate molecule, the identification must continue to be
designated as tentative. In research approaches dedicated to the metabolic fate of molecules
that have never been investigated in such experiments, HR-MS does not usually allow
for substance identification. Therefore, the HR-MS-based labeling of chromatographic
features as putative metabolites of a parent substance must be combined with a technology
whose main application is the structural characterization of unknown organic molecules
in solution—NMR spectroscopy is such a method with well-understood possibilities and
limitations [19]. Besides its unquestioned use in plant science for structure elucidation [20],
it is a major cornerstone of the dereplication of mixtures, as encountered in metabolomics,
metabolism studies, or bioactivity-guided fractionation efforts [21].

If, in such research approaches, putative biomarkers or putative active principles of a
mixture must be assigned to a molecular entity, a structural characterization is inevitable.
When phytoanalytical research involves working with very small sample quantities, the
isolation of marker molecules is often not possible, for reasons of time and cost. In such
cases, it is advisable to undertake identification with an online coupling of the analytical
separation and the identifying NMR spectroscopy—the liquid chromatography–nuclear
magnetic resonance (LC-NMR) hyphenation. NMR spectroscopy is an inherently insen-
sitive detection method, limiting on-flow LC-NMR experiments to highly concentrated
samples and 1H-NMR spectroscopy. To allow for longer experiment times or for heteronu-
clear shift correlation experiments, LC-NMR hyphenation has matured over the recent
decades, such that chromatographic peaks of interest can be collected and stored after
separation until measurement [22,23].

In the setup of the high-performance liquid chromatography–solid-phase extraction–
nuclear magnetic resonance (HPLC-SPE-NMR) hyphenation, strictly online technology
lipophilic SPE cartridges serve as storage devices between the LC separation domain
and the NMR analysis domain (Scheme S1). Analytes are trapped after chromatographic
separation onto the SPE phase by the aid of a hydrophilic post-LC-column added makeup
flow. The absorbed analyte is dried with nitrogen to remove the chromatography solvents.
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Online transfer to the flow cell of the NMR probe head is facilitated by a deuterated NMR
solvent (e.g., CD3CN, CD3OD), peak handling (e.g., transfer to NMR tubes) is strictly
avoided. Due to the lipophilicity of the NMR solvent, sharp elution profiles can be realized
from the SPE phase. This leads to a re-focusing of chromatographic peaks and a high
analyte concentration in the flow cell. The liquid transfer to the NMR is done such that
peak diffusion is minimized. The research approach presented in this publication combines
the HPLC-DAD-QTOF-MS-based tentative identification of metabolites formed in an
in vitro analyte metabolism experiment with the subsequent structural characterization of
these metabolites utilizing a HPLC-SPE-NMR instrumentation setup.

The model analyte chosen for this experiment was vitetrifolin D (VD) (Scheme 1), a
diterpenoid secondary plant metabolite isolated from the herbal medicinal plant species
Vitex agnus-castus L. (Lamiaceae). For the fruits of V. agnus-castus, which were for centuries
in traditional use to treat gynecological problems, and specifically premenstrual com-
plaints [24], different modes of action are discussed. Besides the well-studied interactions
of flavones with ß-estrogenic receptors, the inhibition of dopamine and opioid receptors
was mediated by extracts of different polarity. Diterpenoid-containing fractions and puri-
fied diterpenoids, including VD, showed dopamine D2 receptor activity inhibition. This, in
turn, reduced the increased prolactin secretion associated with the female reproductive
system diseases and triggered by dopamine [25–27]. These in vitro findings were substan-
tiated by several clinical studies showing that premenstrual syndrome (PMS) is associated
with a latent hyper-prolactinemia, which could be regulated to physiological values by
taking preparations of Vitex agnus-castus extracts [24]. For these reasons, VD was selected
as a relevant model substance for investigating the metabolism of Vitex terpenoids [28].

Scheme 1. Molecular structure of the halimane diterpene vitetrifolin D (VD).

The biological system of commercially available standardized human liver micro-
somes (HLMs) was chosen for in vitro metabolite generation. Microsomes are vesicle-like
artefacts reformed from the endoplasmic reticulum, in which proteins and lipids, as well
as molecules for export, are synthesized, and in which biotransformation reactions of the
monooxygenase enzyme systems occur [29,30]. Their use as a critical experimental model
for the evaluation of drug metabolism in pharmacology and toxicology is well documented
and standardized procedures are available [31,32].

2. Results
2.1. HPLC-DAD-QTOF-MS Analysis

VD is a halimane diterpene with two double bonds, two acetylated hydroxy functions
at C-6 and C-7, and an unsubstituted hydroxy-function at C13 (Scheme 1). The mass
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spectrometric characterization of VD and its metabolites was performed using an HPLC-
DAD-QTOF-MS instrumentation setup. Under the developed chromatographic conditions,
VD was eluted at 28.77 min. Since more polar VD derivatives were expected in the in vitro
experiments due to the inherent character of phase I and II metabolism, it was hypothesized
that all metabolites would be eluted prior to the parent compound VD. Both electrospray
ionization (positive ESI mode, +ESI) and atmospheric-pressure chemical ionization (posi-
tive APCI mode) were experimentally available as possible ionization techniques. In the
design phase of the investigation, full-scan (MS) ESI and APCI spectra of VD, recorded
under carefully optimized conditions, revealed that significant in-source fragmentation of
the terpenoid compound reduced the applicability of APCI for the deduction of molecular
masses from mass spectrometry data. Hence, this ionization technique was abandoned
and all further experiments were performed under +ESI-based ion formation. High mass
accuracy (<5 ppm) was achieved via calibration with sodium formate infused into the
HPLC column effluent in a calibration time window at the beginning of each analysis.

The +ESI MS spectrum of VD exhibited characteristic adduct ions at m/z 424.2819
([M + H2O]+, error 0.1 ppm), 429.2597 ([M + Na]+, error 3.4 ppm), and 445.2339 ([M + K]+,
error 2.7 ppm), confirming the VD molecular weight of 406.26 Da and the elemental compo-
sition of C24H38O5 (Table 1). Moreover, due to in-source fragmentations, the successive loss
of the two acetoxy-groups at m/z 329.2475 ([M − OAc − H2O]+), 287.2369 ([M − 2OAc]+),
and 269.2231 ([M − 2OAc − H2O]+) was observed (Scheme S2). MS/MS spectra recorded
for each adduct ion over the course of the design phase of the investigation (data not
shown) revealed a fragmentation pattern similar to the in-source fragmentation MS spectra.
Diagnostic ions from halimane scaffold cleavages were not observed. Hence, MS spectra,
optimized to molecular mass detection via [M + Na]+ and [M + K]+ adduct ions, were
subsequently recorded for metabolite characterization.

Table 1. Tentative or HPLC-SPE-NMR-confirmed metabolites of vitetrifolin D (VD) formed in HLM (M1–M22), and
additionally in S9 (SM1–SM5), cells. Analytes are sorted according to their retention times in the HPLC-DAD-QTOF-
MS assay.

Compound
Retention

Time
[min]

[M + Na]+

Experimental
[m/z]

[M + Na]+

Accuracy
[ppm]

[M + K]+

Experimental
[m/z]

[M + K]+

Accuracy
[ppm]

Elemental
Composition

Mass
Shift to
VD [u]

Tentative Type of
Metabolism a

Substituents
by NMR b

M1 11.1 479.2574 +2.4 495.2319 −1.7 C24H40O8 +50 1 * OH, 2 * OH + H n.i.

M2 11.6 479.2581 −2.0 495.2336 +3.8 C24H40O8 +50 1 * OH, 2 * OH + H OH @
3β,14,15

M3 12.2 479.2575 −0.9 495.2337 +3.6 C24H40O8 +50 1 * OH, 2 * OH + H n.i.

M4 12.4 477.2446 +2.7 493.2189 +1.9 C24H38O8 +48
3 * OH or

2 * OH and 1 * Ep or
1 * = O and 2 * OH + H

n.i.

M5 12.9 479.2572 −0.1 495.2316 −1.0 C24H40O8 +50 1 * OH, 2 * OH + H OH @
2β,14,15

M6 13.2 479.2575 −0.7 495.2321 −2.0 C24H40O8 +50 1 * OH, 2 * OH + H n.i.

M7 14.3 477.2465 −1.3 493.2161 −1.4 C24H38O8 +48
3 * OH or

2 * OH and 1* Ep or
1 * = O and 2* OH + H

n.i.

M8 14.5 461.2456 +2.1 477.2246 −8.5 C24H38O7 +32 2 * OH or
1 * OH and 1 * Ep n.i.

M9 14.7 477.2360 −6.2 493.2156 −0.3 C24H38O8 +48
3 * OH or

2 * OH and 1 * Ep or
1 * = O and 2 * OH + H

n.i.

M10 15.0 359.2121 +7.4 375.2006 −0.3 C20H32O4 −70 2 * deAc and 1 * = O, n.i.

M11 15.1 361.2280 −6.2 377.2057 −3.4 C20H34O4 −68 2 * deAc and
1 * OH or 1 * Ep n.i.

M12 15.5 461.2453 +2.8 477.2204 +0.2 C24H38O7 +32 2 * OH or
1 * OH and 1 * Ep n.i.

M13 15.7 461.2455 +2.2 477.2214 −1.8 C24H38O7 +32 2 * OH or
1 * OH and 1 * Ep n.i.

M14 16.5 361.2345 +1.2 377.2075 +3.6 C20H34O4 −68 2 * deAc and
1 * OH or 1 * Ep n.i.
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Table 1. Cont.

Compound
Retention

Time
[min]

[M + Na]+

Experimental
[m/z]

[M + Na]+

Accuracy
[ppm]

[M + K]+

Experimental
[m/z]

[M + K]+

Accuracy
[ppm]

Elemental
Composition

Mass
Shift to
VD [u]

Tentative Type of
Metabolism a

Substituents
by NMR b

M15 17.1 345.2359 +3.7 361.2129 +2.9 C20H34O3 −84 2 * deAc deAc @ 6,7

M16 18.1 445.2522 −1.2 461.2263 −1.5 C24H38O6 +16 1 * OH or 1 * Ep OH @ 2β

M17 18.4 445.2543 +4.0 461.2285 +3.2 C24H38O6 +16 1 * OH or 1 * Ep OH @ 3β

M18 18.7 463.2652 +3.1 479.2388 +3.7 C24H40O7 +34 2 * OH + H n.i.

M19 19.0 463.2648 +3.9 479.2391 +3.1 C24H40O7 +34 2 * OH + H OH @ 14,15

M20 19.6 445.2573 −2.8 461.2306 −1.3 C24H38O6 +16 1 * OH or 1 * Ep OH @ 3α

M21 20.3 461.2454 +2.6 477.2211 −1.3 C24H38O7 +32 2 * OH or
1 * OH and 1 * Ep n.i.

M22 22.0 443.2394 +2.3 459.2132 +2.5 C24H36O6 +14 1 * = O = O @ 3

SM1 11.6 503.2591 +4.8 519.2348 +1.4 C26H40O8 +74 2 * deAc, 1 * deHy
1 * GlcA n.i.

SM2 11.9 503.2609 +0.6 519.2356 +4.2 C26H40O8 +74 2 * deAc, 1 * deHy
1 * GlcA n.i.

SM3 12.7 503.2608 +0.8 519.2346 +0.8 C26H40O8 +74 2 * deAc, 1 * deHy
1 * GlcA n.i.

SM4 13.6 605.2946 +2.2 621.2672 +0.1 C30H46O11 +176 1 * GlcA n.i.

SM5 20.9 387.2489 +4.4 403.2225 +4.9 C22H36O4 −42 1 * deAc n.i.

VD 28.8 429.2597 +3.4 445.2339 +2.7 C24H38O5 0 parent compound -

a OH, hydroxylation of alkane; OH + H, hydroxylation of alkene; = O, oxidation of alkane; Ep, oxidation of alkene (epoxide formation);
deAc, deacetylation; deHy, dehydration; GlcA, glucuronidation; 1 *, onefold; 2 *, twofold; 3 *, threefold. b Position numbering according to
Scheme 1; n.i., not identified

Combining the recorded mass spectrometry data for VD proved that the chosen
experimental conditions allowed for the deduction of molecular weight and elementary
composition of VD without structural integrity loss of the analyte. In addition, in-source
fragmentation of labile acetate C-O bonds did allow for a deeper, but limited, insight
into the VD functional group substitution pattern. Neither the exact localization of the
two acetate moieties, nor the detection of signals indicating the presence of the hydroxy
functions of VD of the molecule were achievable. Nevertheless, since phase I and phase
II metabolism only lead to changes in the substitution pattern, it was assumed that the
experimental conditions for VD molecular mass detection and the sum formula calculation
are also suitable for monitoring such metabolites.

Optimization of the in vitro VD incubation with pooled female human liver micro-
somes (HLMs) using three different VD concentrations (50 µM, 100 µM, 150 µM) and
incubation times of up to 72 h revealed optimal results for 100 µM VD incubated for
24 h. Under these conditions, approximately 80% of VD was transformed and a stable
phase I metabolite pattern was observable (Figure S1). Prolonged incubation or altered
VD concentrations did not significantly improve the metabolite yield. The presence of
residual VD in the reaction mixtures served as an internal standard for spectroscopic data
interpretation. Similar observations were made in the optimization phase of the S9 cell
incubation experiments. Consequently, identical reaction conditions were chosen for the
phase II metabolite generation experiments.

2.2. HPLC-DAD-QTOF-MS-Based Metabolite Characterization

As expected, in vitro metabolism resulted in a multitude of +ESI mass spectrometry
detectable chromatographic features eluting in the retention time window of 11–22 min.
Through application of the metabolite identification algorithm, provided by the Metabolite
Tool software package, a tentative assignment of these features was undertaken. Based on
the VD structure (Scheme 1) and the knowledge of phase I and phase II bioreactions [18], a
tailored sum formula and molecular mass forecast list was generated with the Metabolite
Predict algorithm. This forecast list served as a data filter, applied to the experimental
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HR-MS data using the Metabolite Detect algorithm. The output from the filtering procedure
was a chromatographic features and mass spectra list of putative metabolite candidates.

With this approach, twenty-two of these features (M1–M22) were identified in the
HLM cell culture supernatant and, therefore, tentatively assigned as phase I metabolites
(Figure 1). In the S9/UGT cell culture supernatant, five additional metabolites were de-
tected (SM1–SM5), in addition to three metabolites already found in HLM cell experiments
(Figure 2). Tentatively, these analytes were assigned as phase II metabolites. In the S9/SULT
cell culture, no additional metabolites, especially no sulfidations, were observable. For all
twenty-seven identifiable metabolites, the accurate masses for the sodium and potassium
adducts were obtained from the TOF-MS data. Elemental composition calculations for
[M + Na]+ and [M + K]+ adducts, with a median mass accuracy of 1.7 ppm (5th percentile
−4.1 ppm, 95th percentile 4.5 ppm), led to identical sum formulae for the respective [M]+

(Table 1).

Figure 1. HPLC-QTOF-MS-derived base peak chromatogram of the HLM incubation supernatant
featuring the parent compound vitetrifolin D (VD) and its phase I metabolites M1–M22. Experimental
conditions HPLC: column: Zorbax Eclipse XDB-C18, 3 × 100 mm, 3.5 µm; mobile phase: A: H2O,
B: acetonitrile, gradient: 0 min: 80% A, 5 min: 80% A, 8 min: 65% A, 35 min: 2% A; temp: 25 ◦C; flow
rate 0.3 mL/min; injection volume:10 µL. HR-MS: ESI, positive mode; nebulizer gas (N2) 30.5 psi,
dry gas (N2) 8.0 L/min at 220 ◦C, capillary voltage 4.5 kV; mass scan range: 50–1000 m/z at 1 Hz.

2.3. Metabolite Identification

Analysis of the nominal mass shift between the metabolites and the parent compound,
VD, allowed the analytes to be grouped depending on the metabolic reaction. In HLM
incubations, oxidation of alkane or alkene carbons to alcohols or ketones predominated;
in some cases, deacetylation reactions were observed. During incubation with S9 cells,
glucuronidation reactions were additionally observable. Three of the twenty-two phase I
metabolites found in the HLM cell experiments were also present in S9 cells, namely M15,
M16, and M18.
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Figure 2. HPLC-QTOF-MS-derived base peak chromatogram of the S9 cell/UGT incubation super-
natant featuring the parent compound, vitetrifolin D (VD), and its phase II metabolites SM1–SM5
and additional phase I metabolites. Experimental conditions as given in Figure 1.

2.3.1. Single-Fold Oxidation

The isobaric metabolites M16, M17, and M20, eluted in the retention time window
from 18 min to 20 min in the extracted ion chromatogram (EIC), shared the molecular
formula C24H38O6, which indicates a mass difference of +16 Da to VD (Figure S2). This
indicates an oxidative metabolism event involving an alkane carbon center and leading
to an additional hydroxy function in the VD scaffold. Alternatively, an epoxidation of
a double bond would lead to an identical mass shift. Another metabolite (M22), eluted
at 22 min, had a mass difference of only +14 Da to VD. The analysis of the sum formula
C24H36O6 showed that, compared to VD, a double bond equivalent was gained. Hence,
the assumed oxidation reaction either led to the formation of a carbonyl function (ketone)
or was accompanied by a reduction step leading to an enol structure element.

2.3.2. Twofold Oxidation

The isobaric metabolites M18 and M19 were eluted within 0.4 min at approximately
19 min retention time (Figure S3). Their molecular formula featured a mass difference
of +34 Da to VD. This indicates that the twofold oxidative metabolic reaction (+32 Da)
was accompanied by the reduction of an alkene moiety to an alkane (+2H). Hence, it can
be assumed that M18/M19 are metabolites involving one of the two VD double bonds
forming 1,2 diol moieties.

A mass shift of +32 Da to VD was associated with the isobaric metabolites M8, M12,
M13, and M21. M8–M13 were eluted at around 15 min (time window of 1.2 min), signifi-
cantly earlier than M18/M19. M21 was eluted shortly after this metabolite pair, at 20.3 min
(Figure S3). The mass difference corresponds to the addition of two oxygen atoms, hence
twofold oxidative metabolic transformation leads to these congeners. Either the two alkane
carbons are hydroxylated or one of the oxygen substitutions involves a VD double bond,
leading to an epoxide (which can subsequently be hydrolyzed to a vicinal diol).

Since epoxide formations do not lead to added hydrophilicity to the extent that is
expected for a hydroxy function, it can be hypothesized that M21 with a chromatographic
retention time similar to mono-hydroxylated metabolites features one hydroxy function and
one epoxide function, whereas the other isobars (M8, M12, M13) are VD-diols. Metabolites
with a mass shift of +30 Da corresponding to a twofold oxidation with the addition of a
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double bond equivalent e.g., a hydroxylation combined with a ketone formation, were not
present in the reaction mixture.

2.3.3. Threefold Oxidation

Almost all the early eluted metabolites (11 to 15 min) featured a positive mass shift
corresponding to a threefold oxidation reaction (Figure S4). Five analytes (M1, M2 M3,
M5, M6) showed a molecular weight gain of +50 Da compared to VD, which corresponded
to the net loss of a double bond equivalent. This was in correspondence with threefold
oxidation, in combination with reduction in one of the VD double bonds, resulting in a
vicinal diol motif. Metabolites M4, M7, and M9 featured a mass shift of +48 Da compared
to VD; hence, the number of double bond equivalents remained unchanged. If a double
bond attack is part of the oxidative metabolism of these metabolites, an epoxide moiety and
two hydroxy-functions are formed. Alternatively, threefold alkane oxidation takes place
or the double bond is oxidized to a vicinal diol and, additionally, an alkane hydrocarbon
atom is oxidized to a ketone.

2.3.4. Hydrolysis

Only four of the twenty-two metabolites identified in the HLM experiments featured
a molecular weight loss compared to VD. M15 (C20H34O3) showed the largest loss, with
a reduction of −84 Da (C4H4O2), and the loss of two double bond equivalents. The chro-
matographic elution position of M15 (retention time 17.1 min) placed M15 between mono-
and dehydroxylated VD metabolites (Figure S5). Hence, it can be hypothesized that M15
underwent di-deacetylation at positions 6 and 7, leading to a vicinal diol motif. Mono-
deacetylation was not observed in the HLM incubation supernatants, but in the S9 cell
incubation with metabolite SM5 (retention time 20.9 min), a mass difference of −42 Da to
VD was shown, which corresponds to an acetate moiety loss.

Metabolites M10, M11, and M14 had a positive mass shift of 16 or 14 Da relative to
M15, indicating that, in addition to the loss of two acetate moieties, an oxidative metabolic
step took place. In the case of M11 and M14 (+16 Da), an aliphatic hydroxy function
was introduced or a double bond oxidation took place, whereas M10 oxidation led to an
additional ketone function in the scaffold.

2.3.5. Glucuronidation

Analyte SM4, eluted at 13.6 min, showed +176 Da (C6H8O6) mass difference to VD
(Figure S6). This molecular formula corresponds to a glucuronyl substituent. With only the
C13 hydroxy function available as a substitution position, SM4 can be readily identified as
vitetrifolin D 13-O-glucuronide. Analytes SM1, SM2, and SM3 were isobaric with a mass
shift of +74 to VD and −100 to SM4. Since twofold deacetylation corresponds to a mass
loss of −84 compared to VD (M15), it can be assumed that, in SM1–SM3, a di-deacetylation
is followed by a glucuronidation step at one of the available hydroxy-functions (C6, C7,
C13), accompanied by a dehydration reaction (−18 Da), transforming the vicinal 6,7-diol
moiety in an enol structure element. Hence, two regio-isomers are possible, a 6-en-6,13-diol
and a 6-en-7,13-diol. Consequently, mono-substitution with glucuronic acid (GlcA) led to
the three isobaric glucuronide metabolites SM1–SM3. Di-glucuronide VD derivatives were
not detectable in the S9 experiments.

2.3.6. Sulfation

The incubation of VD in the presence of PAPS did not yield any useful metabolic
feature indicating the presence of VD-sulfates. Incubation times, VD concentration, and
PAPS concentration were varied to confirm the negative finding.
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2.4. HPLC-SPE-NMR Analysis

Since analysis by mass spectrometry allows for the structural characterization of
metabolites beyond doubt only in selected cases, such as SM4, where the only available
hydroxy function did undergo glucuronidation, and M15, where both acetyl-moieties were
cleft off, utilization of NMR spectroscopy was inevitable. The complex mixture of isobaric
metabolites made successful metabolite characterization via preparative analyte separa-
tion, followed by offline NMR, highly unlikely, as previous investigations proved [33–35].
Hence, the more sensitive and less cumbersome online approach via HPLC-SPE-NMR
was pursued.

Due to the very limited amount of substance used in single HLM incubation experi-
ments (100 nmol VD total, 80% transformed to >20 metabolites), incubations were repeated
17-fold to increase the absolute analyte amount in the HPLC-SPE-NMR samples. In addi-
tion to repeated metabolite generation, an offline SPE protocol was established to separate
metabolite-containing fractions from the incubation matrix and to allow for further sam-
ple concentration prior to HPLC-SPE-NMR. While the analytical HPLC-DAD-QTOF-MS
assay was optimized for monitoring the bioassay, the chromatographic separation in the
HPLC-SPE-NMR setting needed optimization to provide optimal post LC metabolite peak
trapping conditions onto SPE cartridges. To ensure the baseline separation of the metabolite
peaks, a significantly longer and shallower gradient was designed and column overloading
was strictly avoided. The trapping process of individual analytical peaks to individual SPE
cartridges was repeated ten times to increase the analyte concentration in the subsequent
NMR analysis. Analytes trapped on the SPE cartridges were dried with ambient tempera-
ture nitrogen and were stored in a nitrogen-flushed instrument cabinet until NMR analysis.
All analytes were transferred to the spectrometer with deuterated acetonitrile (CD3CN),
and a set of 1D and 2D NMR spectra was recorded. Signal and shift value assignment of
proton and carbon atoms relied on these homonuclear and heteronuclear shift correlation
experiments (DQF-COSY, NOESY; HSQC, HMBC) and on signal analysis of the 1H-NMR
spectrum. High-resolution 13C NMR spectra were not recorded due to the limited sample
amounts available.

For nine VD metabolites, NMR-based structure elucidation was feasible from the
recorded 1D and 2D NMR data (Scheme 2). The following paragraphs provide the details
of this analysis block. Due to the small amount of substance available for the remaining thir-
teen metabolites, it was not possible to record a sufficient set of NMR spectra for structural
characterization. Therefore, the substitution patterns could not be clearly determined for
these analytes. For S9 cell incubations, no HPLC-SPE-NMR experiments were performed;
hence, for SM1–SM5, structural information deduced from mass spectrometry data was
not confirmed by NMR.

2.5. NMR-Based Structure Elucidation
2.5.1. Vitetrifolin D (VD)

To aid in the structural elucidation of the VD-metabolites and to minimize the ex-
pectable (slight) shift value differences to spectra recorded in more conventional offline-
NMR spectroscopy solvents such as CD3OD or CDCl3, a thorough analysis of VD (C24H38O5)
NMR spectra in the HPLC-SPE-NMR solvent CD3CN was undertaken.
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Scheme 2. Vitetrifolin D (VD) phase I metabolites isolated from HLM incubations via HPLC-SPE-
NMR and characterized by 1D and 2D NMR spectroscopy combined with sum formula generation
by HR-mass spectrometry.

As expected, the 1H-NMR spectrum (Table S1) featured seven methyl group signals
(six singlets and one doublet). Aided by HMBC correlation signals, two CH3 signals were
assignable to acetate moieties and a C(CH3)2 group was readily identified. The 1H-NMR
signal clusters of five aliphatic methylene groups featured very complex coupling patterns.
HSQC-based shift correlation analysis unveiled that only one of these featured a significant
proton anisotropy effect. One methylene group signal resonated significantly downfield;
1H/13C one- and multiple-bond shift correlation signals confirmed the presence of a vinyl
group (C14, C15). Three aliphatic methine groups were identified from the HSQC spectrum,
two with the characteristic downfield shift for oxygen substitution (C6, C7). The olefinic
methine group was readily assignable to the vinyl function by DQF-COSY and HMBC
correlation signals (Scheme S3). Only seventeen of the twenty-four carbon atoms could be
characterized by signals in HSQC spectrum. The remaining seven signals were, therefore,
assigned to quaternary atoms. Two of these signals were the carbonyl groups of the acetate
functions; another atom was assigned to the C(CH3)2 group discussed above. All three
were easily identified by HMBC contacts, starting from the methyl groups. By applying
the same strategy, the quaternary sp3-hybridized centers C9 and C13 were also easily
assigned. Signals for assignment of the sp2 hybridized bridgehead atoms linking halimane
rings A and B were also found in the HMBC correlation signals of methyl groups C18,
C19, and C20. Taken together, the NMR data confirmed the presence of a diterpenoid
bicyclic structure with a side chain ending in a vinyl group. Three hydroxy functions
were present—the two vicinal ones at the ring system were acetylated and the side chain
moiety was unsubstituted. Combining the analysis of vicinal 3JH,H coupling constants
and homonuclear dipolar coupling NOESY cross peaks allowed for the assignment of the
relative stereochemistry at the chiral carbon centers C6, C7, C8, and C9 as rel-6S,7R,8S,9R
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(Scheme S3). The configuration of the chirality center in the side chain (C13) remained
unclear based on the gathered NMR data.

Since the absolute configurations were not available for VD or any other vitetrifolin
type 8-epi-halim-5(10)-ene derivatives [26,36], the recently published absolute configuration
of viterofolin H (= 1-hydroxy-vitetrifolin D; 1-OH-VD) must be interpreted with great
caution [37]. The VD relative stereochemistry of C6–C9 based on NOE contacts and
biosynthesis considerations is unquestioned, and hence can be confirmed from 1-OH-VD
as 6S,7R,8S,9R. However, deriving the configuration of C13 from 13C-NMR shift value
arguments seems questionable, as long as a putative C13 epimer is not compared under
identical measurement conditions. Hence, we concluded that, with the current state of
knowledge, the absolute configuration of the VD side chain could not be determined.
Consequently, vitetrifolin D was elucidated as (6S,7R,8S,9R,13RS)-6,7-diacetoxy-5(10),14-
halimadien-13-ol (Scheme 1).

2.5.2. Metabolites with Onefold Oxidation (M16, M17, M20, M22)
1H- and 13C-NMR spectra of all three metabolites with a mass difference of +16 Da to

VD (M16, M17, M20) showed vinyl group signals (Figure 3). Hence, epoxidation of this
double bond did not take place. HMBC correlation signals from the geminal methyl groups
at C4 were in favor of a C5/C10 double bond. Consequently, no epoxidation took place
and all congeners were hydroxy-VD derivatives. Analysis of the HMBC cross-peak pattern
did unveil that M17 was hydroxylated at position C3, whereas M16 was hydroxylated at
position C2 (Figure 4).

Figure 3. HPLC-SPE-NMR-recorded proton NMR spectra portion of vitetrifolin D (VD) and metabo-
lites (600 MHz, solvent CD3CN), featuring signals of alkene protons and protons of hydroxylated
alkane carbon centers. Inter-experimental shift value stability of structural features without changes
in the chemical environment (e.g., vinyl group in VD, M15-M17, M22) allows for confirmation
of its presence and understanding of its absence (M5, M19) as a structural change involving this
structural motif.
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Figure 4. HPLC-SPE-NMR-based long-range shift correlation (HMBC) NMR spectrum of M16 (2β-OH VD) recorded in
CD3CN at 300K. Experimental conditions: pulse program hmbcgplpndqf; 2K data points in the 1H domain, 256 increments
in the 13C domain, zero filled to 1K. Recording of 96 transients per increment, acquisition time 11.5 h. The C-H correlation
signals not only allowed for connection of the individual proton networks of the H-H correlation pattern derivable
substructures, but also for unequivocal placement t of metabolic oxidation at the carbon position C2.

The hydroxylation position of M20, which was present in a much smaller amount
in the metabolite mixture, was deduced by comparison with M16 and M17, as well as
the 1-OH-VD known from the literature [37]. When VD was substituted at C1 or C2, the
13C shifts in methyl groups C18 and C19 were practically isobaric, while hydroxylation at
position C3 triggered a clear shift anisotropy. M20 showed such a shift anisotropy, but not
to the same extent as M17 (Tables S6 and S8). Since the coupling pattern of the CH(OH)
proton was also clearly distinguishable from that of the a-terminal proton in M17 (two
small coupling constants), M20 can be assumed to be the C3 epimer to M17. Molecular
modeling of the two half-chair epimers did show that C3 was situated above the ring
plane, bringing the 3β substituent (H or OH) into an axial position. The 3α substituent was
in an equatorial position; both substituents at C2 showed an identical dihedral angle of
approximate 30◦, whereas the dihedral angles of the 3β substituent were notably different
to the C2 substituents—one angle was approximately 30◦ and the other one approximately
180◦. Hence, in M17, with H3 featuring two small and identical coupling constants, this
proton was oriented equatorially and the OH function was in an axial position. M17 was,
therefore, 3β-OH-VD, whereas M20 was 3α-OH-VD. The C2 configuration of M16 was
confirmed as β-hydroxylated by the analysis of coupling constants of the C1, C2, and C3
protons and the presence of NOE contacts between the axially orientated methyl group
C18 (substituent of C8), two axially orientated protons at C1 and C3, and one of the C4
methyl groups (Table S5). Consequently, M16 was identified as 2β-OH-VD. M22 showed
a reduced mass difference of +14 Da compared to the hydroxylated metabolites, and an
oxidation reaction with the formation of a double bond was assumed. The analysis of the
NMR spectra allowed for the clear positioning of this functionality in order to position C3,
since the HMBC contacts of both C4 methyl groups showed a strong correlation signal at
δC = 215 ppm (Table S9). M22 was identified as 3-oxo-VD.
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2.5.3. Metabolites with Twofold Oxidation (M18, M19)

The NMR spectra of M19 lacked vinyl group signals, which were replaced by two
signals (δH = 3.35 ppm and 3.56 ppm; δC = 76.8 ppm and 64.5 ppm), corresponding to
hydroxylated sp3 hybridized carbon centers (Table S7). Since mass spectrometry of M19
featured a mass difference of +34 Da compared to VD, the replacement of the vinyl group
at C14/C15 with a vicinal diol moiety was confirmed. The stereochemistry of the new
chirality center at C14 was not determined. Hence, M19 was identified as 14,15-dihydro-
14,15-dihydroxy-VD. Due to the lack of substance, the isobaric metabolite M18 could not
be completely characterized by NMR. However, since the vinyl group was also replaced by
a diol, it can be assumed that M18 was the C14 epimer to M19.

2.5.4. Metabolites with Threefold Oxidation (M2, M5)

The NMR spectra of M2 and M5, both with a mass shift of +50 Da compared to
VD, indicating that three oxygen functions were added and one double bond was lost
in the course of the metabolic attack, featured vinyl group replacement by a vicinal diol.
A thorough analysis of the shift correlation spectra placed the third oxygen at C2 (M2)
and C3 (M5), respectively. Comparison with the NMR spectra of the singly hydroxylated
derivatives M16 and M17 showed that identical stereochemical relationships were present
for M2 and M5 (Tables S2 and S3). Hence M2 was 2β hydroxylated and M5 was 3α
hydroxylated. Due to sample limitations, the structural characterization of the isobaric
metabolites M1 and M3 was not possible, and it remains unclear if these substances were
regio- or stereoisomers to M2 and M5.

2.5.5. Metabolites with Hydrolysis of Acetate Groups (M15)

Compared to VD, the NMR spectra of M15 lacked acetate methyl group signals
(Table S4). Furthermore, the protons at C6 and C7 significantly shifted to a higher field
(approximately −2.5 ppm), indicating loss of the substituents (Figure 3). Since the mass
spectra analysis showed a negative mass shift of −84 Da compared to VD, M15 was
identified as 6,7-di-deacetyl-VD. The literature refers to this derivative as vitetrifolin I,
isolated from Vitex trifolia. [36].

2.6. Analytes without NMR-Based Structural Characterization

Of the thirteen HLM-derived VD metabolites that lacked sufficient NMR data to
allow for a tentative structural characterization, five were threefold oxidized (M1, M3, M4,
M6, M7), five were twofold oxidized (M8, M9, M12, M13, M21), and three underwent di-
deacetylation combined with onefold oxidation (M9, M10, M14). The data gathered on the
eight characterized congeners suggest that hydroxylation/oxygenation occurred at C1-C3
or at the vinyl double bond. The latter one, leading to 1,2-diol moieties, was most likely
a downstream event from an epoxidation reaction at a double bond. Whenever a mass
difference of +16 was observed, either an alkene epoxidation or an alkane hydroxylation
might have taken place. However, no epoxide was isolated by the online experiments,
perhaps due to their instability in the reaction mixtures, since 1,2-diol derivatives were
isolated and characterized (see above). Furthermore, no evidence of a C5/C10 double
bond hydroxylation was detected. This might reflect that such backbone hydroxylation
is accompanied by a loss of the structural integrity of the diterpene ring system. The five
metabolites additionally found in S9 cells (SM1–SM5) were not further characterized by
NMR spectroscopy, since their structure can be derived from the mass spectrometry data
(see above).

3. Discussion

The present study was devoted to the question of whether it is possible to accompany
metabolism studies for substances of limited availability by applying state-of-the-art separa-
tion technologies in such a way that metabolites can be characterized. A pharmacologically
important lead substance of the well-characterized medicinal plant Vitus agnus-castus was
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selected for this purpose. It was shown that a large number of metabolites could be tenta-
tively identified from the reaction broth of in vitro metabolism experiments of vitetrifolin
D (VD), using HPLC-DAD-QTOF-MS and metabolite identification algorithms. For about
half of these substances, the subsequent structural characterization by HPLC-SPE-NMR
was successful; nine phase I VD metabolites were unequivocally characterized. Five phase
II metabolites were characterized with HPLC-DAD-QTOF-MS down to the level of substi-
tution isomers. Thus, it was shown that, by using substance-saving and highly sensitive
analytical methods, the phase I and phase II metabolism of VD can be characterized in its
basic features. Metabolic turnover proceeds through several oxidation steps and hydrol-
ysis of the acetate residue is also used to hydrophilize the metabolites. Glucuronidation
completes the metabolism. The presence of sulfation could not be observed in this study,
possibly due to experimental limitations. The significance of this study lies in the fact
that the amount of substance used (2 µmol) was so small that, with this approach, the
human metabolism of pharmacologically active medicinal plant lead substances can be
successfully studied in vitro. If this analytical approach is combined with experiments
on the uptake of analytes in the organism, it is possible to test whether the secondary
plant metabolites that are bioactive in in vitro experiments reach the target organism and
survive metabolism by its detoxification machinery. Bioavailability assessment of VD is
a substantive limitation of this study, as uptake experiments were not performed. The
in vivo significance of in vitro metabolism experiments depends on whether VD can reach
the target organism at all.

4. Materials and Methods
4.1. Chemicals and Reagents

Vitetrifolin D (VD) was isolated from a methanolic extract of Vitex agnus-castus fruits
at the Department of Pharmacognosy (University of Innsbruck, Innsbruck, Austria) with a
purity higher than 99.5%, determined by high-performance liquid chromatography with
ultraviolet-diode array detection (UV-DAD) and NMR spectroscopy [38].

Pooled female human liver microsomes (HLMs) and S9 cells, NADPH regeneration
system (NRS) cofactor solutions (solution A (NADP+ and G6P) and B (G6PDH), UGT reac-
tion (UTGR) mix solution A (UDPGA) and B (Alamethicin), and adenosine 3′-phosphate
5′-phosphosulfate (PAPS) were purchased from Corning (Kaiserslautern, Germany). Ana-
lytical grade buffer reagents for potassium phosphate buffer were purchased from Merck
(Darmstadt, Germany) and for Tris-buffer from Carl Roth GmbH Co. (Karlsruhe, Germany),
respectively. To prepare VD stock solution, dimethyl sulfoxide (DMSO) (SeccoSolv®, Merck,
Darmstadt, Germany) was used. HPLC-grade solvents acetonitrile and methanol were
purchased from Merck (Darmstadt, Germany). Water for the HPLC mobile phase was
purified onsite with a Sartorius Stedim, Arium 611UV (Sartorius, Vienna, Austria). Deuter-
ated acetonitrile (CD3CN, 99.8%) for nuclear magnetic resonance (NMR) spectroscopy
was purchased from Eurisotop (Gif-sur-Yvette, Cedex, France). All other chemicals were
analytical grade and obtained from Merck (Darmstadt, Germany).

4.2. Preparation of the Vititrifolin D Stock Solution

To prepare the 2 mM VD stock solution, 17.4 mg of the analyte were dissolved in 1 mL
dimethyl sulfoxide and stored in a cryovial at −80 ◦C until use.

4.3. Cellular Assay Incubation Conditions

To avoid multiple freeze–thaw cycles and maintain enzyme activity, HLM, S9 cells and
all other required reagents were divided into single use fractions and stored at−80 ◦C until
needed. HLM and S9 cell incubations were performed in 2 mL reaction vials (Eppendorf;
Hamburg, Germany) on an Eppendorf ThermoMixer (Eppendorf, Germany) thermostatted
to 37 ◦C. As controls, reagent blank incubations without cells were performed for each assay.
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4.3.1. HLM Phase I Metabolism Assay

The HLM incubation mixture was formed of 200 µL 500 mM potassium phosphate
buffer (pH 7.4), 725 µL water, 50 µL NRS solution A, 10 µL NRS solution B, and 50 µL
VD stock solution (100 µM final concentration). After 5 min pre-incubation of the reaction
mixture at 37 ◦C, 25 µL (0.5 mg) of the HLM cells were added. For the assay blank the
VD stock solution was replaced by DMSO. Incubations were stopped after 24 h by adding
200 µL of 5% acetic acid in acetonitrile. The stopped reaction mixture was shortly mixed
by vortexing and kept on ice until centrifugation (10 min, 14,000× g) to separate the cell
debris from the supernatant, which was transferred to HPLC vials and stored at −20 ◦C
until analysis.

4.3.2. S9 Fraction UDP-Glucuronosyltransferase (UGT) Assay

The S9-UGT incubation mixture was formed of 200 µL 500 mM potassium phosphate
buffer (pH 7.4), 645 µL water, 80 µL UTGR solution A, 200 µL UTGR solution B, and
50 µL VD stock solution (100 µM final concentration). For the assay blank, the VD stock
solution was replaced by DMSO. After 5 min pre-incubation of the reaction mixture at
37 ◦C, 25 µL (0.5 mg) of the S9 cells were added. Incubations were stopped after 24 h by
adding 200 µL of 5% acetic acid in acetonitrile. The stopped reaction mixture was shortly
mixed by vortexing and kept on ice until centrifugation (10 min, 14,000× g) to separate
the cell debris from the supernatant, which was transferred to HPLC vials and stored at
−20 ◦C until analysis.

4.3.3. S9 Cell Fraction Sulfation Incubations

For sulfation, the S9 fraction (20 mg/mL) was incubated with 0.5 M Tris-buffer (pH 7.5),
1.01 mg/mL adenosine 3′-phosphate 5′-phosphosulfate (PAPS, 2 mM final concentration),
and VD stock solution (100 µM final concentration). The assays were performed analogous
to P450 and UGT incubations.

4.4. HPLC-DAD-QTOF-MS

HPLC-DAD-QTOF-MS analysis of samples from in vitro incubations were performed
on an Agilent 1200 Rapid Resolution series HPLC instrument, equipped with a binary
pump, column oven, 80 Hz photodiode array diode detector (monitoring wavelength for
VD was 210 nm), and autosampler (Agilent, Waldbronn, Germany). For sample stability
during measurements, the autosampler was set at 4 ◦C. Separations were performed on a
Zorbax Eclipse XDB-C18 column (100 mm × 3.0 mm, 3.5 µm particle size; Agilent, Wald-
bronn, Germany), guarded with a security guard cartridge (4 mm × 2.0 mm, Phenomenex,
Torrance, CA, USA). Gradient elution was performed using water (A) and acetonitrile (B)
with the following gradients: 0 min: 80% A, 5 min: 80% A, 8 min: 65% A, 35 min: 2%
A, 50 min: 2% A; post-time: 10 min: 80% A. The system was operated at a flow rate of
0.3 mL/min at 25 ◦C. Injection volume was 10 µL.

A micrOTOF-Q II mass spectrometer equipped with an electrospray interface (ESI),
operating in positive ionization mode (Bruker-Daltonics, Bremen, Germany) was coupled
to the Agilent HPLC 1200 system, as described above. Source parameters (+ESI mode)
were set as follows: capillary voltage 4.5 kV, dry gas 8.0 L/min at 220 ◦C, nebulizer gas
30.5 psi. The mass range was set to 50–1000, with a scan rate of 1 Hz. For the determination
of exact masses, internal calibration at the beginning of each analysis (0.1 to 0.6 min) was
performed using 10 mM sodium formate in isopropanol-water (1:1). The Metabolite Tools
software package (Bruker Daltonics, Bremen, Germany) with MetabolitePredict Version 2.0
and MetaboliteDetect 2.0 was utilized to predict VD metabolites from HPLC-DAD-QTOF-
MS-derived mass information.
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4.5. HPLC-SPE-NMR
4.5.1. Instrumentation

HPLC-SPE-NMR experiments were performed on a Bruker Avance II 600 MHz spec-
trometer (Bruker Biospin, Rheinstetten, Germany) equipped with a 30 µL flow probe
head and hyphenated to an Agilent 1200 series instrument (Agilent, Waldbronn, Ger-
many) equipped with a variable wavelength detector (VWD) and an autosampler via
the Bruker/Spark Prospekt II Solid Phase Extraction Unit (Bruker Biospin, Rheinstetten,
Germany), which was used to automatically trap eluting chromatographic peaks of inter-
est on 10 mm × 2 mm Hysphere GP (General purpose) resin cartridges (Spark, Emmen,
Netherlands) after a post-column addition of water using a Knauer K120 HPLC pump
(Knauer, Berlin, Germany).

4.5.2. Sample Preparation

To obtain sufficient sample material, the HLM incubation assay was repeated seven-
teen times. Individual supernatants were stored at −20 ◦C until further processing. To
allow for metabolite enrichment, the supernatants were fractionated via offline solid phase
extraction (SPE) (Strata® C18-E, 55 µm, 500 mg/6 mL, Solid Phase Extraction, Phenomenex,
Aschaffenburg, Germany). After loading individual samples on SPE-cartridges, a gradient
step elution (6 mL/step) was performed using water (A) and acetonitrile (B) mixtures
with 10% step height. The collected fractions were analyzed with the aforementioned
HPLC-DAD-QTOF-MS assay. Prior to HPLC-SPE-NMR analysis, fractions containing
VD or putative VD metabolites were pooled, dried down under reduced pressure, and
reconstituted in 1 mL methanol.

4.5.3. HPLC-SPE-NMR Analysis

Chromatographic separations in the HPLC-SPE-NMR setup were performed on a
Phenomenex Hydro RP-18 column (150 mm × 4.6 mm, 4 µm particle size, Phenomenex,
Aschaffenburg, Germany) guarded with a security guard cartridge (4 mm × 2.0 mm,
Phenomenex, Aschaffenburg, Germany) with a solvent gradient of H2O (A) and acetonitrile
(B) at a flow rate of 0.8 mL/min, injection volume of 10 µL, and a recorded wavelength at
210 nm. Solvent gradients were optimized to allow for baseline separation for the analytes
of interest. For SPE fractions exceeding 30% ACN: 0 min: 99% A, 11 min: 99% A, 11.5 min:
70% A, 60 min: 50% A, 100 min: 2% A for 20 min, post-time: 20 min: 99% A, the oven
temperature was set to 50 ◦C. For SPE fractions less than or equal to 30% ACN: 0 min: 99%
A, 11 min: 99% A, 11.5 min: 80% A, 60 min: 50% A, 80 min: 2% A for 20 min, post time:
20 min: 99% A, the oven temperature was 60 ◦C.

Peak trapping on the SPE device was triggered by the UV signal in the LC domain, and
repeated tenfold for each HPLC peak of interest. A fivefold volume (4 min/min) of water
was added to the LC effluent to allow for trapping of the peaks onto the SPE cartridges.
Trapped LC peaks were dried for 35 min in a stream of nitrogen and eluted with 245 µL
deuterated acetonitrile (CD3CN) in the probe of the NMR spectrometer. For 1D and 2D
NMR experiments, standard pulse sequences provided by the spectrometer manufacturer
were used. All spectra were recorded at 300 K and referenced to residual solvent peaks
(δH 1.94 ppm and δC 1.24 ppm for CD3CN). Typical experimental conditions were: 1D
1H-NMR: pulse program lc1pnf2 ns = 512, 32 K data points, recording time 30 min. The
2D homonuclear shift correlations were as follows: COSY: pulse program cosygpmfqf,
4 K data points in the 1H domain, 400 increments, zero filled to 2 K, 16 transients per
increment, recording time 4.5 h; TOCSY: pulse program mlevph, 2 K data points in the
1H domain, 256 increments, zero filled to 2 K, 32 transients per increment, recording time
5 h; ROESY: pulse program: roesyph, 2 K data points in the 1H domain, 128 increments,
zero filled to 1 K, 128 transients per increment, recording time 11 h. The 2D heteronuclear
shift correlations were as follows: HSQC: pulse program hsqcedetgpsisp2.2, 2 K data
points in the 1H domain, 256 increments, zero filled to 1 K, 64 transients per increment,
recording time 7.5 h; HMBC: pulse program hmbcgplpndqf, 2 K data points in the 1H
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domain, 128 increments, zero filled to 1 K, 192 transients per increment, recording time
11.5 h.

5. Conclusions

In the present study, in vitro biotransformation of VD (Scheme 1) in HLMs and the
S9 cell fraction from liver tissue was performed. A total of twenty-seven phase I and
phase II metabolites, mostly from oxidation reactions but also from acetate hydrolysis
or glucuronidation reaction, were tentatively identified by chemometric means via their
sum formulae, derived from HPLC-DAD-QTOF-based mass spectrometry data. Isolation
from the HLM incubation broth by offline SPE enrichment followed by online HPLC-
SPE-NMR was pursued for twenty-two of these congeners. The peaks of interest in
the separation domain of analytical chromatography were isolated online after HPLC
separation on SPE material, and further transferred in NMR solvent to the online probe
head of the spectrometer. For nine of these metabolites the subsequent recording of the
NMR spectra allowed for structural information to be obtained that was sufficient for
structural characterization (Scheme 2). Since the preparative isolation of the metabolites
was avoided, the substance input was much lower than in conventional strategies. The
study did prove that the use of hyphenated instrumental analysis methodologies allows
for the successful performance of in vitro metabolism studies, even if the availability of
substances is very limited.
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derived mass spectra of 2β-OH-VD (M16) and VD, Scheme S3: HPLC-SPE-NMR (1H (600 MHz)/13C
(150 MHz), CD3CN)-derived correlations of VD: (a) multi-bond HMBC correlations (arrows) and
COSY-correlations (red bonds); (b) NOESY correlation contacts, Figure S1: HLM incubation experi-
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iment with 100 µM VD, Figure S4: HPLC-DAD-QTOF-MS-derived extracted ion chromatograms
(EICs) for threefold oxidized metabolites generated in the HLM incubation experiment with 100 µM
VD, Figure S5: HPLC-DAD-QTOF-MS-derived extracted ion chromatograms (EICs) for hydrolyzed
metabolites generated in the HLM incubation experiment with 100 µM VD, Figure S6: HPLC-DAD-
QTOF-MS-derived extracted ion chromatograms (EICs) for glucuroniated metabolites generated in
the S9-UGT incubation experiment with 100 µM VD, Table S1: 1H (600 MHz)- and 13C (150 MHz)
NMR data of VD (CD3CN), Table S2: 1H (600 MHz)- and 13C (150 MHz) NMR data of M2 (CD3CN),
Table S3: 1H (600 MHz)- and 13C (150 MHz) NMR data of M5 (CD3CN), Table S4: 1H (600 MHz)-
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data of M16 (CD3CN), Table S6: 1H (600 MHz)- and 13C (150 MHz) NMR data of M17 (CD3CN),
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