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The aim of this study was to evaluate the effects of moderate-intensity exercise on plasma levels of C-reactive protein (CRP) and
tumor necrosis factor-alpha (TNF-α) as markers of low-grade inflammation and endothelial function in diabetic (db/db) mice.
Control and db/db mice were divided into sedentary and exercised groups. Aortic endothelial function was evaluated after two-
and six-week exercises using a wire myograph. Plasma CRP levels were measured at baseline, and after two and six weeks of exercise.
Baseline plasma CRP levels were significantly higher in db/db mice compared to control (P < .05). After two weeks of exercise,
aortic endothelial function was significantly improved without affecting body weight or plasma CRP levels. Six weeks of exercise
not only improved endothelial function, but also significantly reduced body weight and plasma CRP levels in db/db mice. Thus
short-term exercise has beneficial effect on endothelial function without reducing low-grade inflammation while more prolonged
exercise periods are required to reduce inflammatory markers.

1. Introduction

Cardiovascular diseases are the leading cause of morbidity
and mortality in diabetic patients [1], and it is likely that
vascular abnormalities may be responsible for the higher
incidence of cardiovascular diseases in diabetes. Although
it is suggested that endothelial dysfunction is an important
contributor to the vascular complications of diabetes [2, 3],
the exact mechanisms of impaired endothelial function are
unclear.

Lifestyle modification, especially exercise, is routinely
recommended for the management of human type 2 diabetes
[4, 5]. Exercise is thought to improve vascular function by
reducing plasma lipids and blood glucose level [6], oxidative
stress [7], and increasing insulin sensitivity [8]. Endothelial
dysfunction is one of the earliest events in the progression of
cardiovascular diseases.

Chronic low-grade inflammation, as reflected by elevated
plasma levels of CRP, is an independent predictor of cardio-
vascular disease [9, 10] and diabetes [11]. CRP has a number

of roles in several cardiovascular diseases [12], and levels of
CRP are positively correlated with obesity and insulin resis-
tance [13]. Many studies suggest that a chronic inflammatory
process promotes the progression of endothelial dysfunction
[14]. In this study, we hypothesized that moderate-intensity
exercise improves endothelial function by decreasing low-
grade inflammation in db/db mice, a frequently used animal
model of type 2 diabetes.

2. Materials and Methods

2.1. Animal Groups. Six-week-old control wild type and
diabetic db/db mice (BKS.cg-m +/+ Lepr db/J) were pur-
chased from Jackson Laboratory (Bar Harbor, ME, USA). All
experiments were performed according to the guidelines of
the University of British Columbia Animal Care Committee.
After one week of acclimatization, animals were randomly
divided into four groups (n = 10 each): two groups each
of control (control sedentary and control exercised) and
diabetic mice (diabetic sedentary, diabetic exercised). The
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animals were housed ten per cage under conditions of a 12-
hour light/dark cycle, 22◦C temperature, and with free access
to food and water. Body weights were recorded weekly.

2.2. Exercise Program. Mice were exercised using a running
wheel (Lafayette Instruments, Lafayette, IN, USA) as pre-
viously described in [2, 15]. Mice assigned to the exercise
groups were placed in individual running wheels for one
hour of daily exercise at a speed of 5.2 m/min (which
represents a daily forced exercise of 312 m) for 6 weeks.
During the training period (two weeks), mice were exercised
daily at a set time each day for 5 days a week. The sedentary
db/db or control groups were placed in nonrotating wheels
for one hour per day.

2.3. Plasma Variables. Animals were anaesthetized with pen-
tobarbital (50 mg/kg, i.p.) combined with heparin (50 U/kg).
Blood samples were taken at baseline (6 weeks old), after two
weeks of exercise following a two-week training period (the
10th week) and at the end of study (the 14th week). Fasting
blood glucose was measured using commercially available
kits. Plasma CRP and TNF-α levels were measured using
ELISA kits (Alpco Diagnostic, USA).

2.4. Evaluation of Endothelial Function. Thoracic aortas were
removed and placed in ice-cold physiological salt solution
(PSS) and cleaned of connective tissue. Segments of aorta
were threaded with stainless steel wire (0.04 mm diameter)
and attached to the tissue holders of a four-channel wire
myograph (JP Trading, Aarhus, Denmark). Tissues were
allowed to equilibrate for 60 minutes at 37◦C during
which time the PSS was replaced at 20-minute intervals.
During the equilibration period, the resting tension was
gradually increased to 5.5 mN and kept at this level for 20
to 30 minutes. Each tissue was maximally activated with a
solution of KCl (80 mmol/L) that was prepared by equimolar
substitution of NaCl. Following washout with fresh PSS and
return of tension to basal preload, phenylephrine (1 μmol/L)
was added to establish a stable contraction. Thereafter,
cumulative additions of acetylcholine (ACh) (1 nmol/L to
10 μmol/L) were made. Vasodilatory responses were recorded
on a computer using MyoDaq Acquisition software (ver-
sion 2.01; Danish MyoTechnology, Aarhus, Denmark) and
expressed as percent dilation of phenylephrine-induced
constriction.

2.5. Citrate Synthase Assay. To document the efficacy of
an endurance-trained state, citrate synthase activity levels
were measured in skeletal muscle. Thigh adductor muscles
were gently removed after sacrificing the animal, and citrate
synthase activity was measured as previously described in
[16].

2.6. Drugs and Chemicals. Acetylcholine, and phenylephrine
were purchased from Sigma Chemical Co (St. Louis, MO).
The composition of the PSS (mM) was NaCl (119), KCl
(4.7), KH2PO4 (1.18), MgSO4 (1.17), NaHCO3 (24.9), EDTA

(0.023), CaCl2 (1.6), and dextrose (11.1). Isotonic substitu-
tions (replacement of Na+ with equimolar concentrations of
K+) were used when using PSS solutions with increased K+

concentrations.

2.7. Statistical Analysis. Results are expressed as mean ±
SEM. Data analysis was done using NCSS-2000 software and
GraphPad Prism (version 3.02-2000). ANOVA with multiple
comparisons was performed using the Bonferroni’s test.
Correlation analysis using Spearman coefficient tests were
performed where appropriate. P < .05 was considered as
being statistically significant.

3. Results

3.1. Body Weight, Blood Parameters, and Effect of Exercise.
Six-week old diabetic mice had higher body weights than
control mice. After six weeks of exercise, db/db exercised
had lower body weights compared to the sedentary group
(Table 1). Analysis of baseline blood parameters (6 weeks
old), after two weeks (10 weeks old) and six weeks (14 weeks
old) of exercise are shown in Table 1. Diabetic mice had
higher fasting blood glucose levels at all time points, and
while two weeks exercise did not alter blood glucose levels
in db/db mice, six weeks of exercise reduced blood glucose
levels in diabetic mice (P < .05).

Baseline plasma CRP levels were higher in db/db mice
compared to control (3.81 ± 0.23 versus 1.83 ± 0.30) (P <
.05). Plasma CRP levels in db/db mice were not affected by
two weeks of exercise but were significantly reduced after 6
weeks exercise (at the 14th week) (3.59 ± 0.41 versus 5.12
± 0.25) (P < .05). Plasma levels of CRP were significantly
correlated with body weight (r = 0.5855, P < .0001) and
blood glucose (r = 0.4821, P = 0.0003) when analyzed by
the Pearson test.

The level of plasma TNF-α in sedentary db/db mice at
14 weeks old (18.62 ± 2.11 pg/mL) tends to be higher than
in control mice (14.88 ± 0.35 pg/mL); however, it does not
reach statistical significance (P > .05).

3.2. Endothelial Function. Acetylcholine (ACh) was used
to evaluate endothelial-dependent vasodilatation. Responses
to ACh vasodilation were impaired in aortic rings from
db/db mice compared with control counterparts (Figure 1).
Moderate-intensity exercise in db/db mice for either two
or six weeks restored endothelium-dependent vasodilation
(Figure 1). The maximal vasodilatation (% loss of induced
tone) and sensitivity (EC50) is shown in Figure 2.

3.3. Citrate Synthase Activity. As shown in Table 2, tissue
levels of citrate synthase activity were significantly increased
in the thigh adductor muscles of db/db and control exercised
mice compared to the sedentary groups at both time points
(after two and six weeks of exercise) (P < .01, n = 10).
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Figure 1: Continued.
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Figure 1: Representative traces showing ACh-induced vasodilation in aortae from diabetic (db/db) and control mice that were either
sedentary or exercised.

Table 1: Body weights, plasma glucose CRP, and TNF-α levels in control or diabetic (db/db) mice that were either sedentary or exercised.

Control sedentary Control exercise db/db Sedentary db/db exercise

6 wk 10 wk 14 wk 10 wk 14 wk 6 wk 10 wk 14 wk 10 wk 14 wk

Body weight
(gm)

20.7± 0.3 28.0± 0.3 31.9± 0.4 25.8± 0.4 28.3± 0.6∗ 30.7± 0.4# 45.9± 0.7# 48.9± 1.2# 43.6± 1.0# 44.6± 1.3∗#

Fasting blood
glucose
(mg/dL)

2.3± 0.1 5.0± 0.2 5.9± 0.5 5.3± 0.2 5.8± 0.2 5.7± 0.3# 31.5± 1.3# 54.7± 1.5# 30.3± 1.9# 44.6± 1.6∗#

Plasma CRP
(ng/mL)

1.8± 0.3 2.6± 0.3 2.5± 0.4 3.8± 0.2∗ 4.5± 0.3∗ 3.3± 0.3# 4.1± 0.2# 5.1± 0.3# 3.8± 0.4# 3.6± 0.4∗

PlasmaTNF-α
(pg/mL)

N/A N/A 14.88± 0.35 N/A 14.30± 0.74 N/A N/A 18.62± 2.11 N/A 20.53± 1.85

∗P < .05 compared to sedentary group at the same age.
#P < .05 compared to control groups.
N/A: variable not measured

4. Discussion

This study examined the effects of moderate levels of
exercise on vascular endothelial function and plasma CRP
levels in control and type 2 diabetic (db/db) mice. We
report that endothelial function (endothelium-dependent
relaxation) was significantly impaired in db/db mice, as also
reported in other studies [17–19]. There is much evidence
to support the notion that endothelial dysfunction precedes
the development of type 2 diabetes [20, 21]. Two-week and
six-week of moderate-intensity exercise both significantly
improved endothelium-dependent relaxation in db/db mice.

There is a strong association between endothelial dys-
function and inflammation. Endothelial dysfunction and
plasma markers of inflammation are consistently increased
in type 2 diabetes [22]. Our results show that diabetic
mice initially have higher CRP levels compared to control

animals. An association between CRP levels and diabetes
has been reported in other studies. For example, plasma
levels of plasma CRP and ICAM levels are higher in diabetic
subjects [23–25], and it is likely that increases in CRP levels
also occur in patients with impaired glucose tolerance [26].
Thus, hyperglycemia may be one reason for endothelial
dysfunction and low-grade inflammation in db/db mice
[27]. Hyperglycemia is thought to activate the immune
and macrophage-monocyte systems and so stimulate the
production of cytokines and acute phase proteins, which are
also proposed to reduce endothelial dependent vasodilation
[22, 28]. Moreover, highly-glycated haemoglobin impairs
NO-mediated vascular responses by a mechanism involving
superoxide anions but not cyclooxygenase derivatives [7,
29]. In addition, db/db mice are obese, and there is also
a close association between adiposity and CRP [13, 30].
Adipose tissue secretes inflammatory mediators (especially
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Table 2: Citrate synthase activity (umole/mL/min) in thigh adductor muscle of all experimental groups.

Control sedentary Control exercised db/db sedentary db/db exercised

(10 Week old) 4.7± 0.053 5.0± 0.064∗ 3.6 ± 0.058 3.9± 0.042∗

(14 Week old) 4.21± 0.32 6.61± 0.54∗ 1.67± 0.18 2.16± 0.12∗

∗P < .05 compared to sedentary group.
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Figure 2: Emax (a) and EC50 (b) of ACh vasodilation after two
weeks (10-week old mice) and six weeks (14-week old mice) of
moderate-intensity exercise.

IL-6) which stimulates CRP synthesis in the liver [31]. CRP
is related to insulin resistance and is a marker of endothelial
dysfunction [32].

In our experiments, exercise improved endothelium-
dependent relaxation in db/db mice after two-week exercise

independently of reductions in weight, blood glucose, or
plasma CRP levels; our data shows a lack of a correlation
between improved vasodilatation to ACh and decreased
plasma CRP levels after two weeks of exercise as shown by the
nonsignificant (P = .1941) Pearson correlation coefficient
for the relationship between maximal ACh dilation and
plasma CRP levels. However, six weeks of exercise improved
ACh-mediated vasodilatation while also reducing plasma
CRP levels in db/db mice; this was associated with a
significant correlation between plasma CRP levels and body
weight, a finding that is consistent with other reports in
experimental [33] and human diabetes [34].

Our results indicate that CRP levels are increased in
control mice that underwent a period of forced-exercise. This
finding is in keeping with recent studies in healthy humans
indicating that there were significant increases in plasma
CRP and TNF alpha following a two-week bout of exercise
[35]. In addition, exercise has also been shown to stimulate
a marked but transient increases in inflammatory markers
such as IL-6 and cortisol (which subsequently stimulate
hepatocytes to generate the synthesis of acute phase proteins
such as CRP), responses that may reflect muscle injury
[36, 37].

Since CRP can a cause dose-dependent decrease in
NO production in endothelial cells [38], it is possible that
this effect is time-dependent and occurs independently of
inflammation as reported by CRP levels. Other studies have
reported that that CRP directly inhibits the endothelium-
dependent NO mediated dilation of porcine retinal arterioles
[39], and down-regulates eNOS protein to decrease NO
release [40].

The plasma levels of TNF-α in sedentary db/db mice
tends to be higher than in control mice; however, it does not
reach statistical significance. Previous reports have failed to
demonstrate a parallelism between changes in plasma levels
of CRP, IL-6, and TNF-α under pathological conditions [41–
43]. Overweight adolescent boys had higher TNF-α, but not
CRP or IL-6 levels compared to normal weight controls [42].
A systematic review demonstrated that exercise decreases
CRP with no apparent effects on TNF-α [41]. However,
CRP is the marker of chronic inflammation most frequently
studied [44] and has been shown to predict cardiovascular
diseases more than other cytokines [45].

In conclusion, we report a reciprocal association between
endothelial dysfunction and CRP levels in diabetic db/db
mice. Short-term exercise improves endothelial function
without changing plasma CRP levels (two weeks of exercise).
Longer periods of exercise (six weeks) reduce plasma CRP
levels and maintain improved endothelial function in dia-
betic mice.
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