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Abstract

Recent development of high-throughput analytical techniques has made it possible to qualitatively identify a number of
metabolites simultaneously. Correlation and multivariate analyses such as principal component analysis have been widely
used to analyse those data and evaluate correlations among the metabolic profiles. However, these analyses cannot
simultaneously carry out identification of metabolic reaction networks and prediction of dynamic behaviour of metabolites
in the networks. The present study, therefore, proposes a new approach consisting of a combination of statistical technique
and mathematical modelling approach to identify and predict a probable metabolic reaction network from time-series data
of metabolite concentrations and simultaneously construct its mathematical model. Firstly, regression functions are fitted to
experimental data by the locally estimated scatter plot smoothing method. Secondly, the fitted result is analysed by the
bivariate Granger causality test to determine which metabolites cause the change in other metabolite concentrations and
remove less related metabolites. Thirdly, S-system equations are formed by using the remaining metabolites within the
framework of biochemical systems theory. Finally, parameters including rate constants and kinetic orders are estimated by
the Levenberg–Marquardt algorithm. The estimation is iterated by setting insignificant kinetic orders at zero, i.e., removing
insignificant metabolites. Consequently, a reaction network structure is identified and its mathematical model is obtained.
Our approach is validated using a generic inhibition and activation model and its practical application is tested using a
simplified model of the glycolysis of Lactococcus lactis MG1363, for which actual time-series data of metabolite
concentrations are available. The results indicate the usefulness of our approach and suggest a probable pathway for the
production of lactate and acetate. The results also indicate that the approach pinpoints a probable strong inhibition of
lactate on the glycolysis pathway.
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Introduction

Understanding metabolic pathways allows us to control

metabolism, design a better metabolic system and optimise

productivity. In vitro, in vivo and in silico research has been used

to reconstruct the set of reactions that compose metabolic

networks and their regulatory structure. However, it is still

challenging to predict an unknown metabolic reaction network

both experimentally and theoretically. For example, an in vitro

experimental technique based on enzyme assays [1] can elucidate

whether enzymes are inhibited or activated via interaction with

metabolites, resulting in the clarification of a metabolic reaction

network. However, this technique is costly, tedious and time-

consuming because each enzyme activity needs to be measured

individually in in vitro experimental systems specifically optimized

for respective enzymes. Thus, it may be difficult to apply this

technique to a large-scale metabolic system. On the other hand,

time-dependent changes of metabolite concentrations can be

determined in vivo [2] and a large amount of metabolomics data

have been reported from the utilisation of high-throughput

analytical instruments [3]. Canonical correlations and multivariate

analysis are often used to analyse those metabolomics data.

However, while correlations of metabolites have been successfully

acquired, a network structure of the correlated metabolites

remains unidentified.

Because of the experimental constraints, systems biology

approaches are recently considered to be one of the alternatives

for handling metabolomics data and analysing metabolic systems.

Specifically, the mathematical modelling approaches have been

exploited to analyse metabolic reaction networks [4]. In reality,

however, information on metabolic reaction networks, metabolite

concentrations and parameters such as rate constants and kinetic

orders are required to construct an appropriate model. A well-

known method is the utilisation of Michaelis–Menten type

equations that express rates of enzymatic reactions [5]. However,

it is not easy to identify each type of reaction because of in vitro

experimental constraint mentioned above. Biochemical systems

theory (BST) is an alternative method of analysing enzymatic

reactions in network systems [6–8]. This theory provides a simple

method for constructing a mathematical model once a network

structure is available as a metabolic map, and it requires fewer

parameters. Several techniques for estimating better parameter

values have been proposed [9–11]. However, these techniques
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require a known metabolic reaction network for parameter

estimation.

To overcome these difficulties, therefore, the present study

explores a new approach for identifying a metabolic reaction

network and simultaneously constructing a mathematical model.

The approach consists of statistical and mathematical modelling

techniques. The main concept of this approach is to employ time-

series data to determine the structure of the metabolic reaction

network. In principle, metabolites probably relate to others in a

complicated network. A perturbation of a metabolite concentra-

tion causes changes in other metabolite concentrations. Thus, if

changes in the time courses of metabolite concentrations are

analysed, it becomes possible to predict and understand their

metabolic reaction network. The present work therefore proposes

such a new approach based on this idea.

Results and Discussion

Generic inhibition and activation model
The proposed algorithm is presented in Figure 1. As the real

experimental data usually contain both biological and analytical

errors, the analysis starts with smoothing noisy time-series data

using locally estimated scatter plot smoothing (LOESS). Then,

bivariate Granger causality is calculated to examine causal

relationships between all pairs of metabolites, and unrelated

metabolite pairs are removed from further consideration. A

mathematical model is then formulated in S-system representation

in the framework of biochemical systems theory (BST) by taking

into consideration effects between all remaining metabolite pairs,

followed by parameter estimation using nonlinear least-square

method, namely Levenberg-Marquardt algorithm (LMA). The

iterations from the mathematical modelling step to parameter

estimation (BST to LMA) are simulated and a most insignificant

metabolite is removed one by one in each iteration step. Finally, a

probable metabolic network is identified.

To validate if the algorithm is applicable, we start the study

using a known metabolic reaction network, i.e., the generic

inhibition and activation model (Figure 2A). This model has been

widely employed as a metabolic case study in the development of

parameter estimation techniques [12] because it imitates charac-

teristics of a real metabolic pathway which includes a branching

point and both inhibition and activation effects. Firstly, the time-

series data for the metabolites X1–X4 were generated at 51 time

points by using the mathematical model with parameter values

described in equations 1–4. For the preliminary study, we consider

a case without noise to properly evaluate the performance of the

proposed approach. Therefore, the step of data smoothing by

LOESS was not used.

dX1

dt
~a1X

g13
3 {b1X h11

1 ~12X{0:8
3 {10X 0:5

1 ð1Þ

dX2

dt
~a2X

g21
1 {b2X h22

2 ~8X 0:5
1 {3X 0:75

2 ð2Þ

dX3

dt
~a3X

g32
2 {b3X h33

3 X h34
4 ~3X 0:75

2 {5X 0:5
3 X 0:2

4 ð3Þ

dX4

dt
~a4X

g41
1 {b4X h44

4 ~2X 0:5
1 {6X 0:8

4 ð4Þ

where Xi are metabolite concentrations. ai and bi are rate

constants of net influxes and effluxes, and gij and hij are their kinetic

orders.

The time-series data in silico generated are plotted in Figure 3.

The behaviour of metabolite concentrations is quite different to

each other. It is therefore difficult to predict the relationship

between the metabolite concentrations. To calculate correlation

coefficient between metabolite concentrations, the normality

distribution of each metabolite concentration was tested (data

not shown). The result shows that the time-series data do not have

normality (p-value,0.05), and the Spearman’s rank correlation

coefficient should be used to calculate the correlation coefficient.

Figure 1. Proposed algorithm for metabolic reaction network
identification.
doi:10.1371/journal.pone.0051212.g001

Figure 2. Real metabolic reaction network of the generic
inhibition and activation model comparing with the predicted
metabolic reaction network using our approach. (a) Real
metabolic reaction network. (b) Predicted metabolic reaction network.
doi:10.1371/journal.pone.0051212.g002
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However, to broadly observe correlations among metabolite

concentrations, we simply calculated both the Pearson’s correla-

tion coefficient and Spearman’s rank correlation coefficient

according to common methods for acquiring correlations of

metabolite concentrations. The results, shown in Table S1, S2 in

Information S1, indicate good positive and negative correlations

between several metabolites. However, this finding does not

indicate causal relationships between metabolites and effects of

one metabolite on the other.

To obtain more information on network properties, the

bivariate Granger causality test was executed to investigate

relationships among metabolites. Table 1 tabulates the result of

the bivariate Granger causality test for the generic inhibition and

activation model. In theory, the Granger causality of a metabolite

on itself cannot be calculated; hence, these data are not available.

The result indicates that all p-values are much lower than a

significance level of 0.01. This may be partly because we did not

adjust the time lag (u) in equation 13 (see Methods) but retained its

value as u = 1, implying that the present data point was used for

predicting the value at the next time point. On the other hand,

changes in the values of the time lag may have an effect on the

Granger causality result. However, the p-values are still lower than

the significance level of 0.01, although their value increases as the

time lag increases (Table S3, S4, S5, S6, S7 in Information S1).

Thus, we consider the time lag that maximises significance and set

this lag to unity throughout the simulations. Only the data point at

time t-1 was considered for predicting the value of the data point at

time t. Furthermore, the Granger causality may give some false

positive interactions if a network is very large, but it is not

considered to be a serious problem here, since we perform this

calculation only for finding the highest causality and removing

unnecessary metabolites.

From Table 1, it seems that each metabolite is Granger-caused

by other metabolites. Hence, all metabolites must be considered in

the next step calculation. The S-system equations were constructed

and all metabolites were considered in the equations for both

influxes and effluxes. It is possible to fit the metabolite

concentrations using polynomial equations or sigmoidal curves

and then calculate the slope values from the derivative of their

equations. However, it should be noted that the concentrations are

functions of time. This implies that even though one can calculate

such slopes, these values may be different from their exact slope

values directly calculated from S-system differential equations,

because the exact slope values are functions of time and other

metabolites. To make our approach practical, we calculated the

slope values from neighbouring time-series data of metabolite

concentrations. The differential equation for each metabolite was

individually set as an objective function for parameter estimation.

The performance of LMA for estimating parameters in a well-

known model was investigated before it is used in our algorithm.

The results are given in Table S8 in Information S1. LMA finds

only a local minimum, not a global one. It is therefore necessary to

verify whether this non-linear regression method can successfully

converge when power-law equations are used. Exact slope values

from S-system equations were selected for this validation. The

initial values for both rate constants and kinetic orders were set at

unity. The results show that the parameters that converge using

the exact slopes (estimated parameters b) are identical to their

respective actual parameter values. This indicates that conver-

gence behaviour of our parameter estimation procedure performs

very well, especially for this system. In contrast, when the slopes

were calculated from neighbouring data points, the converged

parameter values (estimated parameters c) are slightly different

from their true values. This is natural because these slopes were

directly calculated and are not a function of other metabolites,

unlike in the former case. In actual experiments, however, such

exact slopes are not obtained and only the metabolite concentra-

tions are available. Nevertheless, both sets of estimated parameters

provide similar characteristics in terms of the behaviour of

metabolite concentrations.

LMA provided fast convergences although the initial parameter

values which were set to be unity are far from the true parameter

values. The convergence times were calculated using GNU octave

version 3.2.4 on Windows 7 platform with 2.93 GHz CPU. The

convergence times of X1, X2, X3 and X4 with the exact slope values

were 0.119, 0.176, 0.319 and 0.087 s, respectively, whereas those

with the slope values calculated from neighbouring data were

0.120, 0.169, 0.382 and 0.090 s, respectively.

Once the performance of LMA was successfully elucidated, we

exploited it to our algorithm. Assuming that the network is

unknown, the S-system equations (equation 15) were set up and all

parameters for all metabolites were primarily considered. Table 2

shows the first parameter iteration values obtained by LMA. It is

clear that absolute values of some kinetic orders are very low

compared with other parameters. The low absolute parameter

values are considered to have little effect on the current system.

The metabolites with such kinetic orders were thus removed one

by one. New equations were re-organised and the parameter

estimation by LMA was iterated. The results are shown in

Information S2. Again, parameters quickly converged to their

solutions. For the first iterations, the convergence times of X1, X2,

X3 and X4 were 6.08, 11.9, 5.28 and 3.85 s, respectively. The
Figure 3. Time-series data of metabolite concentrations for the
generic inhibition and activation model.
doi:10.1371/journal.pone.0051212.g003

Table 1. Bivariate Granger causality test for the generic
inhibition and activation modela.

X1 = . X2 = . X3 = . X4 = .

= .X1 N/Ab 3.09E-22 5.21E-05 2.57E-17

= .X2 9.05E-44 N/Ab 2.12E-26 2.54E-42

= .X3 1.27E-08 6.51E-58 N/Ab 6.48E-16

= .X4 2.86E-26 5.07E-23 1.94E-15 N/Ab

aLevel of significance is 1% (p-values,0.01).
bN/A = not available.
doi:10.1371/journal.pone.0051212.t001

Metabolic Reaction Network Identification
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convergence times also decreased with a decrease in the number of

parameters.

The significantly large kinetic orders in Table 2 (more detail in

Information S2) can be used to identify a metabolic reaction

network. Although the metabolites with smaller kinetic orders may

have some effect, the metabolites having large effects will probably

be neighbouring metabolites in the metabolic pathway or

metabolites that strongly inhibit or activate the metabolite of

interest. Thus, the metabolites having large effects were selected

for identification of an actual metabolic reaction network.

Figure 2B shows the metabolic reaction network identified from

the converged results. The predicted network structure with the

equations derived using our procedure is consistent with the

original network structure in Figure 2A [9,12]. A correct

mathematical model and its parameters were also obtained

simultaneously, as shown in Information S2. This suggests that

our approach not only identifies a metabolic reaction network but

also provides an appropriate mathematical model.

Although there is a constraint for using the bivariate Granger

causality and also the parameter estimation using slopes may give

slight calculation errors in the model construction, the above result

clearly shows that our approach is theoretically consistent.

Furthermore, it can provide a mathematical model for system

analysis, although most of the systems biology approaches focus on

either data analysis or model construction. On the other hand,

actual experimental data contain biological and analytical errors

and it may be difficult to obtain a large amount of time-series data.

To evaluate the performance of our approach in practical

application, therefore, the number of the time-series data for each

metabolite concentration in the generic inhibition and activation

model was decreased to 11 points and each data was allowed to

include a noise in the range of 0–5% (Information S3). The result

shows that it is still possible to estimate the metabolic reaction

network if the time-series data set possesses clear characteristics

and behaviours. It is therefore clear that our approach more

depends on the quality of data than the quantity of data.

Simplified model of glycolysis of Lactococcus lactis
We next discuss the glycolysis pathway of Lactococcus lactis

because a number of metabolite concentrations have been

reported for several types of micro-organisms genetically modified

or perturbed both in vitro and in vivo [14–16]. The time-series data

of metabolite concentrations for Lactococcus lactis MG1363 were

taken from a number of studies [2,17,18].

According to these studies, several metabolite concentrations,

such as phosphoenolpyruvate and phosphoglyceraldehyde, contain

significant experimental errors, and it is difficult to validate the

results. Consequently, these experimental data were neglected. In

contrast, metabolites that have clear metabolic behaviours despite

containing large experimental errors were considered here. The

current system thus consists of five metabolites, including three

extra- and two intra-cellular metabolites.

We fitted the measured time-series data of metabolite concen-

trations obtained in Neves et al. [2,17,18] by LOESS. The

parameters that control the degree of smoothing were arbitrarily

adjusted (Table S18 in Information S4). The estimated time-series

data of metabolite concentrations were produced from the results

fitted by LOESS at time intervals of 1 min. Fifty-one data points

for each metabolite concentration can be seen as lines in Figure 4.

The bivariate Granger causality for these estimated time-series

data was calculated. The results are listed in Table 3. It is clear

that some metabolites do not Granger-cause other metabolites (p-

values.0.01) whereas others do. For instance, there exist high

Granger-causes of X2 to X1, X4 to X2, X1 to X3, X2 to X4 and X3 to

X5.

A procedure to construct a metabolic reaction by Granger

causality is as follows. First, the influx to X1 (glucose) is not

considered because it is the starting compound. Second, effluxes

from X4 (lactate) and X5 (acetate) are also not considered because

they are end products. Third, the metabolites that have

insignificant Granger causalities are removed. Fourth, the

metabolites having first and second Granger causalities are

considered. As a result, it is possible to predict a pathway from

the Granger causality, as illustrated in Figure 5, where the solid

lines express the most significant causality for each metabolite and

the broken lines express the second most significant causality.

Although the Granger causality is useful for approximately

understanding the metabolic network structure, it is still not

enough to identify the actual structures because of insufficient

information.

To more accurately predict the metabolic network structure, the

mathematical modelling approach was repeatedly used right after

the time-series data were statistically analysed. S-system equations

(equation 15) were set up and parameters were estimated using

LMA. In this case, the parameters for the metabolites which do

not significantly Granger cause the other metabolites (underlined

in Table 3) were removed or set to be zero. The remaining

metabolites in the Granger causality test were then included in the

influx terms of the S-system equations, whereas all metabolites

were included in the efflux terms. The metabolites with the lowest

kinetic order were removed one by one at each iteration step.

Although a particular metabolite may have little effect on its efflux,

it must be considered in the efflux term because the efflux is

influenced by the metabolite. In addition, the metabolites with the

highest Granger causality must be considered in the entire

calculation because they are statistically significant.

Table 4 presents the parameters that were determined by LMA

in the glycolysis model and the predicted model (equations 5–9)

are described as follows:

dX1

dt
~a1{b1X

h11
1 X

h15
5 ~Y1{Y6X

Y9
1 X

Y10
5 ð5Þ

Table 2. First iteration values for rate constants and kinetic
orders in the generic inhibition and activation model.

Xi

Parameters X1 X2 X3 X4

ai 6.20321 7.37716 1.98302 0.34430

gi1 20.36355 0.57390* 0.01925 0.78879*

gi2 20.03741 20.09305 0.87489* 20.17839

gi3 21.37215* 0.03478 20.07383 0.02620

gi4 0.02696 0.00390 20.05002 20.56299

bi 3.89079 2.27677 3.76784 8.21555

hi1 0.82715* 20.03079 0.03747 20.51013

hi2 20.02735 0.81346* 20.13402 20.25411

hi3 0.50948 0.04719 0.60945* 0.25751

hi4 0.00431 0.01425 0.19157 1.74691*

R2 1 1 1 1

*The significantly large kinetic orders are underlined.
doi:10.1371/journal.pone.0051212.t002

Metabolic Reaction Network Identification
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dX2

dt
~a2X

g21
1 X

g24
4 {b2X

h22
2 ~Y2X

Y11
1 X

Y12
4 {Y7X

Y13
2 ð6Þ dX3

dt
~a3X

g32
2 {b3X

h32
2 X

h33
3 ~Y3X

Y14
2 {Y8X

Y15
2 X

Y16
3 ð7Þ

dX4

dt
~a4X

g42
2 X

g43
3 ~Y4X

Y17
2 X

Y18
3 ð8Þ

Figure 4. Time-series data of metabolite concentrations for the simplified model of glycolysis in Lactococcus lactis. (a) Glucose
concentration. (b) Glucose-6-phosphate concentration. (c) Fructose-1,6-bisphosphate concentration. (d) Lactate concentration. (e) Acetate
concentration.
doi:10.1371/journal.pone.0051212.g004

Table 3. Granger causality test for glycolysis pathway modela.

X1 = . X2 = . X3 = . X4 = . X5 = .

= .X1 N/Ac 2.70E-16b 1.09E-15 0.40d 0.017d

= .X2 7.38E-32 N/Ac 2.38E-03 8.68E-37b 1.81E-12

= .X3 6.79E-18b 2.30E-15 N/Ac 1.42E-15 7.36E-09

= .X4 0.028d 3.89E-31b 1.01E-12 N/Ac 0.046d

= .X5 0.76d 4.02E-04 5.40E-09b 0.95d N/Ac

aLevel of significance is 1% (p-values,0.01).
bHighest granger causality for each metabolites.
cN/A = not available.
dInsignificant Granger causalities are underlined.
doi:10.1371/journal.pone.0051212.t003

Figure 5. Probable metabolic reaction network of the glycol-
ysis pathway in Lactococcus lactis predicted by Granger
causality.
doi:10.1371/journal.pone.0051212.g005
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dX5

dt
~a5X

g52
2 X

g53
3 ~Y5X

Y19
2 X

Y20
3 ð9Þ

where Xi are metabolite concentrations. ai and bi are rate

constants of total influxes and effluxes, respectively, and gij and hij

are their kinetic orders. Yi represent unknown parameters assigned

for both rate constants and kinetic orders.

Table 4 also includes the R-squared values in each removal

process. As the number of iterations increases, the R-squared value

usually decreases from unity (Information S4). A low R-squared

value implies that the values calculated using the reconstructed

equations do not fully agree with the experimental data. This is

natural because the degree of fitness is lowered as a result of the

reduction in the number of parameters.

Figure 6A shows the metabolic reaction network predicted using

the remaining parameters. Glucose (Glu) is converted to glucose-6-

phosphate (G6P), which is successively converted to fructose-1,6-

bisphosphate (FBP). This agrees with the structure of the actual

glycolysis pathway acquired from KEGG (Figure 6B). Interesting-

ly, our approach suggests that G6P has a pathway, allowing it to

be converted to lactate (Lac) and acetate (Ace). This pathway

could be regarded as the part of pentose phosphate pathway,

although the flux through this pathway is not high [19]. Our

approach further suggests that Lac strongly inhibits the formation

of G6P. This interaction is related to the inhibition of acids on cells

[20].

Identification of the probable metabolic reaction network

automatically leads to the formulation of a mathematical model

in the S-system. As shown in Figure 7, the values calculated by the

mathematical model are in agreement with the experimental ones,

implying that our approach has good performance.

To further verify whether the mathematical model is appropri-

ate, we calculated the instantaneous bottleneck ranking (BR)

indicator defined as

L(Xi(t),Yj)Xi(t)~
LXi(t)

LYj

Yj ð10Þ

This indicator is a product of the logarithmic gain L(Xi,Yj) and

the metabolite concentration Xi and provides the time-transient

response of the dependent variable Xi to an infinitesimal

percentage change in the independent variable Yj [21]. A positive

value of the instantaneous BR indicator indicates that an increase

in an enzyme activity increases the relevant metabolite concen-

tration from its initial concentration, whereas a negative value

indicates that an increase in the relevant enzyme activity decreases

the relevant metabolite concentration.

Figure 8 shows the time courses of the instantaneous BR

indicators for lactate (X4) and acetate (X5) after the individual rate

constants and kinetic orders (Table 4) increases at t = 0 (additional

information is available in Table S24 in Information S4). Overall,

the BR indicators for the lactate concentration increase or

decrease more significantly than do those for the acetate

concentration, suggesting that lactate is more easily formed than

acetate. The difficulty in the formation of acetate arises because

the flux for lactate formation is higher than that for acetate

formation. Moreover, ranking of enzymes based on the BR

indicators reveals that the bottleneck enzyme for lactate formation

is Y2 when it is increased and Y7 when it is decreased, while that

for acetate formation is Y3 when it is increased and Y8 when it is

decreased. These finding are supported by the previously reported

experimental data [22]. Thus, the analytical results using the

instantaneous BR indicators indirectly support the reliability of our

network identification approach.

Unlike other statistical approaches using correlation or causal-

ity, our approach can not only identify a metabolic reaction

network but also provide a mathematical model simultaneously.

Furthermore, it provides kinetic parameters which allows us to

straightforwardly analyse the metabolic system using the obtained

mathematical model.

Conclusions

The present study investigated an approach to identify a

metabolic reaction network structure from time-series data of

metabolite concentrations and simultaneously obtain its mathe-

matical model in the S-system equations within the framework of

BST. The Granger causality test was used to statistically identify

interactions among metabolites and then remove metabolites

which have insignificant causality to the considered metabolite.

This result was used to form a mathematical model in the S-system

representation. The parameters, namely, rate constants and

kinetic orders in this mathematical model, were estimated by the

Levenberg–Marquardt method. This estimation process was

iterated to remove the least significant metabolite of each total

influx and efflux according to the magnitudes of the kinetic orders.

Consequently, the final form of the mathematical model was used

to predict a probable structure for the metabolic reaction network

system. A series of theoretical analyses clearly show that our

approach is effective in identifying a metabolic reaction network.

In the future, an in vitro experiment for measuring individual

enzyme activities may also be performed on the basis of the

prediction to reconstruct a newly possible metabolic pathway.

Methods

To efficiently identify a metabolic reaction network using time-

series data of metabolite concentrations, we use statistical and

mathematical modelling techniques as described below.

Locally estimated scatter plot smoothing
The locally estimated scatter plot smoothing (LOESS) method is

a non-parametric statistic which does not require any specific

function to fit a mathematical model. Hence, it is very flexible in

fitting experimental data containing noise or experimental errors.

Table 4. Parameters determined by LMA of the simplified
model of the glycolysis pathway of Lactococcus lactis.

Xi

Parameters X1 X2 X3 X4 X5

ai 0.141 [Y1] 2.36 [Y2] 98.9 [Y3] 0.671 [Y4] 0.216 [Y5]

gij 0.199 [Y11] 1.14 [Y14] 1.15 [Y17] 0.324 [Y19]

gij 20.317
[Y12]

0.199 [Y18] 0.183 [Y20]

bi 0.191 [Y6] 1.373 [Y7] 88.7 [Y8]

hij 0.943 [Y9] 0.329 [Y13] 0.993 [Y15]

hij 1.68 [Y10] 0.0773 [Y16]

R2 0.9996 0.9987 0.9486 0.9816 0.9198

Yk are parameter values for both rate constants and kinetic orders (k = 1, 2, 3,…,
20) are parameter values for both rate constants and kinetic orders.
doi:10.1371/journal.pone.0051212.t004

Metabolic Reaction Network Identification
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The regression function is locally approximated by the value of a

function in some specified parametric class [23]. Such a local

approximation is obtained by fitting a regression surface to data

points within a chosen neighbourhood of the point:

yi~g(xi)zei ð11Þ

where yi is the ith measurement of the response y, xi is the

corresponding measurement of predictors, g is the regression or the

smooth function and ei is the random error. The weights are given

by the tricube function:

W (x)LOESS~
(1{DxD3)3 for 0ƒDxDv1

0 forDxD§1

(
ð12Þ

The value of weight function is low when xk is distant from xi. If

its value is increased, the influence from the data points located in

the neighbourhood will be increased. This results in increased

smoothness of the smoothed points. A piecewise function is used to

handle the data that cannot be properly fitted.

Bivariate Granger causality
The Granger causality test is a statistical hypothesis test used to

determine whether one time series causes another. It is widely used

in economics and has recently been employed to integrate omics

data, i.e. transciptomics and metabolomics [13]. The present study

introduces this test to evaluate causality among metabolites. Direct

relationships between two metabolites were evaluated using the

bivariate Granger causality test [24] on the basis of the following

equations:

yt~a0za1yt{1z:::zamyt{mzresidualt

yt~a0za1yt{1z:::zamyt{mzbuxt{uz:::zbvxt{vzresidual
0
t

ð13Þ

where x and y are the stationary time series for testing the null

hypothesis that x does not Granger-cause y. Appropriate lagged

values of y are found and included in a univariate autoregression of

y. The symbol m denotes the largest lag length for which the

lagged dependent variable is significant, u is the shortest lag length

and v is the longest length for which the lagged value of x is

Figure 6. Comparison of metabolic reaction networks of the glycolysis pathway in Lactococcus lactis predicted by our approach
and taken from KEGG. (a) illustrates the pathway predicted by our approach whereas (b) illustrates the pathway taken from KEGG and the red
characters in Figure 6B indicate metabolites considered in our prediction model.
doi:10.1371/journal.pone.0051212.g006

Figure 7. Comparison of values calculated by a constructed
mathematical model and experimental data (black circle-Glu
data, red down-pointing triangle-G6P data, green square-FBP
data, purple diamond-Lac data, blue up-pointing triangle-Ace
data and simulations for Glu, G6P, FBP, Lac and Ace are in
black line, red line, green line, pink line and blue line,
respectively).
doi:10.1371/journal.pone.0051212.g007
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significant. The time lag was set to be unity, denoting that the

value at the present data point was used to predict the value at the

next time point.

An F-test for equality of variances is used to verify whether the

residuals are significant. An index measuring the strength of the

causal interaction is defined as

F~
RSS1{RSS2ð Þ

RSS2ð Þ *x2(p) ð14Þ

where RSS1 and RSS2 are the sums of squared residuals of residualt
and residualt’, respectively.

The null hypothesis is rejected if the F calculated from the data

is greater than the critical value of the F distribution for some

desired false rejection probability; the present study used 0.01 for

the significant value.

Biochemical systems theory (BST)
Biochemical systems theory (BST) provides a powerful procedure

for characterising biochemical systems [6–8]. BST describes non-

linear systems in terms of power-law functions. The present study

uses the S-system representation within the framework of BST:

Xi

~

ai P
n

j~1
X

gij
j {bi P

n

j~1
X

hij
j i~1,2,:::,n ð15Þ

where Xi (i = 1,…, n) are the metabolite concentrations for n

dependent variables and ai and bi are the rate constants of influxes

and effluxes, while gij (j = 1,…, n) and hij (j = 1,…, n) are kinetic orders

of influxes and effluxes, respectively. The S-system describes a

metabolic reaction network by individually aggregating influxes and

effluxes for each metabolite pool, reducing the number of

parameters.

Levenberg–Marquardt algorithm
Non-linear least-squares methods use parameter estimation

iterations to reduce the sum of the squared errors between each

function value and a measured data point. LMA is a combination

of the gradient descent method and the Gauss–Newton method

[25–27].

The chi-squared error criterion is given as

x2 pð Þ~ 1

2

Xm

i~1

y(ti){ŷy(ti; p)

wi

� �2

ð16Þ

where y(ti) is the measured value, y(ti;p) is the curve fitting function

and wi is the measure of error in measurement y(ti).

The gradient of the chi-squared objective function with respect

to the parameters is given as follows:

L
Lp

x2~ y{ŷy(p)ð ÞT W
L
Lp

y{ŷy(p)ð Þ ð17Þ

where the weighting matrix W is diagonal with W = 1/wi
2

The Gauss–Newton method denotes the perturbed model

parameters that are locally approximated by first-order Taylor

series expansion as

ŷy(pzh)&ŷy(p)z
Lŷy

Lp

� �
h ð18Þ

The Levenberg algorithm adaptively varies and updates the

parameters between the gradient descent method and Gauss–

Newton as

JT WJzlI
� �

hlm~JT W (y{ŷy); J~Lŷy=Lp ð19Þ

where l represents the algorithm parameter.

LMA implemented here uses the following modified equation

[28]:

JT WJzldiag(JT WJ)
� �

hlm~JT W (y{ŷy) ð20Þ

Small values of l lead to a Gauss–Newton update, whereas large

values of l lead to a gradient descent update.

Proposed algorithm
Our proposed algorithm is illustrated in Figure 1. The

calculation starts with data smoothing by the LOESS method,

followed by using the Granger causality test for removing an

unnecessary metabolite and then estimating parameters in the S-

system equations by LMA. In the iteration of this series of

methods, parameters having the least effect are removed one by

one under the criterion that each term in the equation has at least

one metabolite or the R-squared value does not remarkably

decrease within a satisfactory degree of fitness.

Figure 8. Instantaneous bottleneck ranking indicators for the
predicted glycolysis pathway using our approach. (a) is L(X4,Yj)X4

for lactate whereas (b) is L(X5,Yj)X5 for acetate.
doi:10.1371/journal.pone.0051212.g008
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Case studies
Two mathematical models were used in the present study. One

is the generic inhibition and activation model [9–12], which is well

known and useful in validating our approach. The other is the

simplified model of glycolysis of Lactococcus lactis MG1363 [17,29–

31]. Actual experimental data are available for this model and it is

therefore useful for verifying whether our approach is practical.
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