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Abstract: The Sugars Will Eventually be Exported Transporters (SWEET) family is a class of sugar
transporters that play key roles in phloem loading, seed filling, pollen development and the stress
response in plants. Here, a total of 18 JcSWEET genes were identified in physic nut (Jatropha curcas L.)
and classified into four clades by phylogenetic analysis. These JcSWEET genes share similar gene
structures, and alternative splicing of messenger RNAs was observed for five of the JcSWEET genes.
Three (JcSWEET1/4/5) of the JcSWEETs were found to possess transport activity for hexose molecules
in yeast. Real-time quantitative PCR analysis of JcSWEETs in different tissues under normal growth
conditions and abiotic stresses revealed that most are tissue-specifically expressed, and 12 JcSWEETs
responded to either drought or salinity. The JcSWEET16 gene responded to drought and salinity
stress in leaves, and the protein it encodes is localized in both the plasma membrane and the vacuolar
membrane. The overexpression of JcSWEET16 in Arabidopsis thaliana modified the flowering time and
saline tolerance levels but not the drought tolerance of the transgenic plants. Together, these results
provide insights into the characteristics of SWEET genes in physic nut and could serve as a basis for
cloning and further functional analysis of these genes.

Keywords: SWEET gene family; sugar transporter; gene evolution; gene expression; abiotic stress;
physic nut

1. Introduction

Sugars are the predominant product of plant photosynthesis; they not only participate
in the storage and transportation of nutrients but also play important roles in signal
transduction and stress responses [1–3]. Sugars are transported from the source tissue to
the sink tissue through phloem in order to maintain normal plant growth and development.
However, sugars cannot be transported independently across plant membranes; therefore,
their transmembrane movement requires sugar transporters [4–6]. Currently, three families
of transporters involved in intercellular sugar transport have been identified, including
MSTs (monosaccharide transporters), SUTs (sucrose transporters) and SWEETs (Sugars
Will Eventually be Exported Transporters) [7]. MSTs and SUTs contain 12 transmembrane
domains (TMs) that belong to the major facilitator superfamily. However, SWEETs are
structurally a different type of transporter, with seven TMs, and are classified with the
MtN3/saliva family (PF03083) of transmembrane transporters [4]. Phylogenetic analysis
has demonstrated that plant SWEET family genes can be divided into four clades. Different

Int. J. Mol. Sci. 2022, 23, 5391. https://doi.org/10.3390/ijms23105391 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23105391
https://doi.org/10.3390/ijms23105391
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-0118-4265
https://doi.org/10.3390/ijms23105391
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23105391?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 5391 2 of 17

family members have distinct patterns of tissue expression and participate in the transport
of diverse sugar molecules. The subcellular localization of family members also varies,
indicating that SWEET family genes have numerous biological functions that are extremely
important for plant growth and development [8–10].

The number of SWEET genes varies across species, and the number present within
a species does not correlate with the evolutionary complexity of that species; plants have
larger numbers of SWEET gene family members than do other organisms [11]. To date,
SWEET genes have been identified in a number of plants, including A. thaliana (Arabidopsis
thaliana), rice (Oryza sativa), soybean (Glycine max) and maize (Zea mays). AtSWEET1 was
the first plant SWEET protein to be identified; it transports glucose and is highly expressed
during early flower development [4,12]. Chen et al. [13] found that AtSWEET11 and
AtSWEET12 were localized to the plasma membrane of phloem parenchyma cells and
are involved in sucrose transport. The double mutation of AtSWEET11 and AtSWEET12
affected sucrose phloem transport, indicating for the first time the key role of these plant
SWEET proteins in phloem loading [14,15]. AtSWEET11, AtSWEET12 and AtSWEET15 are
expressed during seed development, especially in maternal tissues; the triple mutant of
atsweet11;12;15 showed severe seed defects, indicating that SWEET proteins are involved
in the seed filling process in A. thaliana [16]. AtSWEET8 (Ruptured Pollen Grain 1, RPG1)
was found to be strongly expressed in the microsporocyte (or microspores) and tapetum
during male meiosis, and the rpg1 mutant exhibited severely reduced male fertility [17].
AtSWEET9 is a nectary-specific sugar transporter in this eudicot species and is essential
for nectar production [18]. Recently, studies have shown that SWEET proteins are also
involved in plant hormone transport. AtSWEET13 and AtSWEET14 participate in the
transport of different gibberellins (GAs) and regulate GA-mediated physiological processes,
including anther dehiscence and seed development [19]. OsSWEET11 and OsSWEET15 also
play an important role in rice seed filling [20–22]. In soybean, most of the SWEET genes
are expressed in seeds, and the mutation of GmSWEET15 results in retarded seed embryo
development [23,24]. In maize, ZmSWEET13 paralogues (a, b, c) are among the most highly
expressed genes in the leaf vasculature, and a triple mutant of the three ZmSWEET13
paralogues exhibited impaired phloem loading [25].

Soluble sugars are major osmolytes, and SWEET proteins can participate in plant
stress responses by regulating the allocation of soluble sugars. In A. thaliana, AtSWEET16
and AtSWEET17 are involved in abiotic stress responses, and further, the overexpression
of AtSWEET16 can increase the tolerance of cold stress [26,27]. AtSWEET15 (SAG29) is
expressed primarily in senescing plant tissues; SAG29-overexpressing transgenic plants
were hypersensitive to salinity stress, and the SAG29-deficient mutants were less sensitive to
high salt levels [28]. The expression of AtSWEET11 and AtSWEET12 were down-regulated
by cold treatment, and the double mutation of AtSWEET11 and AtSWEET12 exhibited
greater freezing tolerance than the wild-type and both single mutants [29]. AtSWEET4 is a
hexose facilitator, and the overexpression of AtSWEET4 in A. thaliana increased plant size
and exhibited higher freezing tolerance [30]. In rice, OsSWEET13 and OsSWEET15 are major
SWEET transporters regulating both sucrose transport and levels in response to drought and
salinity stresses by the binding of an ABA-responsive transcription factor OsbZIP72 to the
promoters [31]. CsSWEET2 is a hexose transporter from Cucumber (Cucumis sativus), and
it plays a vital role in improving plant cold tolerance by mediating sugar metabolism and
compartmentation [32]. A total of 22 ClaSWEET genes were identified in the watermelon
(Citrullus lanatus) genome, and the expression patterns of ClaSWEET genes demonstrated
that ClaSWEET proteins play key roles in responses to abiotic stresses, including drought,
salt levels and low-temperature stresses [33]. In Camellia sinensis, CsSWEET16 contributes
to sugar compartmentation across the vacuole and functions in modifying cold tolerance
when overexpressed in A. thaliana [34].

Physic nut is a small perennial tree or large shrub of the Euphorbiaceae family; it
has attracted wide attention due to its fast growth, ease of propagation, tolerance of poor-
quality land, considerable adaptability and the high oil content of its seeds [35]. Genome
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sequence and expression sequence tag (EST) libraries constructed by our team and others
in recent years provide a solid basis for the analysis of physic nut gene families and their
evolution [36–38]. In this study, a genome-wide analysis was conducted to identify the
SWEET genes of physic nut. We analyzed the exon-intron structure and the phylogenetic
relationships of JcSWEET genes in detail and examined the expression levels of JcSWEET
genes in different tissues under normal growth conditions and abiotic stresses. The cDNA
clones of 13 JcSWEETs were obtained and transferred to yeast to test sugar transport
activities. Further study of the function of JcSWEET16 revealed that it is localized in the
plasma membrane and vacuolar membrane and has roles in flowering time and saline
tolerance when overexpressed in A. thaliana.

2. Results
2.1. Identification and Phylogenetic Analysis of SWEET Family Genes in Physic Nut

Based on the domain sequences of A. thaliana and rice proteins, a total of 18 putative
JcSWEET genes were identified from the published genome database [36,37] using a BLAST
search analysis approach. The lengths of the coding sequences of JcSWEET genes ranged
from 708 bp to 918 bp, and they encoded polypeptides containing 235 (JcSWEET2a/2b) to
305 (JcSWEET16) amino acids (Table S1). These JcSWEET genes were named based on their
homologs in A. thaliana. All SWEET proteins were predicted to have seven transmembrane
domains (TMs) (Figure S1). There are approximately 86 to 91 amino acids in the two
MtN3/saliva domains, and their positions in all proteins are similar. Multiple sequence
alignments of the 18 JcSWEETs and AtSWEET1 (AT1G21460) proteins revealed that all TMs
were relatively conserved except for the fourth, which is characteristic of SWEET proteins
(Figure S2).

To investigate the phylogenetic relationships among the SWEET genes in physic nut
and other plant species, a phylogenetic tree was constructed by aligning 18 JcSWEET pro-
tein sequences, 17 AtSWEET protein sequences from A. thaliana and 21 OsSWEET protein
sequences from rice using the program MEGA5.0. According to this phylogenetic tree, all Jc-
SWEET proteins could be clustered into four clades, as previously reported for A. thaliana [4].
Clade I (JcSWEET1/2a/2b/3) contains four JcSWEET proteins, clade II (JcSWEET4/5/6)
and clade IV (JcSWEET16/17a/17b) both contain three JcSWEET proteins, and the remain-
ing eight JcSWEET proteins all belong to clade III (JcSWEET9a/9b/9c/10a/10b/11/12/15)
(Figure 1).

2.2. Gene Structure and Chromosomal Distribution Analysis of SWEET Family Genes in
Physic Nut

To analyze the structural characteristics of JcSWEET genes, we mapped their structures
by submitting their full-length coding sequences and the corresponding genomic DNA
sequences to the online Gene Structure Display Server (http://gsds.gao-lab.org/ (accessed
on 19 January 2022)). All JcSWEET genes shared a similar exon-intron arrangement, with
four to five introns in the coding region. The JcSWEET4 gene did not contain the third
intron of other JcSWEET gene family members, while JcSWEET9b and JcSWEET10a did not
contain the first intron of other family members. Alternative splicing of messenger RNAs
was observed for five JcSWEET genes, including family members JcSWEET2a, JcSWEET2b,
JcSWEET4, JcSWEET11 and JcSWEET15 (Figure 2).

http://gsds.gao-lab.org/
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Figure 1. Phylogenetic relationships of SWEET family genes in physic nut, rice, and A. thaliana. The
sequences of the SWEET proteins from the above three plant species were aligned by CLUSTAL_X,
and the phylogenetic tree was constructed using MEGA 5.0 and the neighbor-joining (NJ) method
with default settings. Jc, Jatropha curcas; At, A. thaliana; Os, Oryza sativa. JcSWEET genes are identified
by black triangles.
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Via the use of our previously constructed linkage map [36], 16 of the 18 JcSWEET genes
were mapped to 8 of the 11 linkage groups (LGs), but the two remaining family members
(JcSWEET1 and JcSWEET2b) were located on unmapped scaffolds. The genes were unevenly
distributed on LGs, and no JcSWEET gene was found on LGs 2, 10 or 11. The highest con-
centration was located on LG 5, which contained six genes (JcSWEET3/5/10a/10b/11/12).
Tandem duplication, defined as tandem repeats that are located within 50 kilobases (kb)
of each other or are separated by <4 non-homologous spacer genes [39], was observed for
SWEET genes in the physic nut genome. Tandem duplications were observed on LG 5,
which contains four genes (JcSWEET10a, 10b, 11 and 12) that were grouped into the same
clade (Clade III) of the phylogenetic tree (Figure S3).

In order to test whether these tandem duplicates arose from recent duplication events
in physic nut, we constructed another phylogenetic tree using SWEET proteins from physic
nut and a closely related species, the castor bean (Ricinus communis) (Figure S4). Based on
this phylogenetic tree, these four tandem duplications are also present in the castor bean
genome. Paralogs of JcSWEET10a/10b and JcSWEET11/12 were also observed as a tandem
pair in the genomes of A. thaliana (AT5G50790/AtSWEET10-AT5G50800/AtSWEET13).
These results indicate that these tandem repeats in physic nut have resulted from both
ancient (in Dicotyledoneae) and recent (in Euphorbiaceae) gene duplication events.

2.3. Expression Profiles of SWEET Genes in Different Physic Nut Tissues

To study the expression patterns of JcSWEET genes and gain information about their
roles in the growth and development of physic nut, quantitative RT-PCR (qRT-PCR) was
performed to measure transcription levels in various tissues and organs, including the
roots, stem cortex, leaves, female flowers, male flowers and developing seeds. Although
the expression of almost all genes could be detected in the tissues tested, except for family
members JcSWEET2a and JcSWEET9b, the expression of each family member varied greatly
(Figure 3). Genes within the same clade also displayed considerable differences in their
level of expression across the different tissues analyzed.

In clade I, JcSWEET1 was highly expressed in developing seeds (Figure 3), and its
expression level was consistent with the seed filling process (Figure 4). JcSWEET2b was
expressed in early developing seeds at low levels (Figure 4), while JcSWEET3 was expressed
at a low level in developing seeds but highly in male flowers (Figure 3). In clade II,
JcSWEET4 was expressed mainly in roots, flowers and seeds. JcSWEET5 was weakly
expressed in all the tissues tested, while JcSWEET6 was expressed at a relatively higher level
in flowers (Figure 3). In clade III, only a low level of expression was detected for JcSWEET9a
across the assessed tissues, while a relatively high level of expression for JcSWEET9c
was detected in flowers and seeds at the middle stage of development (Figures 3 and 4).
JcSWEET15 was highly expressed in the stem cortex, male flower, and filling-stage seeds.
For the tandem duplication JcSWEET10a/JcSWEET10b, transcripts of the JcSWEET10a gene
were detected in seeds at the early and middle developmental stages, whereas only a low
level of expression was observed for JcSWEET10b in developing seeds. Both JcSWEET11
and JcSWEET12 were expressed at low levels in roots, leaves, and the stem cortex, but these
two family members were relatively highly expressed in seeds at the middle developmental
stage (Figure 4). In addition, JcSWEET10a and JcSWEET11 were highly expressed in male
flowers (Figure 3). In clade IV, the relative expression level of JcSWEET17a was higher than
those of the others in the tested tissues under normal growth conditions.
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2.4. Expression Profiles of JcSWEET Genes under Drought and Salinity Stress

To determine the roles of JcSWEET genes in abiotic stress responses, the expression
patterns of JcSWEETs under drought and salinity stress were analyzed using our next-
generation sequencing-based digital gene expression tag database [40,41]. Overall, a total
of 12 out of the 18 JcSWEET genes showed differential expression levels in response to at
least one stress in at least one tissue. JcSWEET3/10a exhibited similar expression patterns
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under drought and salinity stress and were significantly up-regulated in roots after 2 days
of treatment, and the expression level of JcSWEET17b also increased markedly in leaves
after 7 days of exposure to both imposed stresses. The expression level of JcSWEET15
increased dramatically in roots under drought stress but showed no significant response to
salinity stress. The level of JcSWEET16 transcript increased in leaves but decreased in roots
after salinity treatment for 2 days (Figure 5A).
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Figure 5. Expression patterns of JcSWEET genes in response to drought and salinity stresses.
(A) Heatmap showing the expression levels of JcSWEET genes under drought and salinity stresses.
Values presented in the heatmap are the ratios of stress treatment to control. (B) Expression levels of
selected JcSWEET genes in leaves under drought and salinity stress at the 7 day point measured using
qRT-PCR. Relative expression was normalized to that of the reference gene JcActin (internal control).

To verify the expression profiles determined using the digital gene expression tag
database, qRT-PCR was employed to analyze the expression levels of clade IV (JcSWEET16/
17a/17b) genes in leaves under drought and salinity stresses at the day 7 time point. This
analysis showed that JcSWEET17a/17b were up-regulated and JcSWEET16 was significantly
down-regulated in leaves under drought and salinity stress treatments (Figure 5B); these
findings were consistent with the corresponding transcript abundance changes obtained by
Digital Gene Expression Profiling, indicating that the digital expression data were reliable.

2.5. Transport Activity of JcSWEETs in Yeast

To obtain cDNAs containing full-length coding sequences of JcSWEET genes, total
RNA from three-week-old seedlings of physic nut cultivar GZQX0401 was used to perform
reverse transcription. As a result, cDNA clones containing full-length coding sequences
were obtained for 13 genes. For five genes (JcSWEET2a, JcSWEET6, JcSWEET9a, JcSWEET9b
and JcSWEET11), cDNA clones were not obtained, most likely due to the low level of
expression of each gene. Many plant SWEETs have been shown to transport hexoses or
sucrose [9]. To examine which substrates could be transported by the JcSWEET proteins, 13
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JcSWEET genes were expressed in the yeast mutant EBY.VW4000, which lacks endogenous
hexose transporters. Accordingly, this mutant yeast can grow on media containing maltose
but shows no or slow growth on media containing glucose, fructose, mannose, sucrose
or galactose [42]. All transformants with empty vectors and constructs could grow well
on synthetic-deficient (SD) media containing 2% maltose, indicating the presence of the
expression vector or target gene (Figure 6). Yeast cells expressing either JcSWEET1 or
JcSWEET4 could grow on media supplemented with mannose, glucose, galactose and
sucrose, suggesting that both JcSWEET1 and JcSWEET4 can transport these four sugars in
yeast. The expression of JcSWEET5 effectively restored the growth of EBY.VW4000 on media
supplemented with mannose or glucose. However, transformants carrying the remaining
genes showed no growth on any of the media, indicating that these ten JcSWEET proteins
could not transport these five sugars in yeast using the assay method described here.
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Figure 6. Complementation growth assay in the yeast EBY.VW4000 mutant. Yeast transformants
expressing empty vector (negative control), AtSWEET1 and 13 JcSWEETs were grown on media
containing 2% maltose, 2% mannose, 2% glucose, 2% galactose, 2% sucrose or 2% fructose. AtSWEET1
was used as positive controls for glucose, galactose and sucrose transport activities.
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2.6. Overexpression of JcSWEET16 Causes Early Flowering and Increases Salt Stress Tolerance in
A. thaliana

To investigate the functions of physic nut SWEET genes, several of the genes that
demonstrated changes in expression as a result of drought and salinity stress were over-
expressed in A. thaliana under the control of a CaMV (Capsicum Mottle Virus) 35S promoter.
First, we analyzed the subcellular localization of the JcSWEET16 protein. To accomplish this,
a JcSWEET16:GFP construct was generated and transiently co-transformed into A. thaliana
mesophyll protoplasts with a vacuolar membrane marker (AtTPK1:mCherry) or a plasma
membrane marker (AtPIP2A:mCherry). Confocal images showed that GFP fluorescence sig-
nals of JcSWEET16:GFP overlapped with red fluorescence derived from AtTPK1:mCherry
and AtPIP2A:mCherry. To further examine localization, JcSWEET16:GFP was introduced
into the epidermal cells of N. benthamiana leaves, and the GFP fluorescence was clearly
observed on the plasma membrane (Figure 7). These results show that JcSWEET16 was
localized not only on the vacuolar membrane but also on the plasma membrane, a pattern
similar to the subcellular localization of SlSWEET15 in tomato (Solanum lycopersicum) [43].
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Figure 7. Subcellular localization of JcSWEET16 in A. thaliana mesophyll protoplasts and N. ben-
thamiana leaves. Top two rows: confocal images of A. thaliana mesophyll protoplasts transiently
expressing JcSWEET16:GFP fusions and the vacuolar membrane marker AtTPK1:mCherry or the
plasma membrane marker AtPIP2A:mCherry, indicating localization to the vacuolar membrane and
the plasma membrane. Bottom row: confocal images of N. benthamiana epidermal leaf cells transiently
expressing JcSWEET16:GFP fusions. Green fluorescence of JcSWEET16:GFP, red fluorescence from
FM4-64 labeling the plasma membrane and merged images are shown, indicating localization to the
plasma membrane. Scale bar = 10 µm.

Three independent T3 homozygous overexpressing JcSWEET16 transgenic lines (OE-
3, OE-48 and OE-64) were obtained, and the expression in these lines was examined by
semi-quantitative RT-PCR (Figure 8A). Under normal growth conditions, no significant
differences were detected between wild-type and transgenic seedlings in terms of plant
size or morphology. However, the transgenic lines displayed an early flowering phenotype.
After 41 days of growth, all three OE lines had completed the flowering process, while the
WT plants exhibited a flowering efficiency of 77.78% (Figure 8B,C). These results indicate
that the overexpression of JcSWEET16 could accelerate flowering in A. thaliana.
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Figure 8. Overexpression of JcSWEET16 (OE) promotes flowering in A. thaliana. (A) Relative expres-
sion levels of JcSWEET16 in different transgenic lines measured using semi-quantitative RT-PCR
analysis. (B) WT plants and OE lines grown for 34 d. (C) Flowering time of WT plants and OE lines.
At least 18 plants were used for each experiment. Scale bar = 2 cm.

To gain insight into the function of JcSWEET16 in response to salinity stress, the same
three OE lines were used for salinity treatment. No differences were detected between WT
and transgenic lines on a normal 1/2 MS medium, whereas the survival rate of the OE
lines was significantly higher than those of WT seedlings when cultivated with 150 mM
NaCl (Figure 9). However, there were no significant differences in seedling root length
or chlorophyll content between WT and transgenic lines when cultivated with 300 mM
Mannitol (Figure S5). These results suggest that the overexpression of JcSWEET16 in A.
thaliana could improve saline tolerance.
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Figure 9. Overexpression of JcSWEET16 improves saline tolerance in A. thaliana. (A) Four-day-old
seedlings of WT and OE were transferred to 1/2 MS medium supplemented with 150 mM NaCl
for 6 days. (B) Schematic representation of the seedling position. (C) Survival rate of the seedlings
after salinity stress. The data shown are means ± SD from three biological experiments. Statistically
significant differences were assessed using Student’s t-tests (* p < 0.05, ** p < 0.01).
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3. Discussion

Over the past two decades, numerous sugar transporters have been discovered in
humans, plants, bacteria and fungi and have been demonstrated to play key roles in growth
and development, metabolism and homeostasis. The members of the recently identified
family of SWEET sugar transporters in eukaryotes contain only seven TMs and can mediate
both cellular uptake and efflux [4]. To date, SWEET gene family members have been
identified in many plant species based on genome-wide analyses. In the present study, a
total of 18 putative SWEET genes were identified in the physic nut genome; this number is
close to those of A. thaliana (17) [4], rice (21) [11] and cucumber (17) [44], but fewer than
in soybean (52) [24] and wheat (Triticum aestivuml) (59) [45]. Polyploidy is an important
contributor to plant genome evolution, and many angiosperms have undergone gene
duplication within a gene family due to experiencing one or multiple polyploidization
events [46,47], which is a genomic event that can explain the large number of SWEET genes
in the soybean and wheat genomes.

Physic nut SWEET genes were classified into four clades according to their phyloge-
netic relationship (Figure 1), which was in agreement with the classification of SWEETs in
A. thaliana and rice [4,11]. There are eight physic nut SWEET genes in clade III, four in clade
I, and three in each of clades II and IV (Figure 1). The physic nut has more genes than A.
thaliana in clades I, III and IV. Gene duplication plays a crucial role in the evolution of higher
plants, as it not only expands genome content but also diversifies gene functions to help
the organism to adapt to different environmental conditions [48]. A non-random pattern
of introns indicates that they were acquired from a progenitor and stabilized through
evolution [49]. Gene structure analysis indicates that all JcSWEET genes shared a similar
exon-intron arrangement (Figure 2). This is similar to the SWEET gene structure in A.
thaliana [4], indicating that angiosperm SWEET genes share a common origin and that there
has been gene function divergence as gene expansion occurred later during evolution. In
addition, tandem duplication events have been observed in the SWEET genes of soybean
and rice [24]. Four JcSWEET genes (JcSWEET10a, 10b, 11 and 12) were considered to repre-
sent tandem duplication, and these duplications are also present in the genomes of castor
bean and A. thaliana (Figures S3 and S4). These results suggest that the processes giving
rise to the expansion of the JcSWEET genes in physic nut included both ancient and recent
tandem duplication.

In A. thaliana, transport substrates for all SWEET family members have been identified,
and different clade members have different transport activities: clade I members allow 2-
deoxyglucose and sucrose transport, clade II members allow the transport of glucose, clade
III is reported to be a sucrose-specific clade and clade IV confers the ability to transport
glucose and fructose [9]. In our study, we determined that both JcSWEET1 and JcSWEET4
proteins, from clades I and II, respectively, could mediate the uptake of mannose, sucrose,
glucose and galactose in the yeast EBY.VW4000 mutant, while JcSWEET5, which also
belongs to clade II, mediated the uptake of mannose and glucose in the assessed yeast
mutant background (Figure 6). These results suggest that there may exist some differences
in the functions of SWEET proteins among species. Furthermore, SWEET proteins have a
broader substrate range in physic nut, indicating that these proteins may have multiple
physiological functions and be involved in more complex biological processes. However,
in the present study, JcSWEET2b/3/9c/10a/10b/12/15/16/17a/17b showed no sugar
transport activity in yeast using the present assay method (Figure 6); this may be because
the transport activity of these proteins is not located at the plasma membrane, and further
studies are needed.

Plant leaves are the main source organ and play an important role in the synthesis
of carbohydrates. Gene expression analysis revealed that JcSWEET17a had a relatively
high expression level in physic nut leaves (Figure 3). AtSWEET17 of clade IV is a vacuolar
transporter that controls fructose content in A. thaliana leaves and roots [50]. In addition,
JcSWEET17a belongs to clade IV (Figure 1), indicating that it may play similar roles in
balancing intracellular hexose homeostasis. Developing seeds are the strongest sink tissues
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in many plants, and they need a substantial source of carbon for development, which
implies that SWEET genes may direct a key role in seed development [24]. In A. thaliana,
AtSWEET15 is expressed in the seed coat and endosperm and functions in the transfer of
sugars from the seed coat to the embryo [16]. The AtSWEET15 paralog JcSWEET15 was
also found to be significantly expressed in filling-stage seeds (Figure 4), suggesting that
this gene may play a similar role to that of AtSWEET15. In addition, the duplicates from
clade III (JcSWEET10a and 10b) show divergent expression patterns (Figures 3 and S3), sug-
gesting the occurrence of subfunctionalization during the evolutionary process. AtSWEET9
is a nectary-specific sugar transporter and is essential for nectar production [18]. Both
JcSWEET9a and JcSWEET9c are homologs of AtSWEET9, but they have significantly distinct
expression patterns. The discrepancy between AtSWEET9 and JcSWEET9 is probably due
to evolutionary differences at the genome level between these two species.

Recently, studies have shown that SWEET genes from clade IV are involved in abiotic
stress tolerance and the overexpression of these genes in plants can enhance their tolerance
of abiotic stress [26,27,29,51–53]. In our study, most of the JcSWEET genes showed changes
in transcription levels under abiotic stress treatment, including drought and salinity stress
(Figure 5A). Both JcSWEET16 and JcSWEET17b are members of clade IV, but they showed
opposite expression patterns under drought and salinity treatments. Further studies are
needed to confirm whether and how these genes function in response to abiotic stresses.
The qRT-PCR analysis showed that the expression of JcSWEET16 was down-regulated
by salinity treatment (Figure 5B). Analysis of the survival rate of the seedlings showed
that JcSWEET16 overexpression could improve salinity tolerance in A. thaliana, which
was in line with the modified expression levels (Figure 9C). In addition, JcSWEET16 was
localized not only at the vacuolar membrane but also at the plasma membrane (Figure 7),
in contrast to tonoplast-localized AtSWEET16 [27], indicating that it may function at
different stages of growth and development in physic nut. Moreover, the overexpression of
JcSWEET16 in A. thaliana could accelerate flowering (Figure 8B,C). Soluble sugar is not only
a source of carbon and energy; it also acts as an osmotic regulator [54,55], and transgenic
plants that accumulate sucrose in the leaves show more rapid flowering in species such as
tomato, potato (Solanum tuberosum) and A. thaliana [56–58]. Whether the overexpression of
JcSWEET16 promotes flowering in A. thaliana by affecting sugar metabolism remains to be
studied.

4. Materials and Methods
4.1. Preparation of Plant Materials

Physic nut (Jatropha curcas L.) cultivar GZQX0401 was used in this study. After disin-
fecting with 1:5000 KMnO4 solution for 30 min, the seeds were germinated in sand and
grown in trays containing a 3:1 mixture of sand and soil in a greenhouse illuminated with
natural sunlight in Guangzhou (113.3 ◦ E, 23.1 ◦ N). The trays were irrigated with 1.0 L (L)
of Hoagland nutrient solution (pH 6.0) once every two days at dusk after the emergence of
the first true leaf. Roots, stem cortex, and leaves were sampled at the six-leaf stage (eight
weeks after germination). Male and female flowers were sampled in the summer (June
2019), and fresh seeds were sampled in the autumn (September 2020). Sampling at the
different stages of seed development was in accordance with previous methods [59].

Exposure to 100 mM NaCl can induce a moderate stress response but is not acutely
lethal in physic nut [60]. Indeed, in our previous study, we observed visible signs of leaf
chlorosis and defoliation after the treatment [61]. Therefore, stress treatment was begun at
the six-leaf stage (eight weeks after germination). For salinity treatment, the seedlings were
irrigated with Hoagland solution plus 100 mM NaCl every day. For drought treatment,
irrigation was withheld. Leaf samples were collected 7 days after the onset of drought
stress and salinity stress. The details of salinity and drought treatment were in accordance
with previous methods [40,41]. All samples were frozen immediately in liquid nitrogen
and stored at −80 ◦C before qRT-PCR analysis. Three independent biological replicates
were performed for each analysis.
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4.2. Sequence Database Searches and Gene Cloning

To identify physic nut SWEET genes, we searched for SWEET genes in the physic nut
genome database of the Kazusa DNA Research Institute [37] and our genome database [36]
using A. thaliana and rice SWEET protein sequences as queries. SWEET protein sequences
from A. thaliana and rice were obtained from the A. thaliana genome database TAIR (https:
//www.arabidopsis.org/ (accessed on 13 February 2020)) and the rice genome annotation
database (http://rice.uga.edu/ (accessed on 23 February 2020)), respectively. Sequences
giving E values of less than 1 × 10−10 were selected for further analysis, and all JcSWEET
sequences were revised based on information in the expressed sequence tag (EST) database
(http://www.ncbi.nlm.nih.gov/ (accessed on 9 January 2022)) and our physic nut and
Jatropha integerrima EST datasets (SRA197144 and SRA197148 in GenBank). The Pfam
program (http://pfam.xfam.org/ (accessed on 9 January 2022)) was used to confirm the
presence of the MtN3 domain of all putative SWEET proteins. All target sequences were
subsequently used to clone the full-length JcSWEET genes. The cDNA from three-week-old
seedlings of physic nut was used as a template for amplifying the JcSWEET genes with the
specific primers listed in Table S2. The PCR products were cloned into the pMD18-T vector
(TaKaRa) and then sequenced.

4.3. Sequence Analysis and Phylogenetic Tree Construction

Transmembrane domains in JcSWEET proteins were predicted using TMHMM Server
v. 2.0 [62]. Information, including accession number and MtN3/saliva (PQ-loop repeat)
domain position in the JcSWEET genes, was acquired from NCBI. Multiple sequence
alignments of protein sequences were performed by DNAMAN. The exon/intron structures
of JcSWEET genes were analyzed using Gene Structure Display Server (GSDS, http://gsds.
gao-lab.org/ (accessed on 19 January 2022)) [63] by comparing the coding sequences and
the corresponding genomic sequences. Chromosome localization was performed using
MapChart 2.32, based on the linkage map constructed in our previous study [36,64].

To analyze the relationships of the SWEET genes in physic nut, the full-length JcSWEET
protein sequences and SWEET protein sequences from A. thaliana and rice were used to
generate a phylogenetic tree. The tree was constructed using MEGA 5.0 by the neighbor-
joining (NJ) method with default settings, and the results were displayed with iTOL
(http://itol.embl.de/ (accessed on 8 January 2022)). Amino acid sequences of the SWEET
proteins used for the analysis are listed in Table S3.

4.4. RNA Isolation and qRT-PCR

Total RNA was extracted from the samples, and the first strand cDNA was synthesized
as previously described [65]. All qRT-PCR experiments were run on a LightCycler® 480
Real-Time PCR System (Roche, Basel, Switzerland). The reference gene JcActin was used as
the internal control, and the expression levels were calculated using the 2−∆CT method. All
specific primer sequences are listed in Table S2.

4.5. Plasmid Construction and Complementation Assays in Yeast

pMD18-T-JcSWEET clones were used as templates for amplifying the coding regions
of the JcSWEET genes with XhoI and BamHI cleavage sites, and the amplified fragments
were cloned into the yeast expression vector pDR195. The specific primers are listed in
Table S2. Then, all resulting constructs were transformed into the hexose transport-deficient
yeast strain EBY.VW4000. For the yeast complementation growth assay, serial dilutions (1,
0.1, 0.01 and 0.001) of all desired transformants were spotted on synthetic deficient media
containing 2% maltose (as the control), glucose, galactose, mannose, fructose or sucrose.
The plates were photographed after 2–4 days of growth at 30 ◦C.

4.6. Subcellular Localization of JcSWEET16

The coding sequence of the JcSWEET gene (without stop codons) was amplified with
the specific primer pair 5′-GGTACCATGGCTAGCTTAAGCTTC-3′ and 5′- GTCGACAA

https://www.arabidopsis.org/
https://www.arabidopsis.org/
http://rice.uga.edu/
http://www.ncbi.nlm.nih.gov/
http://pfam.xfam.org/
http://gsds.gao-lab.org/
http://gsds.gao-lab.org/
http://itol.embl.de/
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-GATCATTATCAACTTT-3′ and then cloned into the 35S:GFP vector. A. thaliana mesophyll
protoplasts were isolated and transformed with the resulting construct as previously
described [66]. For transient expression in N. benthamiana leaves, the resulting binary
vector was transformed into A. tumefaciens strain GV3101 and used to infect N. benthamiana
epidermal cells. To determine the positions of inner membranes, AtPIP2A:mCherry and
AtTPK1:mCherry were used as markers for the plasma membrane and vacuolar membrane,
respectively. For FM4-64 staining, tobacco leaves were incubated in 4 µM FM4-64 for
15 min before observation. Fluorescence was observed on a Leica TCS SP8 confocal laser
scanning microscope.

4.7. Plant Transformation and Salinity Treatment of Transgenic A. thaliana

In order to get transgenic A. thaliana, the expression vector 35S:JcSWEET16:GFP was
constructed and was transformed into A. tumefaciens strain GV3101. Subsequently, the
resulting transformants were used to infect A. thaliana plants (Col-0 ecotype) as described
previously [67]. Seeds from single insertion homozygous transgenic lines were chosen for
the subsequent analysis. The expression levels in the transgenic lines were determined by
semi-quantitative RT-PCR with the specific primers 5′-GCACCGTCTTCCAATTCGTT-3′

and 5′-ACGCCTCCATTGAGAAACAG-3′, and the reference gene AtActin (AT3G18780)
was used as the internal control (AtActin-F: AGATGCCCAGAAGTCTTGTTCC, AtActin-R:
TTTGCTCATACGGTCAGCGATA).

After surface disinfection, the seeds of transgenic and wild-type lines were incubated
for 2 days in the dark at 4 ◦C. Plants were grown under a long-day photoperiod (16 h
light/8 h dark) at 22 ± 2 ◦C in a growth chamber. Flowering time was scored by observing
the bolting ratio, and a bolting height of 0.5 cm was taken to indicate bolting. For salinity
treatment, transgenic and wild-type seeds were surface-sterilized and sown on one half-
strength Murashige and Skoog (MS) medium (pH 5.7, KOH) containing 1.0% (w/v) sucrose
and 1.0% agar (w/v). The plates were incubated in the dark at 4 ◦C for 2 days and then
grown in a growth chamber with a long-day photoperiod (16 h light/8 h dark) at 22 ± 2 ◦C.
After growth for 4 days, similarly sized seedlings were transferred to new 1/2 MS medium
supplemented with 150 mM NaCl as described previously [68]. The survival rate of the
seedling was counted, and photos were taken after 6 days of treatments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23105391/s1.
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