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Abstract: In recent years, elucidation of novel anti-HIV bioactive compounds from natural products
is gaining importance rapidly, not only from the research and publications, but also from controlled
clinical studies. Here we report three new anti-HIV eudesmane-type sesquiterpenes, 5β-Hydroxy-
8α-methoxy eudesm-7(11)-en-12,8-olide (1), 5β,8α-Dihydroxy eudesm-7(11)-en-12,8-olide (2) and
5β-Hydroxy-8H-β-eudesm-7(11)-en-12,8-olide (3). These are trivially named ermiasolide A-C and
were isolated from the bark of Croton megalocarpus. 5β-Hydroxy-8α-methoxy eudesm-7(11)-en-12,8-
olide (1), showed the highest anti-HIV activity by inhibiting 93% of the viral replication with an
IC50 = 0.002 µg/mL. On the other hand, 5β-Hydroxy-8H-β-eudesm-7(11)-en-12,8-olide (3) and 5β,8α-
dihydroxy eudesm-7(11)-en-12,8-olide (2), inhibited viral replication by 77.5% at IC50 = 0.04 µg/mL
and 69.5% at IC50 = 0.002 µg/mL, respectively. Molecular docking studies showed that the proposed
mechanism of action leading to these results is through the inhibition of HIV-protease.

Keywords: Croton megalocarpus; HIV-1; ermiasolides; anti-HIV activity; cytotoxicity

1. Introduction

In our continued study of anti-HIV potential of compounds isolated from Croton
plants, we report three eudesmane sesquiterpenoids from C. megalocarpus with modest
anti-HIV activities [1,2]. C. megalocarpus is an important medicinal plant, with several
traditional medicinal uses. Traditionally, C. megalocarpus is mainly used to treat respi-
ratory problems, fever [3–5] and wounds [5,6]. C. megalocarpus is also used in the treat-
ment of constipation [7] and as an herbal medicine for backache, chest problems [8,9],
malaria [10–12] and stomach ache [8,9,12]. It has also been reported for its medicinal po-
tential, with reported anti-inflammatory, antifungal, antibacterial, antinociceptive, wound
healing and molluscidal properties [13]. Thus far, C. megalocarpus has only yielded cem-
brane, labdane, kaurene, clerodane and abietane diterpenoids [14–17]. In our recent study
we reported two previously-undescribed crotofolane diterpenoids: 1β-acetoxy-3β-chloro-
5α,6α-dihydroxycrotocascarin L, trivially named ermiasoid, [18], 11β-acetoxycrotocascarin
L and the known compound crotocascarin K [1]. In the same study, evidence for anti-HIV
activity was found through decrease of HIV replication by inhibition of HIV-1 protease.

In this study we report for the first time sesquiterpene lactones from C. megalocarpus.
Sesquiterpene lactone is a large subclass of terpenoids often found in plants. Sesquiter-
pene lactones play an important role in plant defence in nature, acting as antibacterials,
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antivirals, antifungals, and insecticides [19] and have piqued the interest of researchers
in recent years, primarily due to their cytotoxic and anticancer properties [20]. Several
eudesmane-type sesquiterpene lactones have displayed cytotoxic and potential antiviral
activity. Zhu et al. [21] have demonstrated cytotoxic activity of three eudesmane lactones
isolated from Ajania przewalskii Poljakov (Asteraceae).

A number of sesquiterpenes have previously been isolated from Croton species. β-
caryophyllene from C. aubrevillei, C. geayi [22]; caryophyllene oxide, γ-cadinene and α-
cadinene from C. geayi [22]; blumenol A from C. pedicellatus [23]; crocrassins A [24], cro-
crassins B [24], cracroson H [25], 6S-hydroxy-cyperenoic acid [26], crassifterpenoid A [26]
from C. crassifolius, and patchoulenone [27] from C. oblongifolius.

Eudesmane-type sesquiterpenoids were previously reported from Croton species,
including C. pseudopulchellus and C. gratissimus [28,29]. However, they were not reported
previously from C. megalocarpus, which makes this work interesting. Herein, we report
the isolation and anti-HIV activity of three new eudesmane-type sesquiterpenes (Figure 1):
5β-Hydroxy-8α-methoxy eudesm-7(11)-en-12,8-olide (1), 5β,8α-Dihydroxy eudesm-7(11)-
en-12,8-olide (2), and 5β-Hydroxy-8H-β-eudesm-7(11)-en-12,8-olide (3) from the stem bark
of C. megalocarpus, trivially named as ermiasolide A, B and C respectively.
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Figure 1. Structures of compounds isolated from Croton megalocarpus. Ermiasolide A (1); Ermiasolide
B (2), Ermiasolide C (3).

2. Results and Discussion
2.1. Characterization and Structural Elucidation

5β-Hydroxy-8α-methoxy eudesm-7(11)-en-12,8-olide (1): Compound 1 was isolated
as a brown oil. The HRMS showed a molecular ion peak [M + H]+ at m/z 281.1744 for
C16H25O4 (calc. C16H24O4 + H, m/z 281.1753). The 1H NMR spectrum of 1 (Table 1) showed
four methyl proton resonances at δH 3.13 (s), suggesting methoxy groups, 1.85 (d, 1.3 Hz),
1.24 (s) and 0.90 (d, 6.7 Hz). The 13C NMR, DEPT and HSQC-DEPT spectra supported 16
carbon resonances, including a carbonyl resonance at δC 172.0, two alkene resonances at δC
156.8 and 127.7, a hemiketal carbon at δC 106.5, an oxygenated carbon resonance at δC 77.8,
a methoxylated carbon at δC 50.4 and carbon resonances for three methyls, five methylenes
and one methine. The above information suggested that compound 1 was a methoxylated
sesquiterpenoid. The use of 2D NMR spectra, HMBC and COSY suggested that an allylic
proton resonance at δH 1.85 (d, 1.3 Hz) was part of an α,β-unsaturated carbonyl system
with carbonyl carbon resonance at δC 172 (C-12) and alkene carbon resonances at δC 156.8
(C-7) and 127.7 (C-11). A carbon resonance at δC 106.5 was assigned to the ketal group at
C-8 and was observed in the HMBC spectrum to correlate with the methoxy group proton
resonance (δH 3.13, s) and methylene proton resonances assignable to H2-6 and H2-9. In
addition, H2-6 proton resonances showed correlations in the HMBC spectrum with C-4,
C-5, C-7, C-10 and C-11, whereas H2-9 showed correlations in the HMBC spectrum with
C-1, C-5, C-7, C-8 and C-14. C-4 was observed to be a methine carbon resonance, which
corresponded with a proton resonance at δH 1.96 (m) for H-4. The H-4 proton resonance
was coupled with a methyl doublet proton at δH 0.90 (d, 6.7 Hz), attributable to H-15. In
addition, H-4 was coupled to proton resonances for H2-3, which were coupled to H2-2 in
the COSY spectrum. H2-2 was also coupled to H2-1 in the COSY spectrum. The above
data suggested that compound 1 was a methoxylated eudesmane sesquiterpenoid that
was determined to be a eudesmane class. The NOESY spectrum of compound 1, acquired
using DMSO, showed that the methoxy group at C-8, H-4 and 3H-14 were on the same
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face of the molecule, whereas 5-OH and 3H-15 were on the opposite face of the molecule
(Figure 2). The HRMS data [M + H]+

= 280.1744 supported the proposed structure; hence, 1
was determined to be undescribed 5β-hydroxy-8α-methoxy eudesm-7(11)-en-12,8-olide,
trivially named ermiasolide-A.

Table 1. NMR data for the three isolated ermiasolides from C. megalocarpus in CDCl3 (J in Hz).

1 2 3

No. 13C NMR 1H NMR 13C NMR 1H NMR 13C NMR 1H NMR

1α 34.3 1.52 34.2 1.55 m 36.9 1.50 m
1β 1.14 1.14 m 1.34 m
2α 20.0 1.67 m 20.0 1.68 m 21.2 1.67 m
2β 1.59 m 1.49 m 1.59 m
3α 30.1 1.48 m 30.0 1.48 m 30.2 1.50 m
3β 1.30 m 1.27 m 1.23 m
4 34.1 1.96 m 34.1 1.94 m 36.2 1.81 m
5 77.8 - 78.0 - 76.5 -

6α 32.0 2.71 d
(13.9) 31.8 2.71 d

(13.9) 35.4 2.55 m

6β 2.27 dd
(1.4, 13.9)

2.43 d
(13.9) 2.55 m

7 156.8 - 158.9 - 161.4 -
8 106.5 - 104.1 - 78.0 5.44 m

9α 45.8 1.96 d
(13.7) 47.0 1.90 m 43.2 2.24 dd

(13.6, 11.2)

9β 1.82 d
(13.7) 1.88 m 1.39 dd

(5.7, 13.6)
10 38.9 - 38.9 - 38.5 -
11 127.7 - 125.3 - 121.5 -
12 172.0 - 173.0 - 175.4 -
13 8.6 1.85 d (1.3) 8.4 1.78 s 8.6 1.80 s
14 21.0 1.24 s 21.2 1.29 s 23.9 0.82 s
15 15.3 0.90 d (6.7) 15.2 0.89 d (6.7) 14.8 0.93 d (6.7)

OCH3 50.4 3.16 s
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5β,8α-Dihydroxy eudesm-7(11)-en-12,8-olide (2): Compound 2 was isolated as a
yellowish oil. The HRMS spectrum of compound 2 showed a molecular ion peak [M + H]+

at m/z 267.1589 for C16H22O4 (calc. C15H22O4 + H, m/z 267.1591). The 1H NMR spectrum
(Table 1) of this compound showed three methyl proton resonances at δH 1.78 (s), 1.29 (s)
and 0.89 (d, 6.7 Hz) and was missing the resonance for a methoxy group that was observed
in compound 1. The 13C, DEPT and HSQC-DEPT NMR spectra supported 15 carbon
resonances, including a carbonyl resonance at δC 173.0, two alkene resonances at 158.9 and
125.3, a hemiketal carbon at δC 104.1, an oxygenated carbon resonance at δC 78.0 and carbon
resonances for three methyls, five methylenes and one methine. The 13C and DEPT NMR
spectra were missing the methoxylated carbon resonance as in compound 1. The 2D spectra
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for compound 2 were similar to those of compound 1. Compound 2 was determined to be
an undescribed derivative of compound 1, 5β,8α-dihydroxy eudesm-7(11)-en-12,8-olide,
trivially named ermiasolide B.

5β-Hydroxy-8H-β-eudesm-7(11)-en-12,8-olide (3): Compound 3 was isolated as a
yellowish oil. Compound 3 was determined to be an undescribed 5β-hydroxy-8H-β-
eudesm-7(11)-en-12,8-olide, an 8-H derivative of compounds 2 and 1. HRMS showed
a molecular ion peak at m/z [M + H]+ 251.1641 for C15H22O3 (calc. C15H22O3 + H, m/z
251.1642), consistent with 3. The 1H NMR spectrum (Table 1) of this compound showed
three methyl proton resonances at δH 1.80 (s), 0.90 (d) and 0.82 (s) and was missing the
resonance for a methoxy group that was observed in compound 1. The 13C, DEPT and
HSQC-DEPT NMR spectra supported 15 carbon resonances, including a carbonyl resonance
at δC 175.4, two alkene resonances at δC 161.4 and 121.5, an oxygenated carbon resonance
at δC 76.5, and carbon resonances for three methyls, five methylenes and two methines.
The 13C and DEPT NMR spectra were missing the methoxylated carbon resonance present
in compound 1, and only had one oxygenated carbon when compared to 2. The 2D spectra
for compound 3 were similar to those of compounds 1 and 2. The NOESY spectrum of
compound 3 showed that there were NOESY correlations between H-8 and 3H-15, and
between H-8 and H-6β, confirming that H-8 was β. There were also NOESY correlations
between H-4 and 3H-14, and between 3H-14 and H-9α, similar to what was seen for
Compound 1, confirming they were at the same side of the molecule (Figure 3). Compound
3 was determined to be an undescribed derivative of compounds 1 and 2, 5β-hydroxy-8H-
β-eudesm-7(11)-en-12,8-olide, trivially named ermiasolide C.
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2.2. In Vitro Cytotoxicity and Anti-HIV Assay

The cytotoxic and antiviral activity findings for the compound 1–3 are summarized
in Table 2. Among the tested compounds, compound 1, ermiasolide A, displayed the
highest anti-HIV activity by inhibiting HIV-induced CPE by 93% at an IC50 value of
0.002 µg/mL. Similarly, compound 3, inhibited viral replication by 77.5% at an IC50 value
of 0.04 µg/mL (Figure 4). In the MTT cytotoxic assay using human T-lymphocytic MT-4
cells, the compounds showed significantly (p < 0.001) higher CC50 values than the control
drugs, except for compound 2, which showed CC50 values not significantly different from
those of the control drugs (Figure 5). The compounds (1–3) inhibited viral replication at
much lower concentrations (IC50) than the maximum non-cytotoxic concentration (MNTC),
indicating the safety of the compounds (Table 2).
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Table 2. Cytotoxicity and anti-HIV-1 activities of ermiasolides from C. megalocarpus.

Materials
Cytotoxicity Antiviral Activity SI

MNTC (µg/mL) CC50 (µg/mL) EmaxC (%) IC50 (µg/mL) EmaxAV (%)

FDA approved antiretroviral drugs

AZT 0.38 ± 0.19 0.53 ± 0.29 36.28 ± 0.83 0.002 ± 0.00 83.5 ± 0.57 279.4
TDF 4.92 ± 0.71 6.73 ± 0.24 13.17 ± 0.43 0.04 ± 0.01 80.55 ± 0.46 176.5
ABC 0.18 ± 0.03 0.26 ± 0.00 17.83 ± 0.57 0.05 ± 0.031 58.67 ± 0.43 5.0
NVP 0.57 ± 0.0 0.82 ± 0.0 39.13 ± 0.65 0.24 ± 0.09 72.53 ± 0.47 3.5

Ermiasolides isolated from C. megalocarpus
1 41.84 ± 0.11 96.77 ± 0.44 62.21 ± 0.67 0.002 ± 0.00 93.4 ± 0.60 39,872.3
2 4.973 ± 0.25 38.44 ± 0.63 81.59 ± 0.41 0.002 ± 0.00 69.51 ± 0.26 25,339.5
3 64.93 ± 0.26 148.1 ± 0.05 65.00 ± 0.01 0.044 ± 0.01 77.46 ± 0.93 3384.4

Results are shown as means ± S.E. M (n = 3). AZT, zidovudine; TDF, tenofovir; ABC, abacavir; NVP, nevirapine; 1,
ermiasolide A; 2, ermiasolide B; 3, ermiasolide C; MNTC, maximum nontoxic concentration; CC50, 50% cytotoxic
concentration; EmaxC, maximum cytotoxic effect %; IC50, 50% antiviral effect concentrations; EmaxAV, maximum
antiviral effect %; SI, selective index.
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2.3. Assay of Anti-HIV Activity In Silico

A molecular docking study was conducted to predict the binding geometries of
the compounds with HIV-1 Reverse Transcriptase and HIV-1 Protease. Tables 3 and 4
summarize the docking results for the pure compounds and FDA-approved antiretroviral
drugs. The predicted free energy of binding obtained for the pure compounds against HIV-1
RT (PDB ID: 1JLB) was higher than the known inhibitor nevirapine (∆G −7.679 kcal/mol).
Similarly, the compounds analyzed also gave higher predicted binding energies than the
known inhibitor Atazanavir when the docking was performed on HIV-1 PR (PDB ID: 3EL9
(Figure S1). However, the docked compounds displayed strong binding affinity with HIV-1
protease enzyme compared with HIV-1 reverse transcriptase. The results obtained could
indicate that the mechanism of action leading to the observed anti-HIV activity is through
HIV-1 protease inhibition, which agrees with the results obtained in vitro.

Table 3. Molecular docking analysis of against HIV-1 reverse transcriptase in complex with Nevirap-
ine (PDB ID: 1JLB).

Code Name of Compounds Free Energy of Binding
(∆G) kcal/mol

NVP Nevirapine −7.679
1 5β-Hydroxy-8α-methoxy eudesm-7(11)-en-12,8-olide −2.317
2 5β,8α-Dihydroxy eudesm-7(11)-en-12,8-olide −2.839
3 5β-Hydroxy-8H-β-eudesm-7(11)-en-12,8-olide −3.555

Table 4. Molecular docking analysis of against HIV-1 protease in complex with Atazanavir (3EL9).

Code Name of Compounds Free Energy of Binding
(∆G) kcal/mol

ATV Atazanavir −10.437
1 5β-Hydroxy-8α-methoxy eudesm-7(11)-en-12,8-olide −6.067
2 5β,8α-Dihydroxy eudesm-7(11)-en-12,8-olide −5.994
3 5β-Hydroxy-8H-β-eudesm-7(11)-en-12,8-olide −5.850

To better understand the mode of action of the compounds, ligand-protein interactions
were visualized. Compound 1 binds to the protease active site with an estimated free
energy of binding of −6.067 kcal/mol. The main interactions contributing to this binding
energy were the hydrogen bond between Asp-B29 and Arg-A8 with the lactone carbonyl at
C-12 (Figure S2). The methyl group at C-4 and the two cyclohexane rings were involved in
hydrophobic interactions with Ala-B28, Ile-B50 and Val-B84, and the methoxy group at C-8
showed hydrogen bonding with Asp-B25.

This led us to the hypothesis that the high anti-HIV activity of Ermiasolide A (1) and
Ermiasolide B (2) in vitro could be due to the presence of hydrogen bonding between the
methoxy or hydroxy group at C8 and Asp-B25. These functional groups were missing
in Ermiasolide C (3) which could explain its lower antiviral efficacy (EmaxAV= 77.46 %).
Furthermore, the presence of a methoxy group in 1 at C-8 could contribute to its higher
anti-HIV activity due to additional hydrophobic interactions with the enzyme active site,
as depicted in the in silico study (Figure S2). Previous studies have confirmed the role of
hydrophobic interactions as driving forces of ligand–protein interaction [30]. The results
obtained could indicate that the mechanism of action leading to the observed anti-HIV
activities is through HIV-1 protease inhibition, which agrees with the data obtained in the
in vitro assay.

3. Experimental Section
3.1. Plant Material

The stem bark of C. megalocarpus was collected from the United States International
University-Africa (USIU) Botanical Garden in June 2020. Ethical approval was obtained
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from the Kenyatta National Hospital-University of Nairobi Ethics and Research Committee
(KNH-UON ERC), approval number KNH/ERC/A/154. Taxonomic identification was
done by expert botanist Ms. Lucy M. Wambui and taxonomist Mr. Patrick B. Mutiso of
the University of Nairobi, and a voucher specimen (TEREFE E. /044) was deposited at the
USIU herbarium for future reference. The extraction and isolation of the plant was carried
out as previously described [2,18,19].

3.2. Isolation of Compounds 1–3

Compounds were isolated as previously described [2,18,19]. Briefly, 5 kg of air-dried
stem bark of C. megalocarpus was extracted using 1:1 CH2Cl2:CH3OH by standing at room
temperature, to give 0.33 kg of a solid. This extract was resuspended in water and extracted
using hexane, CH2Cl2, EtOAc and then MeOH (masses 11 g, 8 g, 40 g and 11 g, respectively).
The EtOAc extract was chromatographed on silica gel by a step gradient elution initially
with 100% CH2Cl2, followed by 5% EtOAc addition to yield several fractions of 75 mL each.
Fractions 12, 17 and 22 gave compounds 1, 3 and 2, respectively, on further purification
using an isocratic system of 9:1 CH2Cl2:EtOAc.

3.3. Structural Elucidation of Isolated Compounds

The isolated purified compounds were characterized by nuclear magnetic resonance
(NMR) and high-resolution mass spectrometry (HRMS) at the Jodrell Laboratory, Royal
Botanic Gardens Kew (UK). A Perkin-Elmer Frontier/Spotlight 200 spectrometer was used
to collect FTIR spectra. In addition, 1D and 2D NMR spectra in CDCl3 were collected at
room temperature using a 400 MHz Bruker AVANCE NMR spectrometer. Chemical shifts
(δ) were measured in ppm and referenced to the solvent resonances for 1H and 13C NMR
for CDCl3 at δH 7.26 and C 77.23 ppm.

LCMS data were collected using a Vanquish UHPLC system (Thermo Scientific,
Waltham, MA, USA) linked to a 100 Hz photodiode array detector (PDA) and a Thermo
Scientific Orbitrap Fusion Tribrid (Thermo Scientific) high-resolution tandem mass spec-
trometer. Chromatographic separation (5 µL) was performed on a Luna C18 column
(150 mm × 3 mm i.d., 3 µm, Phenomenex, Torrance, CA, USA) using a mobile phase gra-
dient of 0:90:10 to 90:0:10 (MeOH (A) water, (C) acetonitrile + 1% formic acid (D)) over
60 min. Then, 90% A was held for 10 min and returned to initial conditions over 5 min at
30 ◦C (flow rate: 400 µL/min). UV detection was done between 210 and 550 nm.

Mass spectrometry detection was performed in positive and negative ionization modes
using the full scan and data-dependent MS2 and MS3 acquisition modes. Total ion current
(TIC) chromatograms were obtained over the range of 125–1800 m/z using spray voltages
of +3.5 kV and −2.5 kV for the positive and negative ionization modes, respectively. Four
different scan events were recorded for each ionization mode as follows: (1) full scan;
(2) MS2 of the most intense ion in scan event 1; (3) MS3 of the most intense ion in scan event
2; and (4) MS3 of the second most intense ion in scan event 2. Additional parameters for
the mass spectrometer included: full scan resolution, 60,000 FWHM; capillary temperature,
350 ◦C; ion transfer tube temperature, 325 ◦C; RF lens (%), 50; automatic gain control (AGC)
target, 4.0e5 (Full scan) and 1.0e4 (MSn); intensity threshold, 1.0e4; CID collision energy,
35; activation Q, 0.25; and isolation window (m/z), 4. Nitrogen was used as the drying,
nebulizer and fragmentation gas.

3.4. Cell Culture, Maintenance and Viability Test

In this study, human T-lymphocyte MT-4 cells (ARP-120) were obtained from the
National Institute of Health (NIH) HIV Reagent Program, Division of AIDS, National
Institute of Allergy and Infectious Diseases (NIAID), NIH; donated by Dr. Douglas Rich-
man. Human T-lymphocytic MT-4 cells express CD4, CXCR4 and CCR5 and are used for
cytotoxicity inhibition assays for antiviral drugs [31–34]. The vials containing frozen MT-4
cells were retrieved from the liquid nitrogen tank and rapidly thawed [33]. In a tissue
culture laminar flow hood, the exterior of the vials was decontaminated by spraying 70%
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ethanol. Then, the vial was opened and resuspended in 10 mL complete culture medium
(CCM) containing RPMI-1640 with 2 mM L-glutamine supplemented with 10% fetal bovine
serum (FBS), 10 mM HEPES buffer, 100 IU of penicillin/mL, 100 µg of streptomycin/mL,
1 ng of recombinant interleukin-2 (Invitrogen)/mL and 2 µg of phytohemagglutinin/mL as
described previously by Gao et al. [33]. The CCM was sterilized with a 0.22 µm membrane
filter before use. The cultures were incubated at 37 ◦C in a humidified incubator with
atmospheric conditions of 5% CO2. Every 3–5 days, the cultures were centrifuged, pelleted
and resuspended in 5–10 mL RPMI 1640 supplemented with 10% FBS. The cell count and
viability were measured by the trypan blue dye exclusion technique [34].

3.5. Cytotoxicity Testing

The cytotoxicity test was conducted to evaluate the cytotoxicity of the plant extracts
by measuring cell death caused by the plant extracts. The assay was conducted using
an MTT colorimetric assay as described by [2,19,31,35,36]. The MTT assay is based on
the reduction of the yellow-colored tetrazolium salt MTT 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) by NAD(P)H-dependent cellular oxidoreductase en-
zymes [37] to an insoluble dark-blue colored formazan that can be measured spectropho-
tometrically [38]. Formazan production indicates the number of viable cells; therefore, an
increase or decrease in cellular viability results in a change in the amount of formazan formed,
which indicates the degree of cellular cytotoxicity (CC50) caused by the plant extract.

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) was dissolved
in PBS to obtain a final concentration of 5 mg/mL and filtered to sterilize and remove
insoluble residue [35,36]. The assay was carried out in 96-well, flat-bottomed microtiter
plates. To each well, 200 µL of MT-4 cells (1 × 105 cells) in growth media was added. The
plates were preincubated for 24 h at 37 ◦C to allow stabilization. Then, 50 µL of the test
compounds (at a concentration of 4 mg/mL) were added to the first column of the well.
With a multichannel pipette, 50 µL was transferred (in triplicate) from the wells labeled 1
to wells labeled 2, and such transfers were continued (serial dilution), moving from left to
right, changing tips prior to mixing contents of the next column of wells. Finally, 50 µL was
discarded from the wells in column 12. Different concentrations (800–8.192 × 105 µg/mL)
of test compounds were prepared through serial dilution. Each dilution was tested in
triplicate. The negative control (NC) wells contained 50 µL of MT-4 cells in 0.5% DMSO [39].
Positive control (zidovudine, tenofovir, abacavir and nevirapine) drugs were also added
in triplicate.

A 96-well microtiter plate containing the test compounds, positive and negative
controls was incubated at 37 ◦C in a humidified atmosphere of 5% CO2 for 5 days. After
incubation, 20 µL of MTT reagent (5 mg/mL MTT in phosphate-buffered saline) was added
to each test well and control well. The plate was further incubated at 37 ◦C in a CO2
incubator for 4 h. After 4 h of incubation, 100 µL of DMSO was added to dissolve the
dark-blue formazan crystals from surviving cells [40]. After the formazan crystals were
dissolved completely, the resulting optical density (OD) readings were measured relative
to the controls on an ELISA plate reader at 570 nm at a reference wavelength of 620 nm [35].
The 50% cellular cytotoxicity concentration (CC50) was defined as the concentration of
the test compound that reduced the absorbance of the negative control by 50%. A dose-
response curve was plotted to enable the calculation of the concentrations that reduced
the number of viable cells by 50% (CC50). The concentration that determined cell viability
above 80% (CC20) was chosen as the maximum non-toxic concentration (MNTC).

3.6. Viral Culture

Human immunodeficiency virus type 1 (HIV-1IIIB) strain was obtained from the NIH
HIV Reagent Program, Division of AIDS, NIAID, NIH. Dr. Robert Gallo donated human
immunodeficiency virus-1 IIIB (ARP-398). HIV-1IIIB is highly capable of replicating in
human T cell lines and appears to be well adapted for in vitro culture in T cells [41]. The
frozen HIV-1IIIB vials were thawed by immersion in room temperature water, and the vial
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was swirled until viruses were thawed. Then, 400 µL of the virus was transferred to 75 cm2

tissue culture flasks (T75) containing 10 mL of 1 × 105 pelleted MT4 cells/mL, vortexed
and incubated at 37 ◦C for 1 hr for virus adsorption. After 1 hr, 20 mL of RPMI-1640 was
added gently and mixed with vortexing. The cells were then pelleted by centrifuging at
1500 rpm for 5 min. The pelleted cells were then washed and resuspended in 30 mL RPMI
1640 with L-glutamine and 20% fetal bovine serum in a T75 flask, incubated at 37 ◦C and
monitored for the development of cytopathic effects (CPEs). The MT-4 cells inoculated
with HIV showed markedly different cell growth and viability patterns than mock-infected
cells. The number of viable cells rapidly decreased at 24 h post-infection, and by day 4, only
2–4% of the infected MT-4 cells were viable. In contrast, the mock-infected cells grew well,
reaching a plateau between days 2 and 4. After 4 days, the viability of these cells began
to decline appreciably. The infected cells displayed cytopathic effects (CPE), including
becoming round, losing their surface characteristics, becoming refractile and diminishing
in size. By day 3, many infected cells developed balloon-like, cytoplasmic swelling. These
observations agreed with previous reports of many scholars who used the MT-4 cell line to
evaluate the anti-HIV activity of various compounds [2,36,42–44].

The virus infectivity test was performed to determine the infectious titer of the virus,
which can cause cytopathic effects (CPE) in tissue culture over a reasonable period of 3
to 10 days while cells in culture remain viable [31,37]. In addition, this procedure was
performed to quantify the amount of virus required to produce a cytopathic effect in 50%
of cell culture replicates (TCID50) [35]. CPE induced by the virus was observed under a
microscope after 3–4 days. The TCID50 was then calculated as described by [2,19]. For
the anti-HIV activity testing, 640 µL of HIV-1IIIB virus at 1.26 × 108 TCID50/mL was used
to infect 1 × 108 cell/mL. All procedures were carried out following biosafety guidelines
defined in the BMBL, NIH-CDC HHS Publication No. (CDC) 21-1112 [44].

3.7. Anti HIV Activity Testing

The effects of the test compounds in preventing cytopathic effects that occur as a result
of HIV-1 replication were evaluated by MTT colorimetric assay. MT-4 cells suspended at
1 × 108 cells/mL were infected with 640 µL of HIV-1IIIB virus at 1.26 × 108 TCID50/mL as
described in above. After infection, 200 µL HIV-infected MT-4 cells (1 × 105 cells/well) in
growth media were added to each well. The plates were preincubated for 24 h at 37 ◦C to
allow stabilization. Then, 50 µL of the test compounds (at a concentration of 4 mg/mL) were
added to the first column of the well. With a multichannel pipette, 50 µL was transferred
(in triplicate) from the wells labeled 1 to wells labeled 2. Such transfers were continued
(serial dilution), moving from left to right, changing tips prior to mixing contents of the
next column of wells. Finally, 50 µL was discarded from the wells in column 12. Different
concentrations (800 to 8.192 × 105 µg/mL) of test compounds were prepared through serial
dilution. Each dilution was tested in triplicate. The microtiter plates were incubated at
37 ◦C in a 5% CO2 incubator for 5 days. Two negative controls, infected untreated cells,
and uninfected untreated (mock) cells and four positive controls (zidovudine, tenofovir,
abacavir and nevirapine) were also included. After 5 days of incubation, cell viability was
determined by the MTT assay as described by [2,19,32,38,39,45,46].

A dose-response curve was plotted to calculate the concentrations that reduced viral
replication by 50% (IC50) [45,46]. The effective inhibitory concentration at 50% (IC50) is
defined as the concentration of the test compound that achieves 50% protection in infected
cultures. The efficacy of the test compounds, was determined by calculating the viral
inhibition rate (EmaxAV) using Equation (1), as previously described by [43,47].

Viral inhibition rate (EmaxAV) =
(ODT)HIV − (ODC)HIV
(ODC)mock − (ODC)HIV

× 100 (1)

where, (ODT)HIV is the optical density measured at a given concentration of the test
compound in HIV-infected cells; (ODC)HIV is the optical density measured for the negative
control infected untreated cells; (ODC)mock is the optical density measured for the negative
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control uninfected untreated cells. The selectivity index (SI) of the test compounds was
calculated using Equation (2), as the ratio of 50% cytotoxic concentration (CC50) to 50%
effective concentration (IC50). Thus, SI reflects both the antiviral activity and eventual
toxicity of the test compounds. Thus, a high SI value indicates low toxicity of the test
compound and high activity against the virus.

Selectivity index (SI) =
50% cytotoxic concentration (CC50)
50% Inhibitory concentration (IC50)

(2)

3.8. Docking Experiments

The docking studies were performed on MOE2015 software package using HIV-1 RT
in complex with known inhibitor Nevirapine (PDB ID: 1JLB) and wild-type HIV-1 protease
complexed with known antiviral atazanavir (PDB ID: 3EL9). The proteins were prepared
by first removing all water molecules, and in the case of protease also the sulfate and
formate ions present in the PDB file. Then, hydrogens were added, and the structures
were protonated. For the ligands, a first optimization step was performed on 1 and 3 using
molecular mechanics forcefield MMFF94x and optimized using the DFT method at the
B3LYP/6–31G* level (gas phase) using Gaussian09. To validate the docking protocol used,
known inhibitors Nevirapine and Saquinavir were removed from their corresponding
binding pockets and redocked. The Root Mean Square Deviation (RMSD) values from the
known co-crystallized conformation were 0.4421 Å and 1.6038 Å, respectively. Compounds
1–3 were docked using MOE2015 with triangle matcher, scoring by London dG, 30 poses
as placement method and rigid receptor, GBVI/WSA dG 5 poses as refinement method in
both targets. The docking procedure was repeated in three independent runs. The lowest
scoring affinity pose in each ligand was used to study the ligand interactions.

3.9. Statistical Analysis

The CC50 and IC50 values were calculated with GraphPad Prism v9 using the equation
for sigmoidal dose-response (variable slope). Statistical significance in the comparison
between control drugs and extract cytotoxicity and antiviral activity parameters (CC50,
EmaxC, IC50 and EmaxAV) were determined by one-way ANOVA followed by Dunnett’s
post hoc tests. A difference was considered significant when p < 0.05.

4. Conclusions

The present study has shown that C. megalocarpus has antiviral compounds in addition
to other biologically active compounds. Specifically, eudesmane-type sesquiterpenes 5β-
Hydroxy-8α-methoxy eudesm-7(11)-en-12,8-olide (1), 5β,8α-Dihydroxy eudesm-7(11)-en-
12,8-olide (2) and 5β-Hydroxy-8H-β-eudesm-7(11)-en-12,8-olide (3) from C. megalocarpus
have been found, characterized and promising anti-HIV activity discovered. These findings
hint that members of this plant family may provide compounds for new anti-virals for
treating HIV.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27207040/s1. The HRMS, and NMR spectra of the
compounds are available in the Supplementary Information.
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