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Abstract

Purpose

The purpose of this study was to compare the effect of treating skeletal muscle cells with

media conditioned by postprandial ex vivo human serum fed with either isonitrogenous Non-

Essential Amino Acid (NEAA) or a whey protein hydrolysate (WPH) on stimulating Muscle

Protein Synthesis (MPS) in C2C12 skeletal muscle cells.

Methods

Blood was taken from six young healthy males following overnight fast (fasted) and 60 min

postprandial (fed) ingestion of either WPH or NEAA (0.33 g.kg-1 Body Mass). C2C12 myo-

tubes were treated with media conditioned by ex vivo human serum (20%) for 4 h. Activation

of MPS signalling (phosphorylation of mTOR, P70S6K and 4E-BP1) were determined in

vitro by Western Blot and subsequent MPS were determined in vitro by Western Blot and

surface sensing of translation technique (SUnSET) techniques, respectively.

Results

Media conditioned by NEAA fed serum had no effect on protein signalling or MPS compared

to fasted, whereas media conditioned by WPH fed serum significantly increased mTOR

(Ser2448), P70S6K and 4E-BP1 phosphorylation (p<0.01, p<0.05) compared to fasted

serum. Furthermore, the effect of media conditioned by WPH fed serum on protein signalling

and MPS was significantly increased (p<0.01, p<0.05) compared to NEAA fed serum.
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Conclusion

In summary, media conditioned by NEAA fed serum did not result in activation of MPS.

Therefore, these in vitro findings suggest the use of isonitrogenous NEAA acts as an effec-

tive control for comparing bioactivity of different proteins on activation of MPS.

1. Introduction

Muscle protein synthesis (MPS) is integral to the repair, growth and maintenance of skeletal

muscle and sensitive to nutrient ingestion. Several studies have assessed the role of protein and

amino acids in the regulation of MPS [1–4]. The importance of appropriate controls in estab-

lishing the bioactivity of compounds in human MPS studies has been emphasised in recent

reviews by Morton et al. [5] and Phillips [6]. These meta-analyses include many studies report-

ing on the effects of amino acid and protein supplementation on MPS which use either a less

appropriate (including carbohydrate and collagen) or no feeding control/placebo [5,7,8]. Fur-

thermore, the European Food Safety Authority (EFSA) advises “human intervention studies

assessing the effect of a specific protein source/constituent against another isonitrogenous pro-

tein source/constituent were considered as pertinent to the claim, whereas studies controlling

for energy only (e.g. using isocaloric carbohydrate sources as placebo) could not be used for

the scientific substantiation of these claims" [9] as comparisons of a test protein to isoenergetic,

but not isonitrogenous carbohydrate control is more likely to show an effect of protein supple-

mentation [6]. Therefore, validation of appropriate non-bioactive isonitrogenous controls is

important for the future evaluation of bioactivity of protein formulations.

Studies assessing the role of protein and amino acids in the regulation of MPS establish a

close relationship between the extracellular concentration of essential amino acids (EAA) and

the rate of MPS [2,10,11], and leucine as the most potent in in vitro [12] and human studies

[8,13–16]. The efficacy of protein and/or amino acid intake to stimulate MPS thereby depends

on the pattern and magnitude of change in extracellular EAA evoked following ingestion that,

in turn, is dependent on the type, amount and timing of protein or amino acid ingestion. Pre-

vious studies also indicate that co-ingestion of non-essential amino acids (NEAA) is surplus to

requirement to stimulate MPS when EAA are present [1–4,17] which is, perhaps, unsurprising

as NEAA are considered readily available in plasma, interstitial and intracellular muscle com-

partments. Therefore, a balanced mix of NEAA may also act as an appropriate isonitrogenous

control (null) to assess the effect of specific proteins on MPS in humans.

We have recently developed a muscle cell-based model to evaluate the MPS response to

ingestion of milk proteins and their derivatives [18]. In this model, conditioning media with

human serum resulted in an increase in MPS in fully differentiated C2C12 skeletal muscle

cells. Furthermore, it was also possible to demonstrate that conditioning media with human

serum sampled 60 min post-ingestion of whey protein stimulated MPS in mature C2C12 myo-

tubes to a greater extent than serum sampled after an overnight fast [18]. Whey is a high EAA

(~50% EAA) containing, soluble milk protein proven to stimulate MPS in young and elderly

populations [19,20]. Ingestion of ~ 0.33g.kg-1 body mass whey protein results in post-ingestion

aminoacidaemia and an increase in circulating EAA of approximately 3-fold within 60 min

[18]. Though equivocal, it seemed plausible to suggest the augmented MPS response of myo-

tubes exposed to ‘fed’ vs. ‘fasted’ serum conditioned media was due to the increase in circulat-

ing EAA in fed serum and that a similar aminoacidaemia through increase in [NEAA] would

not result in an increase in MPS. To test this hypothesis, we fed a NEAA formulation designed
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by Norton et al. (in review), isonitrogenous to whey protein, to human participants. Using the

C2C12 in vitro model established previously [18], serum sampled pre- and post-feeding was

used to condition media of C2C12 myotubes to evaluate change in intracellular signalling and

MPS. The purpose of this study was to evaluate i) if treating skeletal muscle cells with media

conditioned by human serum fed a NEAA formulation resulted in increased intracellular sig-

nalling and MPS and (ii) if media conditioned by human serum fed a NEAA formulation was

comparable to the effect of media conditioned by human serum fed WPH.

2. Materials and methods

2.1 Ethical approval

The study was approved by the local ethics committee at the University of Limerick (EHS-

REC_2013_01_13) and conformed to the standards set by the Declaration of Helsinki. Six

young healthy male participants, (26±4.7 y; 77.7±10.1 kg, 1.77±0.08 m, 25±3.3 kg�m-2, 19

±6.9% BF) agreed to participate in the study, gave informed written consent and completed

the intervention trial.

2.2 Study design

Participants reported to the lab following an overnight fast (>10 h) and having not exercised

in the previous 24 h on two separate occasions, separated by at least 7 d. A blood sample from

the antecubital vein was collected at baseline (t = 0 min) by a clinical nurse on each day as

described previously [18]. Administered double blind participants consumed 0.33 g.kg-1 body

mass of either an isonitrogenous non-bioactive NEAA control beverage or a WPH (500 mL;

7.6% w/v) beverage within 5 min (Table 1). As aminoacidemia and MPS have been previously

shown to peak between 45–90 min following protein feeding [21,22], an additional blood sam-

ple was collected 60 min postprandial.

2.3 Amino acid analysis

Plasma amino acid (AA) profile of each participant at 0 and 60 min postprandial was deter-

mined as reported previously [23] on the Agilent 1200 RP-UPLC system (Agilent Technolo-

gies, Santa Clara, CA, USA) equipped with an Agilent 1260 binary pump and a G1367C

automated liquid handling system. AA separation, data acquisition and quantitative analysis

was performed as discussed previously [18].

2.4 Metabolic/Humoral biomarker analysis

Plasma insulin was determined using a commercial kit (Merck Millipore) on a MAGPIXTM

Multiplex reader and processed using Bio-Plex ManagerTM MP.

2.5 Cell culture

In vitro analysis was carried out using the murine skeletal muscle cell line C2C12. Cells were

cultured, sub-cultured and differentiated (up to 7 d) in DMEM medium as previously

described [18,24]. Prior to treatment with media conditioned by human serum, fully differen-

tiated myotubes were nutrient deprived in an AA and serum free DMEM medium (US biolog-

ical, Salem, MA, USA), supplemented with 1 mM sodium pyruvate (GE Healthcare, Thermo-

Fisher), 1% (v/v) penicillin/streptomycin solution, 1 mM L-glutamine, 6 mM D-glucose

(Sigma-Aldrich), and 34 mM NaCl (Sigma-Aldrich) (pH 7.3).
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2.6 Muscle protein synthesis

The surface sensing of translation technique (SUnSET) [25] was used to measure muscle pro-

tein synthesis in C2C12 myoutbes following treatment with media conditioned by ex vivo
human serum (fed or fasted). Differentiated and mature C2C12 myotubes were nutrient

deprived in AA and serum free DMEM medium for 1 h, following which they were treated

with media containing 20% human serum (fed or fasted) and 1 μM puromycin (Merck Milli-

pore Limited) for a further 4 h. The optimum nutrient deprivation time, puromycin, condi-

tioned media treatment time and percentage human serum used has been established

previously [18]. MPS and protein signalling was determined from cell lysates as described pre-

viously [18,24] and detailed below.

2.7 Immunoblotting

Protein lysates (30 μg) were denatured and separated by gel electrophoresis using 4–15% linear

gradient SDS-PAGE precast gels (Mini-Protean TGX Stain-free, Bio-Rad 456–8083). Follow-

ing electrophoresis, total protein (loading control) in each lane of the gel was determined

Table 1. Composition of WPH and isonitrogenous NEAA. Dose scaled per kg body mass (0.33 g.kg-1), and amount

reported typical for an 80 kg participant. BCAA, branched chain amino acids; EAA, essential amino acids; NEAA,

non-essential amino acids; AA, amino acids.

WPH NEAA Control

Energy (kJ) 545 442

Degree of hydrolysis (%) 13.1 0

Macronutrient Content

Protein or AA (g) 26.4 26.4

Carbohydrate (g) 1.6 0

Fat (g) 2.0 0

EAA

Leucine (g) 2.9 0

Isoleucine (g) 1.7 0

Valine (g) 1.6 0

Histidine (g) 0.5 0

Lysine (g) 2.6 0

Methionine (g) 0.6 0

Phenylalanine (g) 0.9 0

Threonine (g) 2.0 0

Tryptophan (g) 0.5 0

NEAA

Alanine (g) 1.4 2.7

Arginine (g) 0.7 0

Aspartic Acid (g) 3.0 3.2

Cysteine (g) 0.7 0

Glutamic Acid (g) 4.9 9.6

Glycine (g) 0.5 1.1

Proline (g) 1.7 4.3

Serine (g) 1.4 3.6

Tyrosine (g) 0.8 2.0

Total BCAA (g) 6.3 0

Total EAA (g) 13.3 0

Total NEAA (g) 15.1 26.4

https://doi.org/10.1371/journal.pone.0220757.t001
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using stain-free UV-induced fluorescence that activates tryptophan residues on the gel (UVI-

TEC Cambridge Imaging system, UVITEC, Cambridge, UK). Semi-dry transfer technique

(Trans-blot1 TurboTM Bio-Rad) was adapted to transfer proteins from the UV-activated gel

onto a 0.2 μm nitrocellulose membrane. Membranes were probed with the primary antibodies

(1:1000, dissolved in 5% BSA + TBST (0.05% Tween)) for puromycin (MABE343 anti-puro-

mycin, clone 12D10 mouse monoclonal, Merck Millipore Limited), phosphorylated-4E-BP1

(Thr37/46) (#2855), 4E-BP1 (#9644), phosphorylated-P70S6K (Thr389) (#9234), P70S6K

(#2708), phosphorylated-mTOR (Ser2448) (#2971), mTOR (#2972) and the reference protein

β-actin (Cell Signaling). Protein quantification was determined using fluorescence, and mem-

branes were probed with IRDye1 800CW anti-rabbit secondary antibody (1:10000, dissolved

in 5% BSA + TBST (0.05% Tween)) (926–32211, LI-COR Biosciences UK Ltd, UK) for all

proteins except puromycin where IRDye 800CW goat anti-mouse IgG2a-specific (LI-COR

Biosciences UK Ltd) secondary antibody was used. Images were captured in the UVITEC

Cambridge Imaging system (UVITEC, Cambridge, UK) and single band and whole-lane

(puromycin and total protein) band densitometry was conducted using NineAlliance UVITEC

Software (UVITEC, Cambridge, UK). Following probing with phospho- antibodies, mem-

branes were stripped according to the manufacturer’s instructions (Millipore, #2504) before

re-probing with pan antibodies. For quantification, phosphorylated proteins were normalised

to their respective total protein, puromycin was normalised to the total protein as determined

from the stain-free lane density.

2.8 Statistical analysis

GraphPad Prism v7.03 was used for statistical analysis. Data were tested for normality (Sha-

piro-Wilk test) and homogeneity of variances (Levene’s test). Paired Samples T-tests were used

to analyse differences in the plasma [insulin] and [AA] between fasted and fed human condi-

tion. 2-Way Repeated Measures ANOVA were used to establish main effects followed by

Tukey’s multiple comparisons post-hoc where main effects were evident. Paired sample T-Test

were used post-hoc to establish if media conditioned by human serum sampled post-ingestion

of the NEAA formulation resulted in increased intracellular signalling and MPS in C2C12

myotubes and un-paired sample T-Test to establish if these effects were different to the effect

of media conditioned by human serum sampled post-ingestion of WPH. The level of signifi-

cance was set at 95% (p< 0.05).

3. Results

Plasma [insulin] and [AA] following an overnight fast and 60 min following WPH or NEAA

ingestion (0.33 g.kg-1 body mass) are presented in Table 2. Relative to fasting, {AA] increased

significantly following WPH ingestion (p<0.05) and only[NEAA] and [threonine]increased

following ingestion of NEAA (p<0.05) (Table 2). Total [EAA] increased by 97% following

WPH ingestion but remained at fasted levels following ingestion of NEAA. Total [NEAA]

increased 34% and 55% following WPH and NEAA ingestion, respectively. Plasma [insulin]

increased by 44% following WPH (p<0.05) and 41% following NEAA ingestion (p<0.05).

A 2-Way ANOVA revealed a significant difference between conditions with main effects

for treatment (protein) and interaction (protein�feeding) (p<0.05). Cells treated with media

conditioned by WPH-fed serum observed significantly increased mTOR phosphorylation

(p<0.01) (Fig 1) relative to its corresponding fasted serum (Fig 1A and 1B). This increase in

mTOR phosphorylation was consistently observed in serum from each participant (n = 6) (Fig

1A). In comparison, NEAA-fed serum did not phosphorylate mTOR (Fig 1) which remained

at a similar level to its corresponding fasted serum (Fig 1A and 1B). Furthermore, when
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normalised to corresponding fasted serum (Fig 1B) mTOR phosphorylation in the WPH-fed

condition was significantly increased (p<0.01) compared to the NEAA-fed condition.

Stimulation of the downstream targets of mTOR activation, P70S6K and 4E-BP1, occurred

following treatment of C2C12 myotubes with media conditioned by serum (Fig 2). Like

mTOR, a 2-Way ANOVA revealed a significant difference between conditions (p<0.05) for

activation of P70S6K (main effect for feeding) (Fig 2A and 2B) and 4E-BP1 (main effects for

feeding and interaction protein�feeding) (Fig 2C and 2D), both of which were significantly

increased (p<0.05) in the WPH-fed condition relative to its corresponding fasted serum.

Comparatively, no change in P70S6K (Fig 2A and 2B) or 4E-BP1 (Fig 2C and 2D) phosphory-

lation relative to fasted, following treatment with media conditioned by NEAA-fed serum was

evident. This was consistently observed in each participant (Fig 2A and 2C). A significant

increase (p<0.05) in P70S6K (Fig 2B) and 4E-BP1 (Fig 2D) phosphorylation was observed in

media conditioned by WPH-fed compared to NEAA-fed serum (Unpaired T-test).

The SunSET technique [25] was adopted to verify that mTOR, P70S6K and 4E-BP1 activa-

tion led to an increase in MPS in skeletal muscle cells. A 2-Way ANOVA revealed a significant

difference between conditions (main effect for feeding) (p<0.05). No statistically significant

Table 2. Plasma insulin and amino acid at baseline (0 min) and postprandial (60 min). EAA, essential amino acids; NEAA, non-essential amino acids.

WPH NEAA Control

Time (min) 0 60 Δ (0–60) 0 60 Δ (0–60)

Humoral Biomarkers

Insulin (pM) 92 ± 33 133±38� 41 ± 14 67 ± 26 95 ± 31� 28 ± 6

EAA (μmol/L)

Leucine 127 ± 5 333 ± 11� 207 ± 11 151 ± 13 138 ± 10 -13 ± 7#

Isoleucine 63 ± 5 195 ± 11� 133 ± 8 74 ± 8 67 ± 6 -7 ± 4#

Valine 228 ± 7 398 ± 10� 170 ± 9 246 ± 16 242 ± 12 -5 ± 9#

Histidine 77 ± 2 91 ± 4� 14 ± 3 83 ± 5 85 ± 4 2 ± 3#

Lysine 183 ± 8 363 ± 17� 180 ± 13 172 ± 14 183 ± 14 11 ± 6#

Methionine 22 ± 3 45 ± 2� 23 ± 4 26 ± 2 26 ± 2 0 ± 1#

Phenylalanine 53 ± 2 71 ± 3� 18 ± 1 57 ± 5 51 ± 11� -6 ± 2#

Threonine 117 ± 12 230 ± 14� 112 ± 5 108 ± 9 151 ± 11� 44 ± 4#

Tryptophan 67 ± 4 124 ± 7� 57 ± 5 72 ± 8 71 ± 6 -1 ± 4#

Total EAA (μmol/L) 936 ±28 1849 ±45� 914 ± 41 989 ± 67 1013 ± 55 24 ± 37#

± 37

NEAA (μmol/L)

Alanine 267 ± 33 416 ± 40� 148 ± 12 326 ± 37 571 ± 56� 245 ± 20#

Arginine 76 ± 5 127 ± 9� 52 ± 7 80 ± 9 79 ± 8 -1 ± 5#

Asparagine 125 ± 8 187 ± 12� 62 ± 5 131 ± 20 255 ± 18� 125 ± 22#

Aspartic acid 0 ± 0 4 ± 1� 3 ± 1 0 ± 0 11 ± 2� 11 ± 2#

Glutamine 547 ± 20 653 ± 37� 106 ± 20 616 ± 33 746 ± 43� 131 ± 23

Glutamic acid 48 ± 11 63 ± 7� 14 ± 6 36 ± 8 137 ± 13� 101 ± 12#

Glycine 215 ± 20 248 ± 24� 33 ± 6 186 ± 17 328 ± 30� 143 ± 15#

Tyrosine 62 ± 4 100 ± 6� 38 ± 3 60 ± 7 98 ± 11� 38 ± 5

Total NEAA (μmol/L) 1341 ± 59 1798 ± 72� 457 ± 18 1433 ± 92 2227 ± 126� 793 ± 66#

Total AA (μmol/L) 2276 ± 81 3647 ± 67� 1371 ± 33 2422 ± 149 3239 ± 175� 817 ± 97#

Data are Mean ± SEM (n = 6); NA: Not Available

�within groups p<0.05 and
#between groups p<0.05

https://doi.org/10.1371/journal.pone.0220757.t002
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increase in MPS occurred in skeletal muscle cells treated with media conditioned by NEAA-

fed or WPH-fed serum when compared to treatment with media conditioned by their corre-

sponding fasted serum (Fig 3). However, normalised to the corresponding fasted serum, sig-

nificantly greater MPS was detected in the cells treated with media conditioned by WPH-fed

compared with NEAA-fed serum (p<0.05) (Fig 3B).

4. Discussion

The importance of the use of appropriate negative controls in human MPS studies has recently

been emphasised by key opinion leaders in the field [5,6]. Many studies in these meta-analyses

report on the effects of amino acid and protein supplementation on MPS in humans which use

less appropriate controls [5,7,8]. In line with the scientific opinion of EFSA, that human inter-

vention studies assessing the effect of different proteins on physiological processes require an

isonitrogenous comparator, a NEAA-only containing formulation isonitrogenous to whey

protein, was fed to human participants in equal dose to a whey protein hydrolysate. Fed and

fasted serum was used to condition media of C2C12 myotubes and evaluate change in intracel-

lular signalling and MPS. Our findings show that media conditioned by WPH-fed serum stim-

ulated kinases of the mTOR pathway and MPS in vitro, however media conditioned by

NEAA-fed serum did not.

As expected, plasma EAA concentration, including leucine, were not significantly elevated

from fasting levels following NEAA ingestion, but were increased following WPH ingestion

(Table 2). Elevated plasma levels of EAA post protein feeding have previously been shown to

Fig 1. Phosphorylation of mTOR in response to treatment with media conditioned by ex vivo human serum (n = 6). C2C12 myotubes were nutrient

deprived for 1 h followed by treatment with media conditioned by fasted (fast) or 60 min postprandial (fed) ex vivo serum for 4 h. Postprandial serum was

obtained 1 h after ingesting WPH or isonitrogenous NEAA. Densitometric analysis of (A) mTOR phosphorylation before and after treatment with media

conditioned by WPH or NEAA-fed ex vivo serum and (B) relative to fasted ex vivo serum. (C) Representative immunoblot of mTOR phosphorylation,total

mTOR and β-Actin. Data reported as Mean±SEM relative to respective total proteins, ��within groups p<0.01, ##between groups p<0.01.

https://doi.org/10.1371/journal.pone.0220757.g001
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robustly increase MPS [15,26]. Rennie and colleagues reported that an increase of ~80 μmol/L

in extracellular leucine is required to increase MPS in vivo [27,28]. Here, we observed an

increase greater than ~200μmol/L for WPH-fed, however, this threshold was not reached in

NEAA-fed condition and likely explains the lack of activation of MPS in our model, confirm-

ing NEAA as an effective isonitrogenous non-bioactive control.

Several humoral factors may act individually or collectively to stimulate MPS. Whereas cir-

culating EAA are thought to be the primary drivers of MPS, protein ingestion has been shown

to induce an increase in insulin, which is deemed ‘permissive’ with respect to MPS [29]. In this

study, we report a small increase (~40–45%) in circulating insulin with ingestion of both WPH

and NEAA. As reviewed elsewhere [30] and following a recent meta-analysis [31], large

increases in MPS are due to EAA regulating anabolic responses, whereas insulin regulates

Fig 2. Phosphorylation of P70S6K and 4E-BP1 in response to treatment with media conditioned by ex vivo human serum (n = 6). C2C12 myotubes were

nutrient deprived for 1 h followed by treatment with media conditioned by ex vivo fasted (fast) or 60 min postprandial (fed) serum for 4 h. Postprandial serum

was obtained 1 h after ingesting WPH or isonitrogenous NEAA. Densitometric analysis of P70S6K and 4E-BP1 phosphorylation before and after treatment

with media conditioned by WPH or NEAA-fed serum (A, C) and relative to fasted serum (B, D). Representative immunoblots of phospho-P70S6K, phospho-

4E-BP1, their respective total proteins and β-Actin (E). Data reported as Mean±SEM relative to their respective total proteins �within groups p<0.05, #between
groups p<0.05.

https://doi.org/10.1371/journal.pone.0220757.g002
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anti-catabolic (MPB) responses independent of AA availability [30,31]. Insulin, even in low

concentrations as observed here (WPH: 133 ± 38; NEAA 95 ± 31), has been shown to attenuate

MPB in vivo [32], however, this is not thought to impact MPS (the focus of this paper) when

EAA delivery is not increased as in the case of the non-bioactive NEAA control. Consumption

of NEAA did result in insulin-mediated clearance of EAAs from the circulation with small

reductions in circulating EAAs ranging from 1–10%. As a result, we postulate that only an ele-

vation in circulating EAA would result in increased signalling and MPS in response to media

conditioned by ex vivo protein-fed serum. Therefore, in the absence of an increase in circulat-

ing EAA as observed here, we anticipate that an isonitrogenous NEAA formulation can act as

an effective non-bioactive control for further investigation of the effect of protein feeding on

MPS in this model.

Fig 3. MPS in response to treatment with media conditioned by ex vivo human serum (n = 6). C2C12 myotubes were nutrient deprived for 1 h followed by

treatment with ex vivo fasted (fast) or 60 min postprandial (fed) human serum for 4 h. Postprandial serum was obtained 1 h after ingesting WPH or

isonitrogenous NEAA. Densitometric analysis of (A) MPS before and after treatment with media conditioned by WPH or NEAA-fed serum and (B) relative to

fasted serum. (C) Representative immunoblot of MPS (measured by puromycin incorporation) relative to total protein (loading control). Data reported as

Mean±SEM, #between groups p<0.05.

https://doi.org/10.1371/journal.pone.0220757.g003
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The potential of media conditioned by ex vivo human serum fed with isonitrogenous

NEAA or WPH to activate MPS in C2C12 myotubes was measured by phosphorylation of

mTOR and its downstream molecular proteins P70S6K and 4E-BP1. Dickinson and colleagues

determined that activation of mTOR and its downstream signalling proteins P70S6K and

4E-BP1 is required for stimulation of human skeletal MPS by EAA [33]. Addition of NEAA-

fed serum to condition cell media did not stimulate mTOR, P70S6K or 4E-BP1 phosphoryla-

tion in C2C12 skeletal muscle cells. This confirms a lack of bioactivity for the activation of

MPS in the NEAA formulation. In comparison, media conditioned by WPH-fed serum signifi-

cantly increased phosphorylation of mTOR, P70S6K and 4E-BP1, expressed as absolute values

(Figs 1A, 2A and 2C), normalised relative to fasted serum (Figs 1B, 2B and 2D) and in com-

parison to NEAA-fed. These in vitro data confirm the bioactivity of WPH to activate MPS.

Furthermore, phosphorylation of mTOR, P70S6K and 4E-BP1 with media conditioned by

WPH-fed serum resulted in significantly greater stimulation of MPS than media conditioned

by NEAA-fed serum (Fig 3B), providing further validation of the NEAA formulation used in

this study as an isonitrogenous, non-bioactive control.

In this study, we have demonstrated that an isonitrogenous NEAA supplement can be used

as a non-bioactive control for MPS in protein feeding studies. As discussed, NEAA have previ-

ously been demonstrated not to be primarily responsible or required to stimulate MPS [1–

3,17]. Similarly, unlike a bioactive WPH supplement, the isonitrogenous non-bioactive NEAA

control used here did not alter protein signalling activity of mTOR, P70S6K and 4E-BP1 or

MPS levels relative to its corresponding fasted serum. This suggests that in acute feeding

studies, this isonitrogenous non-bioactive NEAA supplement can serve as an appropriate con-

trol. However, it should be noted as a limitation of this study that media conditioned by

WPH-fed serum did not result in a statistically significant increase compared its correspond-

ing fasted serum. Further studies should look to add EAA to fasting serum to further validate

this model.

5. Conclusions

In conclusion, we have proposed and demonstrated the use of an isonitrogenous NEAA con-

trol that does not affect levels of circulating biomarkers, does not mediate signalling through

the mTOR pathway and neither augments nor attenuates MPS when used to condition media

of skeletal muscle cells in vitro. We have also demonstrated that an isonitrogenous non-bioac-

tive NEAA control can be used as a comparator against a bioactive in this model. This study

also provides further evidence on the use of pre- and post-fed ex vivo human serum in regulat-

ing MPS in vitro.
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