
doi: 10.1093/af/vfaa005

April 2020, Vol. 10, No. 2

This is an Open Access article distributed under the terms of the Creative 
Commons Attribution Non-Commercial License (http://creativecommons.
org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 
For commercial re-use, please contact journals.permissions@oup.com

© Seidel, Krattenmacher, and Thaller

Feature Article

Dealing with complexity of new phenotypes in 
modern dairy cattle breeding
Anita Seidel,1 Nina Krattenmacher,1 and Georg Thaller

Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24098 Kiel, Germany

1These authors contributed equally to this work.

Key words: breeding goal, dairy cattle, phenomics, phenotype

Introduction

Worldwide, animal breeding has played and still plays an im-
portant role in increasing the production efficiency of animals, 
e.g., dairy cattle. The development of low-cost genotyping 
strategies such as single nucleotide polymorphisms (SNPs) and 
genotyping-by-sequencing (Elshire et al., 2011; Kumar et al., 
2012) has made genomic evaluations indispensable for modern 
dairy cattle breeding methods (Meuwissen et al., 2001; de los 
Campos et al., 2013; Gianola, 2013) and programs (Schaeffer, 
2006; Lillehammer et al., 2011; Pryce and Daetwyler, 2011) and 
represented a quantum leap—often compared to the successful 
implementation of artificial insemination. However, the quality 
of any genomic breeding value estimation strongly depends on 
the number of phenotyped animals and the observed herit-
ability of the used phenotypes (Daetwyler et  al., 2008). The 
success of animal breeding is still mainly based on phenotypic 

animal observations and the tremendous progress made is 
largely due to appropriate trait definitions and comprehensive 
performance tests.

Animal breeding companies as well as dairy farmers face 
several challenges concerning the sustainability of the entire 
dairy production system. This includes the impact of livestock 
on the environment and climate, the concern of increasing 
scarcity of natural resources (including genetic diversity) and 
feed, or concerns about animal welfare and health, and anti-
microbial resistance. In the era of phenomics, the availability 
of robust phenotypes for these new issues is important. The 
technical revolution and the availability and processing of high 
amounts of data play a key role in this context. New pheno-
types are based on large-scale or advanced measuring tech-
nologies. Sensor recordings play an increasingly important 
role for a wide range of traits (e.g., methane emissions, rumen 
microbiome characterization, mid-infrared spectra from milk 
samples, and behavioral traits).

Especially in the initial phase of recording, when the use 
of novel phenotypes is often not yet or insufficiently validated 
by research, pooling of data across different research part-
ners within and across countries can be very helpful. It allows 
for a faster and sound implementation in breeding programs. 
Nevertheless, data pooling can get complicated if  data are 
measured using different protocols or sensor technologies or 
if  data processing is handled differently or not transparently.

All phenotypes have an inherent value that can be estimated 
as the contribution of an additional record to the genetic gain 
within a modern breeding goal (González-Recio et al., 2014). 
However, integrating a variety of new phenotypes into existing 
breeding programs is challenging due to the increasing com-
plexity and unknown or potentially undesirable genetic correl-
ations between different traits in the breeding goal.

Our goal here is to give a brief  overview about the devel-
opment and use of new phenotypes in the era of phenomics 
as well as to show constraints when implementing them in 
modern dairy cattle breeding programs.

Evolving new phenotypes in the era of phenomics
The definition of the phenotype of an organism can be 

broad; in general, it refers to a set of traits of an organism and 
includes morphological and physiological characteristics as 

Implications

• Dairy cattle breeding companies and dairy cattle farm-
ers face several challenges resulting in an increasing 
spectrum of traits with relevance to the breeding goal.

• Many of the evolving new traits are difficult-to-measure 
and their biological and genetic background as well as 
their relationship with other traits of interest is not yet 
well-understood which hinders proper implementation 
in breeding programs.

• Interdisciplinary and across-country data pooling and 
research including the application of innovative new 
methods helps to adapt breeding goals faster and bet-
ter to the new requirements.
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well as behavioral patterns. Traits are identifiable characteris-
tics of animals which differ from each other, and which can be 
measured and analyzed as statistical quantities. In the context 
of animal breeding, important traits are those that have a con-
siderable genetic determination and which either have an im-
mediate economic, social, or environmental value.

Mike Coffey’s often quoted statement “In the age of the 
genotype [genomics], phenotype is king” points out that 
measuring and recording of appropriate phenotypes is crit-
ical for genomic selection to function accurately. In the era 
of phenomics, the phenotype is even more in the spotlight of 
research. Difficult-to-measure phenotypes and complex inter-
actions between old and novel breeding goal traits have become 
increasingly important. Currently, three main trait complexes 
are considered meaningful in the future: on the one hand, effi-
ciencies of energy, nutrients, and environmental resources, on 
the other hand, health and resistance characteristics as well as 
animal well-being (Boichard and Brochard, 2012). This results 
in the challenge of obtaining precise and comprehensive infor-
mation for these traits.

Recent engineering advances and the decreasing cost of 
electronic technologies have allowed the development of 
sensing solutions supporting precision farming that automat-
ically collect data, such as physiological parameters, new pro-
duction measures, and behavioral traits. One of the current 
target values is sensor-derived activity patterns (e.g., from ped-
ometers, transponders, bolus, and camera systems) from which 
characteristics of specific animal behavior can be derived. In 
addition, conclusions regarding health, fertility, or well-being 
can be drawn from individual deviations from such animal-
specific patterns. Furthermore, animal interactions and social 

behavioral characteristics (aggressive vs. tolerant animals) as 
well as social networks within a herd can be derived (Foris 
et al., 2019; Salau et al., 2019).

Moreover, in dairy science mid-infrared spectroscopy has 
been pointed out as a potential tool to collect data at the popu-
lation level for phenotypic and genetic purposes, and, thus, is 
an evolving research topic. Commonly, mid-infrared spectros-
copy is used to predict quality traits in milk samples. In add-
ition to traditional traits (e.g., protein, fat, lactose, and urea 
contents), also milk characteristics like fatty acid, protein and 
mineral composition, milk coagulation, milk acidity, mela-
mine content, and ketone bodies can be predicted and used to 
estimate, e.g., body energy status and methane emissions (de 
Marchi et al., 2014).

Beyond this, research in the world of “omics” has led to dif-
ferent levels of phenotypes. The study of the omics cascade 
includes investigations based on metabolomes, proteomes, tran-
scriptomes, and genomes (Figure 1). Metabolomics applied to 
animal breeding might become a cornerstone of the next gen-
eration of phenotyping approaches that are needed to refine 
and improve trait description and, in turn, to set up innovative 
breeding value estimations (Fontanesi, 2016). Knowledge of 
the biological background and genetic architecture of new and 
conventional traits can be enlarged using metabolomic infor-
mation, thereby opening opportunities for novel applications 
in animal breeding. For example, biomarkers for particular 
physiological states or predispositions of animals can be used 
to breed more robust animals, as pointed out by Klein et al. 
(2012) who revealed that the level of glycerophosphocholine in 
milk samples is a suitable biomarker for the risk of ketosis, and, 
furthermore, allows selection for metabolically stable cows. 

Figure 1. The omics cascade in systems biology approach is linking several levels of biological information of a certain phenotype. Adapted from Schwerin, 
unpublished.
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Based on these findings, Ehret et  al. (2015) combined SNP 
information, routine milk recording data, and, among other 
metabolites, the concentration of glycerophosphocholine in in-
dividual milk samples to predict the cow’s individual ketosis 
risk by machine learning techniques (Figure 2), and, thereby 
first showed the potential of these approaches.

Recently, effects of animal production on climate (e.g., emis-
sion of methane) have become an important topic, at least in 
the scientific community, whereas no concrete efforts to in-
clude greenhouse gas emissions in breeding goals are currently 
in progress; however, given that greenhouse gas emissions are 
a much-debated political topic, studies to include this trait in 
breeding goals may be conducted in the near future. A series of 
studies revealed a moderate heritability of methane emissions 
showing that selective breeding for lower-emitting animals is 
possible (de Haas et al., 2011; Hayes et al., 2013; Bell et  al., 
2014). However, many direct phenotyping methods currently 
available are expensive and time-consuming, and therefore, the 
number of possible measurements is limited to a few animals. 
In addition, the gold standard method (respiration chambers) 
has the disadvantage that animals are measured in an artifi-
cial environment. Other methods that can be used in produc-
tion situations (pasture, feedlot, or dairy feeding station) allow 
collection of methane samples for only a part of a day and 
require repeated measurements (Pickering et al., 2015). Given 
that direct phenotyping techniques are difficult and expensive, 
it can be assumed that recording on a large scale is only feas-
ible using a proxy or, most likely, a combination of different 
proxies (i.e., indicators or indirect traits) which are sufficiently 

correlated to methane output, easily accessible, inexpensive to 
record, and, if  more than one proxy is used, reflect independent 
sources of variation in methane emission. Currently, methane 
emission is measured or estimated using a large number of dif-
ferent methods (rarely on the same individuals) and there is 
lacking knowledge about how these data can be combined to 
enable genomic selection of cows with lower methane emis-
sions (de Haas et al., 2017). Furthermore, there is no consensus 
on which phenotype to use for selection purposes: methane in 
liters per day or grams per day, methane in liters per kilogram 
of energy-corrected milk or dry matter intake, or a residual me-
thane phenotype, where methane production is corrected for 
milk production and live weight (de Haas et al., 2017).

Feed intake, a major determinant of methane production 
(Knapp et al., 2014), is currently discussed as an important new 
breeding goal trait, and, in contrast to methane, implementa-
tion of this trait into modern breeding goals is underway, yet, 
this is not trivial. Selection for dry matter intake has to be seen 
in the context of conflictive requirements regarding animal fit-
ness and efficiency (Tetens et al., 2014). Simultaneous selection 
for low dry matter intake and high milk yield might improve 
feed efficiency but bears the risk of aggravating the energy 
deficit postpartum and related health problems (Tetens et al., 
2014). Based on longitudinal and multivariate analyses of en-
ergy balance, dry matter intake, and energy-corrected milk 
yield across days in milk, Krattenmacher et al. (2019) were able 
to demonstrate a clearly lactation stage-specific genetic archi-
tecture of energy homeostasis with heritability estimates and 
genetic correlations that varied in the course of lactation and 
lactation stage-dependent association signals and concluded 
that it seems possible to optimize the lactation trajectory of 
dry matter intake in order to improve animal health in early 
lactation and feed efficiency in later lactation. This example il-
lustrates that repeatedly recording phenotypes at different pro-
duction phases, as well as knowledge on genetic correlations 
among all traits of interest across days in milk, is an important 
prerequisite for designing balanced breeding goals aiming to 
fine-tune dairy cattle in a proper way. With more traits, es-
pecially more complex traits, setting up reasonable breeding 
goals is much more sophisticated and often requires innovative 
approaches.

Need and prerequisites for data pooling and joint 
research

Breeding programs are often similar across countries, at 
least with respect to the traits included in the breeding goal. 
Even for novel traits with predominantly environmental or so-
cietal (instead of economical) relevance, efforts to implement 
these new traits into breeding goals are usually not limited to a 
single country. When dealing with traits which are difficult or 
costly to measure (e.g., feed intake/efficiency), in most cases, 
phenotypes are scarce. In such situations, interdisciplinary 
and across-country data pooling and research is often the best 
guarantee to ensure a fast and adequate implementation in 
breeding programs. However, such initiatives can be hindered 

Figure 2. Due to their universal learning ability and flexibility in integrating 
various sorts of data, machine learning methods, like artificial neural net-
works, offer great advantages for constructing reliable predictive models for 
traits like multifactorial diseases.
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by different production systems, the use of different protocols 
or methods for measuring, IP issues, and finally, if  breeding 
companies are involved, by competition between countries. 
Likewise, setting up suitable agreements for data sharing and 
usability of the information derived through the analysis of 
pooled data is often a complicated and time-consuming task.

Shortly after the successful implementation of genomic se-
lection for routinely measured traits, the world’s largest col-
lection of data for feed intake on genotyped dairy cattle has 
been created within the framework of the global Dry Matter 
Initiative (gDMI). de Haas et al. (2015) for the first time dem-
onstrated that, provided a multi-trait approach is used, com-
bining similar phenotypes across populations can increase the 
accuracy of genomic breeding values for important, but rare 
traits, such as dry matter intake. In the meantime, similar pro-
jects combining feed intake data were set up, e.g., the German 
project optiKuh which has been described in detail by Harder 
et al. (2019). The optiKuh data set consisted of data from dif-
ferent research farms that agreed to record as homogeneous 
data as possible over a 2-yr period. Using these data for genomic 
breeding value estimation, Harder et  al. (accepted) observed 
comparably high reliabilities. This highlights the importance of 
standardized protocols for data recording, which is also con-
sidered relevant for other novel traits such as greenhouse gas 
emissions. Thus, the development of universal guidelines for 
recording difficult-to-measure traits is a crucial step toward im-
plementation in breeding programs.

Need for collaborations of different scientific fields
New phenotypes from different sources, the technical revo-

lution, and the need for detailed data on individual animals for 
precise dairy farming management have led to a dramatic in-
crease in data volume (Figure 3). In the past, the rapidly growing 
number of genotyped and sequenced animals has already pro-
voked geneticists to strengthen the scientific cooperation with 
experts from several other disciplines, such as computer sci-
ence, bioinformatics, mathematics, and statistics. This newly 
evolved field of interdisciplinary research focuses on estimating 

more accurate predictive values of phenotypes by using pre-
dictive modeling methods such as machine learning (González-
Camacho et al., 2018). The field of machine learning offers many 
flexible algorithms that are suitable for analysis of large, mainly 
complex data sets. Conventional statistical methods, such as re-
gression, require the assumption of a specific parametric func-
tion (e.g., linear, quadratic, etc.), and large quantities of data 
must be discarded if one or more explanatory variables are 
missing. Machine learning algorithms, on the other hand, can ac-
commodate complex dependencies among explanatory variables 
and can function effectively in the presence of missing values for 
some variables (Caraviello et al., 2006). In addition, network re-
construction methodologies based on systems biology concepts 
have been applied to disentangle the complexity of different 
levels of phenotypic information and linking metabolomics with 
other omics data (Fontanesi, 2016).

Challenges in defining modern breeding goals in 
dairy cattle

The essence of achieving a breeding goal through elab-
orated genetic improvement programs is the collection of 
accurate and comprehensive phenotypic data. The main fac-
tors determining the immediate merit of a phenotype are the 
number of phenotypic records available, the heritability, and 
the economic value of the trait. Furthermore, the usefulness of 
a phenotype is affected by several other factors, including the 
costs of establishing an adapted breeding program as well as the 
costs for phenotyping and genotyping (Gonzalez-Recio et al., 
2014). In this context it is especially challenging to include traits 
which are related to public goods and, therefore, are of social 
relevance rather than of direct economic impact for farmers or 
hard-to-measure traits (e.g., addressing efficiency). In some in-
stances, contingent valuation could serve as a tool to incorp-
orate nonmarketed goods in the breeding goal. With respect 
to feed efficiency breeding goals have to be treated with some 
care. It is intuitive to propose saving feed costs by selecting on 
residual feed intake (Pryce et al., 2015); however, it well might 
be counterproductive at the sensitive early stage of lactation, 
when cows experience a negative energy balance and are prone 
to production diseases. Genetic correlations for feed intake and 
energy balance on the trajectory of days in milk now allow to 
select for these lactation stage-specific traits but the according 
economic weights have to be derived to make full use of these 
characteristics (Harder et al., 2019; Krattenmacher et al, 2019). 
To accomplish a broader view next to the monetary outcome 
on the farm level, the impact on the sector level should be con-
sidered and incorporated. Further unsolved problems are inter-
dependencies and causality between traits. For example, on the 
one hand, high yield in dairy cows may increase susceptibility 
to certain diseases and, on the other hand, the incidence of a 
disease may affect yield negative (Rosa et al., 2011). The use of 
structural equation models can be extremely useful in this con-
text (Wu et al., 2010).

Genomic selection enables efficient selection for hard-to-
measure traits, which was previously a limitation. Apart from 

Figure 3. Data sources and volumes are steadily increasing, and, as a result, 
analysis techniques are also getting more complex.
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the increased rate of genetic progress for production and quality 
traits, which allows faster reaction to changes in production cir-
cumstances, the huge benefit of this methodology lies in the im-
provement of expensive-to-measure traits (e.g., methane emission) 
by transferring genomic knowledge from estimates within com-
paratively small reference populations to the population level.

Conclusion

Modern dairy cow breeding programs aim to achieve an ef-
ficiency optimum in production under several constraints such 
as the best possible standards of animal health and welfare, 
together with minimal environmental impact (Figure 4). In the 
era of phenomics, both research and practical developments 
are focused on new phenotypes for animal breeding purposes 
that face these new challenges. It should be noted that there are 
still large gaps in understanding the biological background and 
genetic architecture of novel traits. Particularly for poorly de-
fined phenotypes that are difficult or expensive to measure, the 
relationship between genome and phenome is far from being 
understood. Therefore, a strong interdisciplinary collaboration 
is necessary, both in the development of suitable measuring 
technologies, operation protocols, and evaluation methods as 
well as for the analysis of interactions between relevant (pos-
sibly unwantedly correlated) traits. Some of the traits which 
are currently studied might turn out to be not suitable for 
breeding but can still be useful for management purposes. With 
increasing number and complexity of breeding goal traits, the 
design of balanced breeding goals has become more compli-
cated than in the past. However, problems and target directions 
are similar across different countries, and, thus, pooling of data 
(e.g., to create sufficiently large reference populations for gen-
omic selection) still enables rapid progress.
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