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Abstract

Background: Long non-coding RNAs (lncRNAs) are a growing focus in cancer research. Deciphering pathways
influenced by lncRNAs is important to understand their role in cancer. Although knock-down or overexpression of
lncRNAs followed by gene expression profiling in cancer cell lines are established approaches to address this
problem, these experimental data are not available for a majority of the annotated lncRNAs.

Results: As a surrogate, we present lncGSEA, a convenient tool to predict the lncRNA associated pathways through
Gene Set Enrichment Analysis of gene expression profiles from large-scale cancer patient samples. We demonstrate
that lncGSEA is able to recapitulate lncRNA associated pathways supported by literature and experimental
validations in multiple cancer types.

Conclusions: LncGSEA allows researchers to infer lncRNA regulatory pathways directly from clinical samples in
oncology. LncGSEA is written in R, and is freely accessible at https://github.com/ylab-hi/lncGSEA.
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Background
Advances in sequencing technology and computational
algorithms have enabled an unprecedented view of tran-
scriptional landscape of cancer genome, including tens
of thousands of lncRNAs being identified. However, the
vast majority of annotated lncRNAs remain uncharacter-
ized for their functions in cancer [1]. Mechanistically,
lncRNAs can function as oncogenes or tumor suppres-
sors by modulating physiological and pathological pro-
cesses [2]. The widely-used approach to identify
downstream target genes and pathways regulated by a
lncRNA is leveraging RNA inference to inhibit the
lncRNA expression followed by microarray or RNA-seq
gene expression profiling and differential gene expres-
sion (DGE) analysis in cancer cell line models [3].

Although this strategy can directly nominate lncRNA as-
sociated pathways, laboratory techniques and expenses
are required for these in vitro experiments and hence
most of the detected lncRNAs have no such data avail-
able. Additionally, cancer cell lines may not fully resem-
ble cognate tumor profiles in their genomic profiles [4].
Therefore, the clinical relevance of those models has
been continuously questioned.
Several bioinformatics tools and webservers (e.g.

ncFANs v2.0 [5], lncFunTK [6], AnnoLnc2 [7]) have
been developed to identify the enriched gene sets associ-
ated with lncRNAs for better understanding of their
roles in diverse biological processes and diseases. Exist-
ing methods for gene set enrichment analysis (GSEA)
typically leverage statistical analyses, such as a hypergeo-
metric test, to evaluate whether a list of user selected
genes are enriched in a specific functional gene set,
which are classified as over-representation analysis
(ORA) and usually need users to define a threshold for
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gene selection [8]. In contrast, the functional class scor-
ing (FCS) methods calculate the enrichment score utiliz-
ing the expression of all genes within a particular gene
set. The recent development of KOBAS-i tool demon-
strated that FCS is superior than ORA in prioritizing
biologically relevant pathways [8]. However, there is a
lack of implementations of the FCS method for lncRNA
function annotations in cancer research.
To tackle this problem, we developed lncGSEA, a new

tool to link gene signatures with a lncRNA expression in
tumor patient samples by implementing a fast pre-
ranked GSEA method. The fast GSEA method is a typ-
ical FCS method, and outperforms the standard GSEA
approach in its running time and prediction accuracy
[9]. Utilizing the RNA-seq expression data in 33 cancer
types including 10,205 tumor samples from the TCGA
study [10], lncGSEA is capable of identifying the associ-
ated MSigDB [11] or user defined gene sets for over
80,000 annotated lncRNAs. Furthermore, lncGSEA also
provides a set of functionalities to enable users to study
novel lncRNAs identified by themselves. We applied
lncGSEA to predict well-studied lncRNAs in multiple
cancers and our prediction accurately revealed the
known functional pathways of those lncRNAs. Testing
on manually collected lncRNAs with experimental data
in cell line models demonstrated that lncGSEA was able
to accurately predict these cell line-derived pathways.

Implementation
Data processing and workflow
LncGSEA follows three steps to infer pathways associ-
ated with a lncRNA as illustrated in Fig. 1.
First, lncGSEA prepares the input of expression matri-

ces for lncRNA and coding genes. The expression matri-
ces of lncRNAs represent the expression values of

lncRNAs in TCGA tumors. Two databases were used to
extract the lncRNA expression values in tumor samples,
which include RefLnc [12] and MiTransriptome [13].
RefLnc contained 77,900 lncRNAs with their expression
quantified in 18 cancer types. MiTransriptome anno-
tated 58,648 lncRNAs and 8,000 of them were quantified
by their expression in 27 cancer types. Users have the
option to provide their own lncRNA expression profiles
as input for predictions. In addition to the lncRNA ex-
pression matrix, lncGSEA obtained the expression pro-
files of coding genes in 33 cancer types of 10,205
patients from the TCGA study.
Second, lncGSEA will generate a list of ranked genes

with two metrics. One approach to rank the genes is to
divide patients in each cancer type (e.g. breast, prostate)
into two groups with high (top quantile) and low (bot-
tom quantile) expression of the target lncRNA. Next,
DGE analysis is performed between the two groups of
patients to determine the log2 fold change of each gene
as the ranking metric. This approach mimics the
lncRNA inhibition or overexpression treatment com-
pared with control conditions in cell line experiments.
In addition to DGE method, lncGSEA implements an-
other analysis termed guilt by association (GBA) to con-
struct an expression correlation matrix of the target
lncRNA and coding genes [13]. Briefly, the expression
levels of the target lncRNA are correlated (Pearson or
Spearman) to the expression of all protein-coding genes
across all samples in a cancer type. The coding genes are
then ranked by the correlation coefficients.
In the third step, the ranked gene list is processed by

fast GSEA [9] against a collection of cancer associated
gene sets from MSigDB (e.g. hallmark gene sets, onco-
genic pathways). The output is a matrix of the associ-
ation of the target lncRNA with each gene set.

Fig. 1 LncGSEA workflow for lncRNA associated pathways detection
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Significant associated pathways (FDR q-value < 0.05) can
be highlighted and visualized with customized plots
(Fig. 1).

Results
Evaluation of lncRNA associated pathway prediction with
experimental evidence
Through literature search and database mining (Supple-
mentary Methods), we selected eight lncRNAs with
known roles in human cancer to analyze using lncGSEA,
as summarized in Supplementary Table S1. These
lncRNAs have been investigated with in vitro or in vivo
experimental techniques to identify their cancer-related
mechanisms or functions. We used 50 MSigDB hallmark
gene sets to infer the associated pathways for each of
these lncRNAs (Supplementary Methods). The perform-
ance of lncGSEA predictions were assessed with four
evaluation criteria as described below:
First, we compared the consistency of predictions with

different gene ranking approaches. We quantified the
similarity between the two ranked gene lists by the DGE
and GBA approaches (Supplementary Methods). In a
meta-analysis of the eight lncRNAs, we found significant
similarity (meta p-value < 0.001) between the two ranked
gene lists (Supplementary Table S2). Furthermore, we
compared the running time between the two methods.
Our testing indicated that GBA method was more than
30 times faster than DGE (Supplementary Figure S1).
Next, we examined the agreement of predicted path-

ways between RefLnc and MiTranscriptome. All of the
eight lncRNAs have been annotated by both of the two
databases. We extracted the lncRNA expression values
of the TCGA patients from each database and made pre-
dictions separately. We observed robust predictions as
reflected by the order of each lncRNA associated gene
sets ranked by normalized enrichment scores (Supple-
mentary Table S3).
Third, we sought to test whether lncGSEA can identify

pathways inferred directly from lncRNA knock-down ex-
periments. In our list, three lncRNAs, including EPIC1,
SBF2-AS1 and DNM3OS, have RNA-seq data for wild-
type (WT) and lncRNA knock-down (KD) from the cor-
responding cancer cell line models. We performed DGE
analysis between WT and KD, and identified the
enriched hallmark gene sets for each of the three
lncRNAs (Supplementary Methods). When comparing
the cell line experiment-derived hallmark gene sets with
lncGSEA predictions, we observed significant similarity
(meta p-value < 0.001) between them (Supplementary
Table S4), suggesting lncGSEA is able to predict path-
ways derived from in vitro experiments.
Finally, we compared lncGSEA predictions with re-

ported pathways of each lncRNA from the original stud-
ies. We demonstrated that lncGSEA is capable of

nominating these lncRNA associated pathways, such as
androgen signaling for ARLNC1 and CTBP1-AS, cell
cycle pathways (e.g. MYC, E2F, G2M and P53) for
PCAT-1, EPIC1, MEG3, CCAT-1 and SBF2-AS1, and
epithelial–mesenchymal transition for DNM3OS (Fig. 2).

Comparison with existing tools
We further compared the performance of lncGSEA with
two recently developed lncRNA annotation tools,
ncFANs v2.0 and AnnoLnc2, for predicting the pathways
or gene sets associated with the eight lncRNAs of known
functions (Supplementary Methods). Given our observa-
tions that lncGSEA successfully predicted the known as-
sociated pathways of these lncRNAs (Fig. 2), we sought
to evaluate whether the two existing tools can accurately
annotate the functions of these lncRNAs. As a result, we
found ncFANs v2.0 was able to predict the hallmark
gene sets for seven lncRNAs, but failed to return any re-
sults for CCAT1. Among the seven lncRNAs, ncFANs
v2.0 did not successfully nominate the known associated
pathways for three lncRNAs including MEG3, ARLNC1
and CEBP1-AS1 in its top ranked predictions (Supple-
mentary Table S5). Next, we applied AnnoLnc2 to anno-
tate the eight lncRNAs for enriched GO terms of
biological processes. We found half of these lncRNAs
were not annotated by AnnoLnc2 and only the lncRNA
DNM3OS of the four annotated lncRNAs returned the
GO terms (e.g. extracellular matrix organization) that re-
flect the literature-supported functions (i.e. epithelial–
mesenchymal transition) (Supplementary Table S6).
Taken together, our results suggest lncGSEA outper-
forms existing lncRNA annotation tools for functional
predictions of lncRNAs in oncology.

Discussion
In this study, we present the lncGSEA software that is
implemented in R language and easily installed for users
in cancer research to explore the functional pathways
that are associated with lncRNAs. LncGSEA allows users
to choose two types of ranking metrics, correlation of
coefficient (GBA option) and log2 fold change (DGE op-
tion) for calculating the enriched genes sets with GESA
analysis. As showed in our results, the two ranking met-
rics generally provide consistent predictions. We also
highlighted that GBA approach tended to run faster than
DGE method. However, certain lncRNAs’ expression can
be highly heterogenous in a specific cancer type (e.g. no
expression at all in some of the cancer samples but
highly expressed in the other part of cancer samples). In
this situation, we would recommend to use the DGE
method that separates cancer samples into two groups
(low vs. high) based on the lncRNA’s expression and
then use log2 fold change to rank the genes for down-
stream enrichment analysis. In an effort to allow users
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easily access the lncGSEA predictions, we developed a
web interface presenting the predicted MsigDB hallmark
gene sets associated with MiTranscriptome or RefLnc
annotated lncRNAs in diverse cancer types from the
TCGA study (https://ylab-hi.shinyapps.io/lncgsea_app/).
We will continuously update the web server based on
users’ feedback.
LncGSEA adopts the conventional GSEA method to

conduct pathway-level association with lncRNAs. Be-
cause gene members in a pathway may have distinct
functional roles and regulatory relationships among
them, identifying key gene drivers in each enriched path-
way that are associated with the lncRNA would be a

useful feature to be added. We have enabled lncGSEA to
report the leading-edge genes contributing the most to
the enrichment score of each pathway, which can be
used as the potential gene targets of the lncRNA. Future
work is needed to include dedicated approaches de-
signed for the identification at both pathway level and
gene level, which is termed as bilevel selection [14]. For
example, a Bayesian model developed by Jiang and col-
leagues [14] that integrates the gene pathway and inter-
actions information could complement the GSEA
approach for pathway analysis and key gene signature
discovery in the further development of lncGSEA
package.

Fig. 2 LncGSEA predicted pathways that are associated with eight well-studied lncRNAs in cancer. GSEA was used to test for enrichment of
MSigDB hallmark gene sets in TCGA tumor gene expression data ordered based on differential expression genes (DGE) or guilt by association
(GBA) methods in breast (BRCA), colon (COAD), lung (LUAD), ovarian (OV) and prostate (PRAD) cancer. Cancer-hallmark signature genes were
plotted based on their normalized enrichment score
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Conclusions
We presented lncGSEA as a robust tool for detecting
lncRNA regulatory pathways from large-scale tumor tissue
transcriptome sequencing data. We demonstrated that
lncGSEA reliably detects known lncRNA associated gene
signatures with literature and experimental evidence sup-
port. We anticipate lncGSEA to be a powerful tool for bet-
ter understanding the functional mechanisms and clinical
relevance of currently understudied lncRNAs in human
cancers.

Availability of and requirements
Project name: LncGSEA.
Project home page: https://github.com/ylab-hi/

lncGSEA.
Operating system(s): platform independent.
Programming language: R.
Other requirements: R 3.6.1 or higher.
License: MIT.
Any restrictions to use by non-academics: license

needed.
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