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Ribonucleic acid-binding proteins (RBPs) are reportedly involved in tumor progression
and recurrence; however, the functions and mechanisms of action of RBPs in ovarian
serous cystadenocarcinoma (OSC) are not known. To address these issues, gene
expression profiles of OSC tissues from The Cancer Genome Atlas (TCGA) and normal
tissues from the Genotype-Tissue Expression database were compared in order to
identify RBPs that are differentially expressed in OSC. We also analyzed the biological
functions of these RBPs and their relationship to clinical outcome. There were 190 RBPs
that were differentially expressed between OSC and normal tissues, including 93 that
were upregulated and 97 that were downregulated. Five of the RBPs were used to
construct a prediction model that was evaluated by univariate and multivariate Cox
regression analyses. TCGA data were randomly divided into training and test cohorts,
and further categorized into high- and low-risk groups according to risk score in the
model. The overall survival (OS) of the high-risk group was shorter than that of the
low-risk group (training cohort P = 0.0007596; test cohort P = 0.002219). The area
under the receiver operating characteristic curve of the training and test cohorts was
0.701 and 0.638, respectively, demonstrating that the model had good predictive power.
A nomogram was established to quantitatively describe the relationship between the
five prognostic RBPs and OS in OSC, which can be useful for developing individualized
management strategies for patients.

Keywords: ovarian serous cystadenocarcinoma, RNA-binding proteins, prognostic model, overall survival,
bioinformatics

INTRODUCTION

Ovarian cancer, a common gynecologic cancer, accounts for just 3% of newly diagnosed tumors
but is the fifth leading cause of cancer-related deaths in women; this is partly attributable to
the difficulty of early diagnosis and high rates of metastasis and recurrence (Li et al., 2012;
Xiong et al., 2018). Ovarian serous cystadenocarcinoma (OSC) is the most common subtype of
ovarian cancer (60%–80% of ovarian epithelial tumors) (Li et al., 2012; Kaldawy et al., 2016).
In most cases, OSC is detected at an advanced stage and recurrence after treatment is common
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(Torre et al., 2017). There is therefore a need to clarify the
molecular mechanisms underlying OSC pathogenesis and
progression so that more effective therapeutic strategies
can be developed.

Ribonucleic acid (RNA)-binding proteins (RBPs) participate
in the formation of the ribonucleoprotein (RNP) complex for
protein synthesis (Dreyfuss et al., 2002). Over 1500 RBPs have
been identified to date (Gerstberger et al., 2014) and play a
critical role in RNA processing by regulating mRNA stability,
localization, alternative splicing, polyadenylation, and translation
efficiency (Brinegar and Cooper, 2016; Protter and Parker, 2016;
Masuda and Kuwano, 2019). Dysregulation of RBP expression
has been implicated in numerous human diseases (Brinegar and
Cooper, 2016; Newman et al., 2016). For example, mutations
in the genes encoding the RBPs Fused in sarcoma (FUS) and
TAR DNA-binding protein 43 (TDP-43) have been linked to the
pathogenesis of amyotrophic lateral sclerosis, and the proteins
were depleted from the nucleus and aggregated in the cytoplasm
in affected neurons (Brinegar and Cooper, 2016). The RBPs Elav-
like family (CELF) and Muscleblind-like (MBNL) contribute to
the pathogenesis of myotonic dystrophy by reverting to fetal
expression patterns and promoting fetal mRNA processing in
adult tissues (Brinegar and Cooper, 2016).

RBPs are also associated with cancer development, as
dysregulation of RBP expression alters the expression of
oncogenes and tumor suppression genes (Pereira et al., 2017).
Musashi 1 (MSI1) and MSI2 have been shown to increase
the levels of Myc and estrogen receptor α1 (ESR1) oncogenes
and reduce that of phosphatase and tensin homlog (PTEN) by
modulating mRNA stability and protein translation, leading to
various types of cancer (Kudinov et al., 2017). LIN-28 homolog
B (LIN28B) promotes pluripotency and plays a critical role
in colorectal carcinogenesis by interacting with microRNAs
of the let-7 family (King et al., 2011; Balzeau et al., 2017).
Quaking (QKI), a splicing factor that regulates cell proliferation,
is downregulated in lung cancer, which is associated with
poor survival (Zong et al., 2014). RNA-binding motif protein
10 (RBM10) is a regulator of alternative splicing in lung
adenocarcinoma (Hernandez et al., 2016); and human antigen
R (HuR) promotes cell dedifferentiation and proliferation by
regulating the stability of target mRNAs in hepatocellular
carcinoma (Fernandez-Ramos and Martinez-Chantar, 2015).
However, the mechanisms by which most RBPs contribute to
carcinogenesis remain unknown.

The aim of the present study was to clarify the role of RBPs
in the pathogenesis of OSC. We retrieved RNA sequencing and
clinicopathologic data for OSC from The Cancer Genome Atlas
(TCGA) database and screened for differentially expressed RBPs.
A functional analysis was also carried out in order to identify key
RBPs in OSC that can potentially serve as prognostic biomarkers.

MATERIALS AND METHODS

Data Processing
Ribonucleic acid profiles of tumor tissue from OSC patients
and normal tissues were obtained from TCGA database. For

comparison, we obtained RNA sequences of normal ovarian
tissue from the Genotype-Tissue Expression (GTEx) database.
RBPs that were differentially expressed between tumor and
normal tissues were screened using R v4.0.2 software (The R
Project, Vienna, Austria).

Kyoto Encyclopedia of Genes and
Genomes Pathway and Gene Ontology
Analyses
To determine the biological function of differentially expressed
RBPs, we used the R software packages clusterProfiler,
org.Hs.eg.db, enrichplot, and ggplot2 to carry out KEGG
and GO analyses, which included cellular component (CC),
molecular function (MF), and biological process (BP) as
functional domains. A q value or false discovery rate < 0.05 was
taken as statistically significant.

Protein–Protein Interaction Network
Construction
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) was used to investigate the interactions of RBPs.
A PPI network and visual subnetwork were constructed using
Cytoscape v3.8.0 software (https://cytoscape.org/index.html).
Functionally significant RBPs were identified using the Molecular
Complex Detection (MCODE) algorithm. RBPs with MCODE
score and node counts > 3 were deemed significant, and
P-values < 0.05 were considered statistically significant.

Prognostic Model Construction and
Validation
The survival package of R software was used for univariate
Cox regression analysis of key RBPs; candidate RBPs
were selected with the log-rank test and incorporated
into a multivariate Cox regression model. The risk score
was calculated according to the following formula: risk
score = β1 × Exp1 + β2 × Exp2 + . . . + βi × Expi. We used R
software to construct a nomogram to predict overall survival
(OS) of OSC patients. The model was validated using data from
TCGA database, which were randomly divided into training
and test cohorts. With the median risk score as the cutoff, OSC
patients were divided into high- and low-risk groups, and the
log-rank test was used to compare differences in OS between
them. P < 0.05 was considered statistically significant. Receiver
operating characteristic (ROC) curve analysis was also performed
to evaluate the predictive value of the model, which was validated
using data from the Human Protein Atlas (HPA) database.

RESULTS

Identification of Differentially Expressed
RBPs in OSC Patients
We investigated the functions and prognostic value of RBPs in
OSC patients; the flow diagram of the study is shown in Figure 1.
We downloaded RNA sequences of 379 OSC patients from TCGA
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FIGURE 1 | Flow diagram of this study.

database; 88 normal ovarian tissue samples obtained from the
GTEx database were used as a control. The RNA sequences of
1542 RBPs (Gerstberger et al., 2014) were ultimately included in
the analysis; 190 sequences encoded RBPs that were differentially
expressed between normal and tumor tissues (P < 0.05, | log2 fold
change| > 1.0), including 93 upregulated and 97 downregulated
RBPs (Figure 2). All up- or down-regulated RBP genes in OSC
has been listed in the supplementary files.

KEGG Pathway Enrichment and GO
Analyses of Differentially Expressed
RBPs
We used R software to evaluate the enrichment of the
identified RBP-encoding genes under biological processes,
metabolic mechanisms, and molecular functions. The results
of the KEGG analysis showed that the upregulated RBPs
were significantly enriched in pathways related to RNA
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FIGURE 2 | Differentially expressed RBPs in OSC. (A) Heat map. (B) Volcano plot.

transport, ribosome biogenesis in eukaryotes, and ribosome
(Figure 3A), whereas downregulated RBPs were enriched
in RNA transport, spliceosome, and ribosome (Figure 3B).
GO analysis revealed that under BP, upregulated RBPs were
mainly involved in defense response to virus, RNA catabolic
process, and non-coding RNA metabolic process. Meanwhile,
downregulated RBPs were involved in RNA splicing; RNA
splicing, via transesterification reactions with bulged adenosine
as nucleophile; mRNA splicing; and mRNA splicing via
spliceosome. Under CC, both upregulated and downregulated
RBPs were enriched in RNP granule, cytoplasmic RNP granule,
and P-body. Under MF, both upregulated and downregulated
RBPs were enriched in catalytic activity, acting on RNA, and
mRNA 3’-untranslated region (UTR) binding; upregulated RBPs
were also enriched in double-stranded RNA binding (Figure 3C),
and downregulated RBPs were enriched in translation regulator
activity and nucleic acid binding (Figure 3D).

PPI Network Construction and Key
Module Selection
To investigate the interactions of differentially expressed RBPs
and identify key RBPs related to OSC, we constructed a PPI
network using data from the STRING database and Cytoscape
software. The PPI network included 190 nodes and 493 edges.
A coexpression network was constructed using the MCODE tool
and the top 3 modules and genes were selected and visualized
according to their risk scores (Figure 4). The RBPs in the key
modules were associated with the defense response to virus,
translation, and RNA binding.

Construction of a RBP-Based Prediction
Model for OSC
We analyzed the RNA sequences of 9 RBPs selected from the PPI
network and evaluated their clinical and prognostic significance.
The results of the univariate Cox regression analysis revealed
that five of the RBPs (mitochondrial ribosomal protein L14

[MRPL14], zinc finger protein 239 [ZNF239], proteasome 20S
subunit α6 [PSMA6], poly[RC]-binding protein 3 [PCBP3], and
ribosomal protein S4 Y-linked 1 [RPS4Y1]) were related to
prognosis in OSC. To further assess their influence on OS, we
performed a multivariate Cox regression analysis and found that
the five RBPs were independent predictors of OS in OSC patients
(Figure 5). We constructed a prediction model by calculating
the risk score for each patient using the following formula: risk
score = (−0.34749 × Exp[MRPL14]) + (−0.17478 × Exp[ZNF2
39]) + (−0.47382 × Exp[PSMA6]) + (0.41487 × Exp[PCBP3]) +
(3.46278 × Exp[RPS4Y1]). A total of 379 OSC patients in
TCGA were randomly divided into training and test cohorts and
further classified into low- and high-risk subgroups according
to median risk score. To evaluate the predictive value of our
model, we performed a survival analysis of the cases. In both
the training and test cohorts, the high-risk group had shorter
OS than the low-risk group (training cohort P = 0.0007596, test
cohort P = 0.002219) (Figures 6A, 7A). The heatmap of RBP
expression, survival status, and risk scores of the low- and high-
risk subgroups of the training and test cohorts are shown in
Figures 6C–E, 7C–E. The time-dependent ROC curve analysis
showed that the area under the ROC curve of the RBP-based
risk score model was 0.701 and 0.638 for the training and test
cohorts, respectively (Figures 6B, 7B), indicating a moderate
predictive power.

Construction of a Nomogram Based on
RBPs
A nomogram was constructed to quantitatively assess the role of
the five RBPs in the prediction model for OSC patient survival
(Figure 8). Based on the multivariate Cox analysis, we assigned
scores of each variable to the scale of the nomogram, determined
the score of each variable, and calculated the total scores of the
five RBPs for each patient. The total score was normalized to a
distribution ranging from 0 to 100 and used to calculate the 1-
year, 3-year, and 5-year estimated OS rates of OSC patients.
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FIGURE 3 | KEGG pathway analysis and GO enrichment analysis of differentially expressed RBPs. The size of a dot in the KEGG analysis represents the relative
abundance of the corresponding RBP. The color represents the q value, with a darker red color indicating a smaller q value. And the color bar in the legend of GO
analysis represents the q value of the corresponding item. BP, biological process; CC, cellular component; MF, molecular function. (A) KEGG analysis of upregulated
RBPs. (B) KEGG analysis of downregulated RBPs. (C) GO enrichment analysis of upregulated RBPs. (D) GO enrichment analysis of downregulated RBPs.

We also evaluated the prognostic significance of various
clinical characteristics of OSC patients in TCGA by
Cox regression analysis. The univariate analysis showed
that risk scores were independent risk factors for OS
(training cohort P < 0.001, test cohort P = 0.010), while
age and tumor grade were unrelated to OS (Figure 9).
The multivariate regression analysis showed that risk
scores were independent prognostic factors for OS in
OSC patients (training cohort P < 0.001, test cohort
P = 0.007) (Figure 10).

Expression of Prognostic RBPs
In order to clarify the expression of the five prognostic RBPs in
OSC patients, we examined immunohistochemistry data from
the HPA database. MRPL14 was highly expressed in OSC tissue

compared to normal tissue. In contrast, the immunoreactivity
of PSMA6, PCBP3, and RPS4Y1 in OSC tissue was relatively
low (Figure 11). ZNF239 protein expression data were not
available in the HPA.

DISCUSSION

Only a small fraction of RBPs have been identified as
being related to tumor recurrence and progression, and
in most cases the mechanism of action has not been
reported. Bioinformatics approaches allow investigation
of the diagnostic or prognostic significance of changes in
RBP expression. Our study identified 190 RBPs that were
differentially expressed between OSC and normal tissues. Five
of the RBPs were used to construct a risk prediction model,
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FIGURE 4 | Protein-protein interaction network and modules analysis. (A) Protein–protein interaction network of differentially expressed RBPs. (B) Three critical
modules from PPI network. Green circles: downregulation with a fold change of more than 2. Red circles: upregulation with fold change of more than 2.

FIGURE 5 | Identification of prognosis-related RBPs by multivariate Cox regression analysis.
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FIGURE 6 | Risk score analysis of the training cohort in TCGA using the 5-gene prognostic model. (A) Survival curve for low- and high-risk subgroups. (B) ROC
curve for predicting OS based on risk score. (C) Expression heat map. (D) Risk score distribution. Patients were assigned to the training group based on risk score
for determination of median risk score. (E) Survival status. The dashed line represents the median risk score; most patients on the right side had died, revealing a
trend of greater risk of death with increasing risk score.
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FIGURE 7 | Risk score analysis of the test cohort in TCGA using the 5-gene prognostic model. (A) Survival curve for low- and high-risk subgroups. (B) ROC curve
for predicting OS based on risk score. (C) Expression heat map. (D) Risk score distribution. Patients were assigned to the training group based on risk score for
determination of median risk score. (E) Survival status. The dashed line represents the median risk score; most patients on the right side had died, revealing a trend
of greater risk of death with increasing risk score.
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FIGURE 8 | Nomogram for predicting 1-year, 3-year, and 5-year OS of OSC patients in TCGA database.

FIGURE 9 | Evaluation of the prognostic value of different clinical parameters by univariate analysis. (A) Training cohort. (B) Test cohort.

which showed moderate performance in predicting OSC
patient survival.

The results of the GO and KEGG pathway analyses revealed
that the differentially expressed RBPs were significantly enriched
in the defense response to virus as well as RNA- and
protein translation-related processes that have been linked
to the pathogenesis of various human diseases (Scotti and
Swanson, 2016; Anastasiadou et al., 2018; Grafanaki et al.,
2019). RBPs form the RNP complex that regulates RNA
stability and hence, gene expression; dysfunction of the RNP
complex can lead to cancer development and progression
(Carotenuto et al., 2019). The RBP ribonucleoprotein 1,

translational regulator 1 (LARP1) promotes ovarian cancer
progression and by altering the stability of its target mRNAs
B cell lymphoma 2 (BCL2) and BCL-2–interacting killer (BIK)
(Hopkins et al., 2016). LIN28B inhibits the apoptosis of ovarian
cancer cells and promotes cancer progression by binding to
AKT2 mRNA and increasing the expression of the protein
(Lin et al., 2018).

The PPI of the differentially expressed RBPs identified
in this study reveals an important role for these proteins
in tumorigenesis and cancer progression. Eukaryotic
translation elongation factor 1 α2 (EEF1A2) is an
oncogene that promotes ovarian carcinogenesis and
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FIGURE 10 | Evaluation of the prognostic value of different clinical parameters by multivariate analysis. (A) Training cohort. (B) Test cohort.

FIGURE 11 | Validation of prognostic RBP expression in OSC and normal
ovarian tissue using the HPA database.

inhibits apoptosis of ovarian cancer cells (Lee, 2003).
Toll-like receptor 3 (TLR3) was shown to play a dual
role in ovarian cancer by eliminating tumor cells via
upregulation of interferons and activation of natural

killer cells and also by promoting cancer development
(Husseinzadeh and Davenport, 2014).

Five of the differentially expressed RBPs, namely MRPL14,
ZNF239, PSMA6, PCBP3, and RPS4Y1, showed prognostic value
in OSC by univariate and multivariate Cox regression analyses.
MPRL14 was found to be upregulated in tumor cells and its
expression was positively correlated with the outcome of OSC
patients. Reduced ZNF239 and PSMA6 and elevated PCBP3
and RPS4Y1 levels were associated with worse prognosis. The
mitochondrial ribosomal proteins (MRPs) are the counterpart of
cytoplasmic ribosomes relating to maintain mitochondrial DNA
stability (O’Brien et al., 1999). The MRPL14 single nucleotide
polymorphism may be related to diabetic retinopathy through
steroid metabolism or insulin resistance (Lin et al., 2013).
MRPL14 is highly expressed in thyroid tumor (Jacques et al.,
2013), but does not reveal the relationship with prognosis.
In the past 5 years, no relationship between ZNF239 and
any type of tumor has been reported. The proteasome gene,
PMSA6, encodes the a1 protein, which is involved in the
formation of the outer rings of the 20s core proteasome and
is subject to post-translational regulation (Choudhary et al.,
2009; Wang et al., 2013). The location of the PSMA6 gene
occurs in a region containing microsatellites that have been
implicated in coronary artery disease (CAD) (Alsmadi et al.,
2009), type 2 diabetes mellitus (T2DM) (Sjakste et al., 2007),
Grave’s disease (Sjakste et al., 2004), asthma (Zemeckiene
et al., 2015), ankylosing spondylitis (Zhao et al., 2015), and
myocardial infarction (Liu et al., 2009). In a lung cancer study,
the expression of PSMA6 was up-regulated, and knocking
out PSMA6 could induce lung cancer tumor cell apoptosis
or the cell cycle to enter the arrest phase (Kakumu et al.,
2017). However, in our study, the expression of PSMA6 in
OSC is down-regulated, and the low expression of PSMA6 is
associated with a worse OSC prognosis, which may be due
to the different effects of PSMA6 expression on proteasome
activity. PSMA6 has carcinogenic effects in various tissue
tumors. Actually, the ubiquitination-proteasome degradation
pathway has been proved to be the key to cell survival and
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proliferation. Therefore, the detailed molecular mechanism
of PSMA6 in OSC needs to be revealed. The poly(C)
binding proteins (PCBPs), an RNA-binding protein involved
in post-transcriptional regulation, whose important functions
are mRNA activation, translation activation and translation
silencing (Makeyev and Liebhaber, 2002). A study of pancreatic
ductal carcinoma showed that the content of PCBP3 protein in
postoperative tissues was significantly related to the survival time
of patients, and the prognosis of the group with lower PCBP3
protein content was worse (Ger et al., 2018). This is consistent
with the results of our study. Otherwise, the initiation of RPS4Y1
expression is the basis of Y chromosome activation (Zhou et al.,
2019). There is currently no report on the relationship between
RPS4Y1 and tumors. However, studies about these five RBP
genes in ovarian cancer are rarely seen and the molecular link
between these five RBPs and OSC progression has yet to be
elucidated. Clinical specimen validation and follow up data of
OSC patients are also wanted in the following research. The
results of the ROC curve analysis indicated that the five RBPs
showed moderate performance in identifying OSC patients who
are at risk of progression; the nomogram model constructed to
predict 1-year, 3-year, and 5-year OS in OSC patients yielded
similar findings.

This study had some limitations. Firstly, the prediction
model was based on TCGA data and no clinical validation
or prospective clinical study was conducted; moreover,
the limited clinical information in the TCGA dataset
may have diminished the reliability of the Cox regression
analysis. Nonetheless, our model based on five RBPs
showed great potential being used to predict OSC patient

prognosis, which can inform clinical decisions and lead to
better outcomes.
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