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Abstract In this study, self-discriminating hybrid nanocrystals was utilized to explore the biological

fate of quercetin hybrid nanocrystals (QT-HNCs) with diameter around 280 nm (QT-HNCs-280) and

550 nm (QT-HNCs-550) following oral and intravenous administration and the contribution of integral

nanocrystals to oral bioavailability enhancement of QT was estimated by comparing the absolute expo-

sure of integral QT-HNCs and total QT in the liver. Results showed that QT-HNCs could reside in vivo as

intact nanocrystals for as long as 48 h following oral and intravenous administration. A higher accumu-

lation of integral QT-HNCs in liver and lung was observed for both oral and intravenous administration of

QT-HNCs. The particle size affects the absorption and biodistribution of integral QT-HNCs and total QT.

As compared to QT-HNCs-550, QT-HNCs-280 with smaller particle size is more easily absorbed, but dis-

solves faster in vivo, leading to higher distribution of QT (146.90 vs. 117.91 h$mg/mL) but lower accu-

mulation of integral nanocrystals (6.8 2e10 vs. 15.27e10 h$[p/s]/[mW/cm2]) in liver following oral

administration. Due to its slower dissolution and enhanced recognition by RES, QT-HNCs-550 with

larger diameter shows higher liver distribution for both of QT (1015.80 h$mg/mL) and integral nanocrys-

tals (259.63e10 h$[p/s]/[mW/cm2]) than those of QT-HNCs-280 (673.82 & 77.66e10 h$[p/s]/[mW/cm2])

following intravenous administration. The absolute exposure of integral QT-HNCs in liver following oral

administration of QT-HNCs are 8.78% for QT-HNCs-280 and 5.88% for QT-HNCs-550, while the abso-

lute exposure of total QT for QT-HNCs-280 and QT-HNCs-550 are 21.80% and 11.61%, respectively.

Owing to imprecise quantification method, a surprisingly high contribution of integral QT-HNCs to oral

bioavailability enhancement of QT (40.27% for QT-HNCs-280 and 50.65% for QT-HNCs-550) was ob-

tained. These results revealed significant difference in absorption and biodistrbution between integral
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nanocrystals and overall drugs following oral and intravenous administration of QT-HNCs, and provided

a meaningful reference for the contribution of integral nanocrystals to overall bioavailability enhance-

ment.

ª 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Drug nanocrystals, also known as nanosuspensions, have been
drawing growing attention as a useful and successful approach for
overcoming the bioavailability limitations of drugs or natural
molecules with poor water solubility1e4. They are defined as
nanosized crystalline particles of pure drug with mean diameter
less than 1000 nm, typically 200e500 nm5,6. Due to the absence
of carrier excipients, drug nanocrystals are considered as carrier-
free colloidal dispersion systems with a theoretical drug loading
of 100%, typically 50%e90% (w/w)7e9. Drug nanocrystals were
firstly introduced in the early 1990s and mostly applied to
improving the oral bioavailability of poorly soluble drugs because
of the enhanced solubility and dissoulution10e13. During nearly 30
years of evolutionary improvement, drug nanocrystals have been
used for various drug delivery systems, e.g., oral, parenteral,
transdermal, pulmonary, ocular and targeted drug delivery,
etc.13e18 and different therapeutic applications, such as cancer
therapy, inflammatory disease, anti-bacterial actions, anthelmintic
treatment, cardiovascular diseases, and so on2.

Over the past two decades, the most studies of drug nano-
crystals were focused on fabrication methods, formulation opti-
mization, in vitro physicochemical evaluation (particle shape,
solid state behaviors, solubility and dissolution enhancement,
physicochemical stability, etc.), solidification and therapeutic ap-
plications, as well as in vivo pharmacokinetics and biodistribution
based on overall drug analysis19e23. The commercial success of
tens of nanocrystal products have proven its great potential to
delivery hydrophobic drugs2,9,14. Nevertheless, limited informa-
tion about the biological fate of drug nanocrystals is currently
known, resulting from the lack of approaches to efficiently and
accurately track nanocrystals in biological milieu24e26, which
limits further development and more commercial success of drug
nanocrystals.

With the aim of fully understanding the performance of drug
nanocrystals, their intracellular fate or in vivo fate have been
explored by tracing nanocrystals with autofluorescence27e30 or
tracking fluorescently hybridized nanocrystals31e37. The fluores-
cent hybrid nanocrystals seem to be a promising tool with po-
tential for tracking translocation of nanocrystals in biological
environment. Hybrid nanocrystals were developed by the inspi-
ration of dying crystals. Fluorescent molecules are physically in-
tegrated inside the lattice of nanocrystals to form hybrid
nanocrystals that achieving concurrent disease treatment and
bioimaging functionalities31e35. However, the conventional fluo-
rescent probes are incapable of discerning nanocrystals vs. free
probes in the biologic environment, since they also emit fluores-
cent signals following the dissolution of nanocrystals25,38,39.
Recently, environment-responsive fluorescent probes with
Förster resonance energy transfer (FRET), aggregation-induced
emission (AIE) or aggregation-caused quenching (ACQ) proper-
ties have emerged as attractive bioimaging tools for tracing the
biological fate of drug nanocrystals and nanocarriers39e46. By
using the ACQ probes, self-discriminating hybrid nanocrystals
were successfully developed to track translocation of drug nano-
crystals following oral and intravenous delivery40e42. The ACQ
probes embedded molecularly inside the lattice of nanocrystals are
able to emit strong fluorescence, but form aggregates and quench
immediately in the aqueous media following the dissolution of
nanocrystals. Therefore, the fluorescence observed represents in-
tegral nanocrystals because of completely eliminating free-probe
interference. In our previous study, quercetin hybrid nano-
crystals (QT-HNCs) were demonstrated to survive the rats’ GI
tracts for 12e16 h via oral administration, and then be integrally
absorbed, and accumulated mainly in liver40, evidencing long
biological life and the absorption of integral nanocrystals via oral
delivery. Nevertheless, the contribution of absorption of integral
nanocrystals to overall bioavailability enhancement is still
unknown.

The contribution of absorption of integral nanocrystals to
overall bioavailability enhancement is worth exploring, which is
of tremendous significance for formulation design and modifica-
tion of drug nanocrystals with advanced performance both in vitro
and in vivo17,25. In previous study, the concentration of integral
nanocarriers such as solid lipid nanoparticles or polymeric mi-
celles in lymph or blood can be quantified based on standard
curves established by linear regression between fluorescence in-
tensity and nanocarriers concentration36,47e51. However, it is un-
able to be directly quantified integral nanocrystals in biosamples
due to its continuous dissolution in aqueous environment. Inspired
by the concept of absolute bioavailability, the absolute exposure of
integral nanocrystals in vivo following oral administration may be
estimated by comparing the difference of fluorescence intensity
in vivo between oral and injection. Then the ratio of the absolute
exposure of integral nanocrystals to that of total drug molecules
can be regarded as the contribution of absorption of integral
nanocrystals to bioavailability enhancement.

In the present study, self-discriminating hybrid nanocrystals
were employed to investigate the biological fate of integral QT-
HNCs following oral and intravenous administration, and the
pharmacokinetics and biodistribution of QT after oral and intra-
venous administration of QT-HNCs were detected by HPLC
method. Then the contribution of absorption of integral QT-HNCs
to oral bioavailability enhancement of QT was estimated through
dividing the absolute exposure of integral QT-HNCs by that of
overall QT.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Materials and methods

2.1. Materials

Quercetin (QT) was purchased from Xi’an Quan’ao Biotech Co.,
Ltd. (Xi’an, China). Poloxamer 188 (P188) was obtained from
Beijing Fengli Jingqiu Pharmaceutical Co., Ltd. (Beijing, China).
ACQ probe, P2 (labs/lem Z 708 nm/732 nm) was obtained as a
gift from the lab of Professor Wei Wu (Fudan University,
Shanghai, China). The reference substances of QT and kaempferol
(internal standard, IS) were purchased from Chengdu Pufei De
Biotech Co., Ltd. (Chengdu, China). Methanol supplied by Fisher
Scientific (MA, USA) was of HPLC grade and all other chemical
materials were of analytical grade.

SpragueeDawley (SD) rats (adult male, weighing 200 � 20 g)
used in the experiments were acquired from SPF (Beijing)
Biotechnology Co., Ltd. (Beijing, China) and raised in the labo-
ratory animal room with controlled environment. All animal ex-
periments were conducted following the guidelines on animal
welfare approved by the Ethical Committee of Air Force Medical
Center, China.

2.2. Preparation and characterization of QT-HNCs

QT-HNCs were generated using previously established anti-
solvent crystallization method40 with slight modification. Briefly,
100 mg QT and 20 mg ACQ probe P2 were completely solubilized
in 6 mL ethanol (60 �C heating) and then rapidly introduced into
120 mL of aqueous solution containing P188 (0.016%, w/v) that
pre-frozen at �20 �C for 20 min. QT-HNCs with particle size
about 550 nm (QT-HNCs-550) and 280 nm (QT-HNCs-280) were
obtained by the same precipitation process as our previous
report40 except that an ice water bath instead of water bath at 4 �C.

The particle size and zeta potential of QT-HNCs were analyzed
by a Nano-ZS Zetasizer (Malvern, Worcestershire, UK) after
appropriate dilution with water. The QT-HNCs were diluted with
deionized water and equilibrated for 2 min in the instrument
before measurement. For the measurement of fluorescence in-
tensity, 200 mL of QT-HNCs were added into 96-well plates and
then determined by a region of interest (ROI) quantification
method with IVIS Spectrum Live Imaging System (PerkinElmer,
Waltham, MA, USA) at excitation/emission wavelengths of 710/
760 nm40-42. The fluorescence intensity in this study was pre-
sented as total radiant efficiency (TRE) or average radiant effi-
ciency (ARE)40e42. The morphological evaluation of QT- HNCs
was performed by S-4800 scanning electron microscope (SEM,
Hitachi, Tokyo, Japan) at accelerating voltage of 15 kV. After 250
fold dilution with ethanol, an Agilent UVeVisible spectropho-
tometer (Agilent, Santa Clara, CA, USA) was used to assess QT
concentration in QT-HNCs by measuring the absorbance at
375 nm.

2.3. Live imaging

Prior to experiment, the abdominal skin of SD rats was shaved and
cleaned to eliminate autofluorescence interference of hair and all
rats were fasted overnight with free access to water. Rats were
randomly divided into two oral groups and two injection groups
with three animals in each group. The rats in oral groups were
received QT-HNCs with particle size of 280 and 550 nm intra-
gastrically at dose of 90 mg/kg, while QT-HNCs with particle size
of 280 and 550 nm were given to the rats in injection groups by
injection via caudal vein. Fluorescence images of animals were
captured at predetermined time points by the IVIS System under
anesthesia with isoflurane.

2.4. Pharmacokinetics

After drug administration, about 0.5 mL blood sample was with-
drawn at time intervals via the orbit vein and then placed into
heparinized tube. Fluorescence intensity was immediately deter-
mined in 96-well plates based on the ROI method using the IVIS
System40,42. After fluorescence quantification, the plasma samples
were collected by centrifugation using TD-16w centrifuge (BIO-
BASE, Jinan, China) at 3000 rpm for 10 min at 4 �C and frozen at
�20 �C until analysis.

2.5. Biodistribution

To evaluate the biodistribution of QT-HNCs, three rats were
sacrificed at each time point post drug administration. After car-
diac perfusion with normal saline, the major organs were collected
and immediately imaged by the IVIS System. Their fluorescence
intensity was quantified by an ROI method40,42,52,53. All collected
organ samples were frozen at �20 �C for further analysis.

2.6. Analysis of QT in plasma and tissue samples

After being precisely weighed, the isolated organ samples were
homogenized with 2 times the volume of normal saline to yield
tissue homogenates. A modified acid-hydrolyzed method was
employed for the extraction of OT in plasma and tissue homog-
enates5. Briefly, 50 mL kaempferol solution (45.2 mg/mL, dis-
solved in methanol) and 200 mL hydrochloric acid (25%, v/v) were
added to 200 mL plasma or tissue homogenates and mixed by
vortexing vigorously for 90 s and the obtained mixtures were
incubated in water-bath at 90 �C for 15 min for enough hydro-
lyzation. After cooling down, 350 mL of ethanol was added to the
hydrolyzates and vortexed for 90 s. Then the supernatant was
collected by centrifugation at 8000 rpm for 10 min at 4 �C. The
concentration of QT in the supernatant was analyzed on Alltima
C18 column (250 mm � 4.6 mm, 5 mm, Alltech, Guanzhou,
China) by Agilent 1200 series HPLC system (Agilent, Santa
Clara, CA, USA) with mobile phase of methanol/0.4% phosphoric
acid (59:41, v/v) pumped at 1.0 mL/min and detection wavelength
at 370 nm and an automatic injection volume of 20 mL.

2.7. Data analysis

Pharmacokinetic parameters was obtained by DAS 2.0 Pharma-
cokinetic software (Boying Corporation, Beijing, China) using
statistical moment model. The absolute exposure of integral QT-
HNCs was calculated based on the fluorescence intensity in liver
according to Eq. (1), while the absolute exposure of total QT was
calculated based on the QT content in liver according to Eq. (2).
The contribution of integral QT-HNCs in oral absorption was
calculated based on the absolute exposure of integral QT-HNCs
and total QT in liver according to Eq. (3).

FabsNCsð%ÞZAUC0�tðF; oralÞ
�
AUC0�tðF; i:v:Þ � 100 ð1Þ

FabsQTð%ÞZAUC0�tðQT; oralÞ
�
AUC0�tðQT; i:v:Þ � 100 ð2Þ



Figure 1 Particle size distribution (A) and SEM images (B) of QT-HNCs-280 and QT-HNCs-550.
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Contribution ð%ÞZFabsNCs
�
FabsQT � 100 ð3Þ

where FabsNCs and Fabs QT represent the absolute exposure of in-
tegral QT-HNCs and total QT in liver, respectively. AUC0‒t (F, oral) or
AUC0‒t (F, i.v.) are the area under the curve to the last measurable
fluorescence intensity in liver following oral or intra
venous administration of QT-HNCs, while AUC0‒t (QT, oral) or
AUC0‒t (QT, i.v.) are the area under the curve to the last measurable
QT concentration in liver. They were calculated from the fluores-
cence intensityetime curve or QT concentrationetime curve by
DAS 2.0 Pharmacokinetic software. Data are expressed as the
mean � standard deviation (SD). Difference between two groups
was compared by Student’s t-tests with SPSS 13.0 software (SPSS,
Chicago, IL, USA) with P < 0.05 as statistically significant.

3. Results and discussion

3.1. Preparation and characterization of QT-HNCs

The established anti-solvent crystallization method was firstly
employed for the fabrication of QT-HNCs40. The QT-HNCs with
particle size around 280 and 550 nm were successfully prepared,
but their fluorescence intensity was not desirable. Therefore, a
modified anti-solvent crystallization method was used for pre-
paring QT-HNCs in order to achieve higher fluorescent intensity.
The P188 aqueous solution was firstly pre-frozen at �20 �C for 5,
10, 20 and 30 min and then used as anti-solvent, while an ice
water bath was employed to facilitate crystallization during the
mixing of the solutions. We found that the fluorescent intensity of
QT-HNCs increased significantly with the extension of pre-
freezing time of P188 aqueous solution. However, when the
P188 aqueous solution was pre-frozen at �20 �C for 30 min, the
P188 aqueous solution was partially frozen. Therefore, the P188
aqueous solution was pre-frozen at �20 �C for 20 min and then
was used as an anti-solvent.

OT-HNCs-280 and QT-HNCs-550 produced by the modified
anti-solvent crystallization method got average diameter about
280 and 550 nm, respectively, with PDI values less than 0.25
(Fig. 1A and Table 1), indicating a fairly narrow size distribution.
The morphology of QT-HNCs under SEM is appeared to be well-
defined rod shape with similar particle size to the results from
particle size analysis (Fig. 1B). The zeta potential and QT content
of OT-HNCs are �20 mV and 18 mg/mL, respectively. All these
abovementioned physicochemical properties are the same as the
results of our previous study40. Differently, the fluorescence in-
tensity of QT-HNCs is higher than that of our previous report,
which may be attributed to higher difference of temperature dur-
ing the anti-solvent precipitation process. The temperature of
solvent influences the solubility of QT, and therefore temperature
variation was adopted to facilitate rapid crystallization, contrib-
uting to embedding more P2 probes into the lattice of QT-HNCs
and thus leading to higher fluorescence intensity of QT-HNCs.

3.2. Live imaging

The live images and fluorescence quantification following oral and
intravenous administration of QT-HNCs are shown in Fig. 2 and
Supporting Information Fig. S1. No P2 quenched solutionwas set as
control group, because the P2 quenched solution has been reported
to be produced no fluorescence interference following oral and
intravenous administration40e42. Oral administration of QT-HNCs
exhibits significant fluorescence signals in the abdomen region of
rats (Fig. 2A), which is in agreement with our previous study40. The
fluorescence intensifies gradually in the first 2 h, then declines and
finally vanishes (Fig. S1A). This phenomenon can be considered as
a result of the initially intragastric dispersion of QT-HNCs post
administration, and afterwards transportation and dissolution of
QT-HNCs in vivo40,41. The fluorescent signals in the abdomen re-
gion of rats are still observed at 12 h for QT-HNCs-280 and 24 h for
QT-HNCs-550, indicating a long biological life of QT-HNCs
in vivo, which is probably attributed to their slow dissolution due
to limited amounts of dissolutionmedia in theGI tract54. QT-HNCs-
280 group shows shorter retention time and slightly weaker fluo-
rescence in vivo as compared to QT-HNCs-550, which may be
ascribed to its faster dissolution owing to the smaller particle
size55,56.

Following intravenous administration, both of QT-HNCs-280
and QT-HNCs-550 are pervasively distributed throughout the



Table 1 Physicochemical properties of QT-HNCs-280 and QT-HNCs-550.

Formulation Particle size (nm) PDI Zeta potential (mV) TRE [p/s]/[mW/cm2] � 109 QT content (mg/mL)

QT-HNCs-280 272 � 12 0.18 � 0.02 ‒20.6 � 2.1 10.8 � 0.05 18.37 � 0.33

QT-HNCs-550 538 � 18 0.22 � 0.04 ‒22.1 � 3.3 9.5 � 0.06 18.10 � 0.24

Data are expressed as the mean � SD (n Z 3).
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body until 48 h (Fig. 2B and Supporting Information Fig. S2B),
indicating long-circulating capability and slow dissolution of QT-
HNCs in vivo. The long circulating time of QT-HNCs in vivo may
be due to the camouflage effect of P188 absorbed on the surfaces
of nanocrystals57. Additionally, more significant fluorescencent
signals are observed in the abdominal area (RES organs) of rats
than its surrounding area. QT-HNCs-550 group shows stronger
fluorescence in the abdominal area and longer retention time than
those of QT-HNCs-280. These results imply that QT-HNCs may
accumulate in RES organs following intravenous administration
and the QT-HNCs with larger diameter accumulate in more
amount. Similar distribution feature were also observed in previ-
ous report with intravenous administration of curcumin hybrid
nanocrystals42.
3.3. Pharmacokinetics of integral QT-HNCs

The fluorescence of the blood following intravenous administra-
tion of QT-HNCs was recorded by the IVIS system (Fig. S2) and
quantified by an ROI method based on ARE (Fig. 3). Although
without significant difference, QT-HNCs-280 group shows slightly
higher ARE values than that of QT-HNCs-550 group, which may
be because more amount of QT-HNCs-550 are captured by RES
organs as proposed in live imaging study and confirmed by ex vivo
imaging of organs (Fig. 4). Only 25% fluorescence remained in
blood at 4 h for both of QT-HNCs-280 and QT-HNCs-550 as
compared to fluorescence measured at 5 min, while there is about
8% fluorescence still left at 24 h for QT-HNCs-280, and 4% left at
48 h for QT-HNCs-550. The results demonstrate that QT-HNCs
can be fast cleared from circulation following intravenous
administration, but remain certain long-circulating capability,
further proving the long-circulating effect of QT-HNCs in vivo. No
fluorescent signal can be found in blood after oral administration
of QT-HNCs (Fig. S2), implying relatively low levels of integral
QT-HNCs in circulation.
Figure 2 In vivo live imaging of SD rats following oral (A) and in

respectively. The rats treated without of QT-HNCs were used as blank co
3.4. Biodistribution of integral QT-HNCs

The biodistribution of integral QT-HNCs following oral and
intravenous administration of QT-HNCs was investigated by
fluorescence imaging of each organ. Fig. 4 shows ex vivo images
of major organs following oral and intravenous administration of
QT-HNCs, respectively. The oral absorption of integral QT-HNCs
is directly evidenced by the observed fluorescence in different
organs following oral administration of QT-HNCs. In spite of no
fluorescence in blood, we observed obvious fluorescent signals in
liver and lung with retained time more than 48 h, for both of QT-
HNCs-280 and QT-HNCs-550, after oral administration (Fig. 4A).
Additionally, a faint fluorescence was also found in spleen from 8
to 12 h. It should be noted that the weak fluorescent signal found
in kidney at each time point can be considered as negative inter-
ference, because the kidneys of the blank rats also exhibited weak
fluorescent signals. Moreover, the biodistribution of integral QT-
HNCs is significantly influenced by particle size. The fluores-
cence in liver peaks at 8 h for QT-HNCs-280, while 12 h for QT-
HNCs-550, indicating faster absorption of QT-HNCs with the
smaller particle size, which complies with previous finding that
smaller nanoparticles can be absorbed more quickly via the in-
testinal epithelium58. QT-HNCs-280 group shows weaker fluo-
rescence in liver than that of QT-HNCs-550 group. The same
reason that QT-HNCs with the smaller particle size dissolves
faster can be employed to interpret this phenomenon55,56.

As shown in Fig. 4B, the fluorescent signals appears in all
organs as early as 5 min and remains for at least 48 h following
intravenous administration of QT-HNCs, with strongest fluores-
cence in liver, followed by lung, demonstrating high accumulation
of integral QT-HNCs in organs of the reticuloendothelial system
(RES). A relatively high accumulation of integral QT-HNCs in
RES organs (liver and lung) can be found following oral or
intravenous administration of QT-HNCs (Fig. 4). An acceptable
explanation is that nanoparticles reaching the systemic circulation
may follow similar fate, which are generally recognized,
travenous (B) administration of QT-HNCs-280 and QT-HNCs-550,

ntrol.



Figure 3 Fluorescence quantification of blood following intrave-

nous administration of QT-HNCs-280 and QT-HNCs-550. Data are

presented as mean � SD (n Z 3).
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opsonized and ultimately captured by macrophages residing in
RES organs42,59. Similar to oral administration, the fluorescence
of liver peaks at 15e30 min for QT-HNCs-280, while about 1e2 h
for QT-HNCs-550. An obvious stronger fluorescence in liver can
be observed in QT-HNCs-550 group as compared to QT-HNCs-
280 group. This can be explained by the reasons that smaller
nanocrystals may achieve a faster uptake by hepatocyte, resulting
in rapidly peaking, but they dissolve faster due to its smaller
particle size, leading to less fluorescence retention in liver.

The fluorescence quantification of major organs based on TRE
and ARE is displayed in Fig. 5 and Supporting Information Fig. S3.
The TRE values of liver and lung follow a pattern of gradual
increment in first and decrement afterwards following oral admin-
istration of QT-HNCs (Fig. 5A and B). Similar results can be ob-
tained from the ARE values (Figs. S3A and S3B). After intravenous
administration of QT-HNCs, the TRE values in various organs
shows an order of liver > lung > spleen z heart z kidney, while
the ARE values in various organs is in an order of
lung > liver > spleen > heart > kidney (Fig. 5C and D). Both of
liver and lung showmuch higher TRE and ARE values than those of
other organs, confirming high accumulation of integral QT-HNCs in
RES organs. The ARE and TRE values of liver and lung present in
reverse order, which is probably due to their different analysis
method. The ARE values are obtained by dividing the TRE values
Figure 4 Ex vivo imaging of major organs following oral (A) and in

respectively. The rats treated without of QT-HNCs were used as blank c

kidney and brain.
by the total area of organ. The area of the lungs is smaller than that of
the livers, therefore, leading to higher ARE in lungs.

In order to estimate the total amounts of integral QT-HNCs in
various organs, the AUC0et of fluorescence intensity was obtained
from the TRE and ARE profiles by Pharmacokinetic software DAS
2.0 using statistical moment model (Table 2 and Supporting Infor-
mation Table S1). For oral administration of QT-HNCs-550, the
AUC0et of the lungs was not obtained, because that the DAS 2.0
could not perform data fitting and calculate the AUC0et due to its
fewer data points. Following oral and intravenous administration of
QT-HNCs, QT-HNCs-550 group shows significantly higher
AUC0et in tested organs than that of QT-HNCs-280 group (Table 2
and Table S1). This can be explained by slower dissolution of QT-
HNCs with larger particle size and enhanced recognition by
RES42,55,56. Both of TRE and ARE, QT-HNCs-280 and QT-HNCs-
550 show higher AUC0et in liver and lung than that in other organs
following oral and intravenous administration, further confirming
high accumulation of integral QT-HNCs in RES organs.

3.5. Drug pharmacokinetics and biodistribution

QT was reported to circulate in plasma in conjugated forms such
as glucuronides and sulfates60. To clear all ester-bonds of QT
conjugates, a modified acid-hydrolyzed method was therefore
adopted to extract QT from plasma and tissue homogenates5. The
QT concentrations in plasma and tissue homogenates were
determined by HPLC with kaempferol as an internal standard. The
regression equations of QT in plasma and tissue homogenates
were established by taking QT concentration as the abscissa and
the peak area ratio (Y) of QT to kaempferol as the ordinate. A
good linear relationship between Y and QT concentration can be
observed within the specific concentration range for plasma and
tissue homogenates (Supporting Information Table S2). The mean
recovery of QT in plasma and tissue homogenates is 86.42%e
97.93%, with RSD less than 8%. The intra- and inter-day pre-
cisions are less than 7%.

The mean plasma QT concentration versus time curves after oral
and intravenous administration of QT-HNCs are listed in Fig. 6 and
the main pharmacokinetic parameters are shown in Table 3. As
compared to QT-HNCs-550, a higher plasma QT concentrations
was determined in most time point following oral administration of
QT-HNCs-280. Moreover, QT-HNCs-280 gets significant higher
AUC0et of 82.40 h$mg/mL and Cmax of 3.70 mg/mL than those of
travenous (B) administration of QT-HNCs-280 and QT-HNCs-550,

ontrol. From top to bottom in each panel: heart, liver, spleen, lung,



Figure 5 Fluorescence quantification of major organs based on TRE following oral (A and B) and intravenous (C and D) administration of QT-

HNCs-280 (A and C) and QT-HNCs-550 (B and D), respectively. Data are expressed as the mean � SD (n Z 3).
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50.32 h$mg/mL and 2.05 mg/mL for QT-HNCs-550, respectively,
indicating that a higher oral bioavailability of QT-HNCs-280. The
faster dissolution and absorption of nanocrystals with smaller par-
ticle size may be responsible for the higher oral bioavailability of
QT-HNCs-28055,56,58. However, there exists no significant differ-
ence in mean plasma QT concentrations at all-time points and
pharmacokinetic parameters such as AUC0et and Cmax of QT
following intravenous administration of QT-HNCs (Fig. 6B and
Table 3), which is similar to the results obtained from pharmaco-
kinetics of integral QT-HNCs.

The QT concentration versus time curves of different organs
following oral and intravenous administration of QT-HNCs are
shown in Fig. 7. Their AUC0et was calculated from the QT con-
centration versus time curves by Pharmacokinetic software DAS
2.0 using statistical moment model (Table 4). After oral admin-
istration of QT-HNCs, the QT is mainly distributed in liver, lung
and kidney, with the maximum distribution in the liver (Fig. 7A
and B). No QT can be determined in heart and spleen, because the
QT taken by heart and spleen is below the detection limit of
HPLC. QT-HNCs-280 shows higher QT distribution in liver, lung
and kidney than that of QT-HNCs-550 (Table 4), which can be
explained by the fact that the higher oral bioavailability of QT-
HNCs-280 results in its higher distribution in liver, lung and
kidney.

Following intravenous administration of QT-HNCs, the QT is
distributed in all tested organs, with the maximum distribution in
Table 2 The AUC0‒t
a of fluorescence distribution based on TRE in o

Organ Oral (�1010)

QT-HNCs-280 QT-HNCs-550

Heart e e

Liver 6.82 � 1.12 15.27 � 1.58b

Spleen e e

Lung 1.73 � 0.27 e

Kidney e e

aUnit: h$[p/s]/[mW/cm2]; ‒, not applicable. Data are presented as mean
bP < 0.01 vs. QT-HNCs-280.
liver and theminimumdistribution in heart (Fig. 7C andD, Table 4),
confirming the higher accumulation of QT in RES organs and
highlighting liver as the main destination for QT-HNCs. The
QT-HNCs-550 shows higher accumulation of QT in liver and kid-
ney as compared to QT-HNCs-280, which is consistent with the
results of fluorescence quantification. The same reasons that larger
nanocrystals dissolve slower and are easier recognized by RES
might explain the higher accumulation of QT-HNCs-55042,55,56.
However, compared with QT-HNCs-280, a lower accumulation of
QT in lung, spleen and heart was found following intravenous
administration of QT-HNCs-550, which is different from the result
of fluorescence quantification. This may be due to that the observed
fluorescence only reflects the undissolved or partially dissolved
QT-HNCs but not free QT molecules40, whereas the detected QT in
different organs include integral QT-HNCs and free QT molecules,
the free QTmolecules may account for major contribution for some
organs.

3.6. Contribution analysis

Due to the fact that no fluorescent signal was observed in blood
but obvious fluorescence in liver following oral administration of
QT-HNCs, the absolute exposure of integral QT-HNCs was
calculated based on the fluorescence intensity in liver to evaluate
the contribution of integral QT-HNCs to oral bioavailability
enhancement of QT. The absolute exposure of integral QT-HNCs
rgans following oral and intravenous administration of QT-HNCs.

Intravenous (�1010)

QT-HNCs-280 QT-HNCs-550

4.02 � 0.17 7.58 � 0.45b

77.66 � 6.05 259.63 � 13.57b

6.60 � 0.22 8.62 � 0.34b

51.94 � 5.70 107.16 � 15.27b

6.84 � 0.12 7.79 � 1.78

� SD (n Z 3).



Figure 6 Mean plasma concentrationetime curves of quercetin

following oral (A) and intravenous (B) administration of QT-HNCs-

280 and QT-HNCs-550, respectively. Data are expressed as the

mean � SD (n Z 3).
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in liver based on TRE (Table 2) for QT-HNCs-280 and QT-HNCs-
550 are as follows:

QT-HNCs-280 : FabsNCsð%ÞZ6:82=77:66� 100Z8:78%

QT-HNCs-550 : FabsNCsð%ÞZ15:27=259:63� 100Z5:88%

While the absolute exposure of integral QT-HNCs in liver
based on ARE (Table S1) for QT-HNCs-280 and QT-HNCs-550
are 8.15% and 5.68%, respectively. The TRE can roughly repre-
sent the total amount of nanocrystals, whereas ARE stands for the
concentration of nanocrystals in tested organs. The results ob-
tained from the TRE and ARE show similar absolute exposure of
integral QT-HNCs in liver. They can confirm each other to ensure
the reliability of the results.

The absolute exposure of total QT in liver for QT-HNCs-280
and QT-HNCs-550 are as follows:

QT-HNCs-280 : FabsQTð%ÞZ146:90=673:82� 100Z21:80%

QT-HNCs-550 : FabsQTð%ÞZ117:91=1015:80� 100Z11:61%
Table 3 Main pharmacokinetic parameters of QT following oral an

Parameter Oral

QT-HNCs-280 QT-HNC

AUC0‒t (h$mg/mL) 82.40 � 12.22 50.32 �
MRT0‒t (h) 14.50 � 1.97 16.51 �
t1/2z (h) 11.31 � 1.52 14.65 �
Tmax (h) 8.67 � 1.15 10 �
Cmax (mg/mL) 3.70 � 0.28 2.05 �

‒, Not applicable. Data are presented as mean � SD (n Z 3).
aP < 0.05.
bP < 0.01 vs. QT-HNCs-280.
While the absolute bioavailability of QT following oral
administration of QT-HNCs are 18.50% for QT-HNCs-280 and
10.76% for QT-HNCs-550, which are similar to the absolute
exposure of total QT in liver (21.80% for QT-HNCs-280
and 11.61% for QT-HNCs-550). In some extent, these results
suggested that the absolute exposure of integral QT-HNCs
and total QT in the liver could be used to estimate the contri-
bution of integral QT-HNCs to oral bioavailability enhance-
ment of QT.

The contribution of absorption of integral QT-HNCs to
oral bioavailability enhancement of QT based on TRE are as
follows:

QT-HNCs-280 : Contributionð%ÞZ8:78=21:8� 100Z40:27%

QT-HNCs-550 : Contributionð%ÞZ5:88=11:61� 100Z50:65%

While the contribution of absorption of integral QT-HNCs to
oral bioavailability enhancement ofQT based onARE is 37.39% for
QT-HNCs-280 and 48.89% for QT-HNCs-550, respectively. It is
worth noting that the contribution of absorption of integral QT-
HNCs to oral bioavailability enhancement of QT is surprisingly
high. However, only about 3% integral QT-HNCs was absorbed
according to the rough estimation from the TRE values in small
intestine and liver in our previous study40. According to this result
(about 3% integral QT-HNCs absorbed), the contribution of
absorption of integral QT-HNCs to oral bioavailability enhance-
ment of QT is 13.76% for QT-HNCs-280 and 25.84% for QT-
HNCs-550.

A significant higher contribution of absorption of integral QT-
HNCs to oral bioavailability enhancement of QT was obtained in
this study as compared to our previous study. The re-illumination
of the fluorescence in hepatic tissues may results in higher abso-
lute exposure of integral QT-HNCs in liver, leading to higher
contribution of absorption of integral QT-HNCs to oral bioavail-
ability enhancement of QT. In fact, if the re-illumination of the
fluorescence in hepatic tissues brings about interference, there
may be more interference in liver for intravenous administration
of QT-HNCs due to more P2 probes entering the body, which may
lead to lower absolute exposure of integral QT-HNCs and thereby
causing lower but not higher contribution of absorption of integral
QT-HNCs. Therefore, we believe more that the surprisingly high
contribution of absorption of integral QT-HNCs may be attributed
to the imprecise semi-quantification method of fluorescence in-
tensity. More imprecise quantitative methods are needed to
accurately quantify the intact nanocrystals in vivo, ensuring the
d intravenous administration of QT-HNCs.

Intravenous

s-550 QT-HNCs-280 QT-HNCs-550

5.88a 445.49 � 58.02 467.67 � 59.96

1.63 12.45 � 1.09 13.42 � 0.63

5.01 18.18 � 3.57 21.84 � 9.16

2 e e

0.26b 171.84 � 50.51 134.17 � 21.46



Figure 7 Mean quercetin concentrationetime curves in major organs following oral (A and B) and intravenous (C and D) administration of

QT-HNCs-280 (A and C) and QT-HNCs-550 (B and D), respectively. Data are expressed as the mean � SD (n Z 3).

Table 4 The AUC0‒t
a of quercetin distribution in organs following oral and intravenous administration of QT-HNCs.

Organ Oral Intravenous

QT-HNCs-280 QT-HNCs-550 QT-HNCs-280 QT-HNCs-550

Heart e e 89.16 � 18.94 42.17 � 6.51c

Liver 146.90 � 20.28 117.91 � 5.89b 673.82 � 37.85 1015.80 � 150.14c

Spleen e e 251.15 � 29.07 207.68 � 43.34

Lung 40.75 � 4.57 30.33 � 5.37b 241.44 � 26.84 174.57 � 29.90b

Kidney 39.14 � 4.42 25.86 � 2.83c 271.33 � 26.95 375.45 � 85.36

aUnit: h$mg/mL; ‒, not applicable. Data are presented as mean � SD (n Z 3).
bP < 0.05.
cP < 0.01 vs. QT-HNCs-280.
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precise calculation of the contribution of the absorption of intact
QT-HNCs to the overall bioavailability enhancement.
4. Conclusions

In this study, the biological fate of QT-HNCs with particle sizes
around 280 nm (QT-HNCs-280) and 550 nm (QT-HNCs-550)
following oral and intravenous administration was explored by
self-discriminating hybrid nanocrystals technique and HPLC
method. Live imaging and ex vivo imaging demonstrated that
QT-HNCs could reside in vivo as intact nanocrystals for as long
as 48 h following oral and intravenous administration. A higher
accumulation of integral QT-HNCs in liver and lung was
observed for both oral and intravenous administration of QT-
HNCs. The particle size affects the absorption and distribu-
tion of integral QT-HNCs and total QT following oral and
intravenous administration of QT-HNCs. As compared to QT-
HNCs-550, QT-HNCs-280 with smaller particle size is more
easily absorbed, but dissolves faster in vivo, leading to higher
distribution of QT (146.90 vs. 117.91 h$mg/mL) but lower
accumulation of integral nanocrystals (6.8 2e10 vs. 15.27e10 h$
[p/s]/[mW/cm2]) in liver following oral administration. Due to
its slower dissolution and enhanced recognition by RES, QT-
HNCs-550 with larger diameter shows higher liver distribu-
tion for both of QT (1015.80 h$mg/mL) and integral nano-
crystals (259.63e10 h$[p/s]/[mW/cm2]) than those of QT-HNCs-
280 (673.82 h$mg/mL & 77.66e10 h$[p/s]/[mW/cm2]) following
intravenous administration. However, in spite of higher accu-
mulation of integral nanocrystals, QT-HNCs-550 shows lower
QT distribution in heart, spleen and lung than those of QT-
HNCs-280 following intravenous administration. Moreover,
the absolute exposure of integral QT-HNCs and total QT were
calculated based on fluorescence intensity and QT concentra-
tions in liver to estimate the contribution of absorption of in-
tegral QT-HNCs to oral bioavailability enhancement of QT. The
absolute exposure of integral QT-HNCs in liver following oral
administration of QT-HNCs are 8.78% for QT-HNCs-280 and
5.88% for QT-HNCs-550, while the absolute exposure of total
QT for QT-HNCs-280 and QT-HNCs-550 are 21.80% and
11.61%, respectively. Owing to imprecise quantification
method, a surprisingly high contribution of integral QT-HNCs
to oral bioavailability enhancement of QT (40.27% for QT-
HNCs-280 and 50.65% for QT-HNCs-550) was obtained by
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comparing the absolute exposure of integral QT-HNCs and total
QT in liver. In summary, the present study revealed significant
difference in absorption and biodistrbution between integral
nanocrystals and overall drugs following oral and intravenous
administration of QT-HNCs. Although not accurate enough, it
provided a meaningful reference for the contribution of integral
nanocrystals to overall bioavailability enhancement.
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