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Abstract

In clinical terms, bone grafting currently involves the application of autogenous, allo-

geneic, or xenogeneic bone grafts, as well as natural or artificially synthesized mate-

rials, such as polymers, bioceramics, and other composites. Many of these are

associated with limitations. The ideal scaffold for bone tissue engineering should pro-

vide mechanical support while promoting osteogenesis, osteoconduction, and even

osteoinduction. There are various structural complications and engineering difficul-

ties to be considered. Here, we describe the biomimetic possibilities of the modifica-

tion of natural or synthetic materials through physical and chemical design to

facilitate bone tissue repair. This review summarizes recent progresses in the strate-

gies for constructing biomimetic scaffolds, including ion-functionalized scaffolds, dec-

ellularized extracellular matrix scaffolds, and micro- and nano-scale biomimetic

scaffold structures, as well as reactive scaffolds induced by physical factors, and

other acellular scaffolds. The fabrication techniques for these scaffolds, along with

current strategies in clinical bone repair, are described. The developments in each

category are discussed in terms of the connection between the scaffold materials

and tissue repair, as well as the interactions with endogenous cells. As the advances

in bone tissue engineering move toward application in the clinical setting, the demon-

stration of the therapeutic efficacy of these novel scaffold designs is critical.
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1 | INTRODUCTION

Despite the promising prospect of cell treatments for tissue engineer-

ing, the general application of engineered tissue and stem cells has

not yet achieved clinical reality. Many details, including the selection,

delivery, viability, and phenotypic stability of the cells, in addition to

time-consuming therapies, supervisory issues, and high costs, need to

be optimized.1-3

In view of this, the field of acellular biomaterials is progressing

and is becoming a practical alternative to cell-based therapies.

Previously, acellular materials only were regarded as fillers for the

tissue defects,4 but now are able to be engineered into scaffolds

that can interact with surrounding cells and tissues to alter the tra-

ditional recovery processes from disease or trauma.3 In this review,

we address an acellular approach utilizing cell-free biomaterials

which can be modified through physical and chemical strategies

and takes advantage of the capacity for tissue regeneration via

interaction with local stem cells and surrounding tissues and which

promises to avoid the scientific and regulatory disputes of cell-

based materials.
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Mesenchymal stem cells (MSCs) have great potential in cell-based

treatments for tissue repair and regeneration and are used extensively,

because of their proliferation, multilineage potential, immune regula-

tory, and anti-inflammatory effects. However, as exogenous cells,

there is insufficient understanding of the interplay between the cells

and the implanted materials. There are also risks of supraphysiological

dosages required to produce the necessary efficacy, potential side-

effects, and the challenges of achieving the ideal release kinetics to

stimulate the surrounding cells. These factors indicate the necessity of

using cell-free materials. For acellular materials, it is important to focus

on the characteristics of the designed scaffolds, as well as their biode-

gradability, porosity, biocompatibility, and, with reference to bone

regeneration, their osteoconduction.

Natural bone is composed of complicated hierarchical architec-

tures from nanoscale to macroscale, combining distinctive biological

properties and high mechanical strength. The native bone matrix is

composed of inorganic components (hydroxyapatite) and organic

components (collagen-I), which have been widely used in simulated

biomimetics due to their outstanding osteoconductivity and biocom-

patibility.5,6 Foreign ions (such as Zn2+, Sr2+, Si4+) could be doped in

hydroxyapatite (HA) or another natural or polymeric material, even

bioceramic material, that would effectively mimic the mineralization

process of natural bone and hence promote osteoinduction and

osteointegration.7-10 Another biomimicry target is the extracellular

matrix (ECM), a complex network of polysaccharides and proteins

secreted and regulated by cells that provides biochemical signals for

the modulation of cell activities and also as a bridge for connecting

cells and materials.11,12 Decellularized extracellular matrix (dECM)

deposited on a biphasic calcium phosphate (BCP) scaffold was pre-

pared through two different methods and was shown to be effective

in promoting the bioactivity of scaffolds and providing an appropriate

microenvironment for tissue regeneration, especially for osteogene-

sis.13 In addition, we consider literature describing the mimicry of

native bone ECM for bone tissue engineering.14 This review focuses

on the recreation of the chemical and physical cues within native

ECM in relation to different aspects, aiming to apply this knowledge

to the development of acellular materials for bone regeneration.

Additionally, the defined control of topological features of scaf-

fold materials is dependent on ordered and elaborated preparation

methods such as advanced three-dimensional (3D) printing technol-

ogy. Variations in surface roughness and fiber alignment, especially

interconnected pore structures, could be prepared by 3D printing

technology that is able to produce sophisticated architectures with

3D features.15,16 By mimicking such micro-/nanostructural character-

istics of bone tissues, cell actions such as migration, adhesion, prolifer-

ation, as well as differentiation could be regulated, further promoting

bone regeneration.17,18 Meanwhile, in addition to biochemical signals,

ambient physical stimuli such as electrical and magnetic factors, can

also influence cells and are able to further prompt bone regenera-

tion.19-21 Based on previous reports, bone tissue, which possesses pie-

zoelectric properties, can generate charges or potentials in response

to mechanical stimuli and have the capacity of enhancing bone

growth.22 The application of magnetoelectric scaffolds and restoration

of the physiological electric microenvironment in bone tissue regener-

ation can further regulate cell fate and optimize biomaterial

design.19,23 Evolving strategies that combine external environmental

physical cues with the intrinsic features of materials and modulated

scaffold systems can thus be utilized to synergistically drive bone

regeneration. Moreover, mechanical parameters of materials or cells

that can be controlled are important for regulating cellular fate.24-26

For example, 3D scaffolds coated with Ti surfaces can provide similar

rigidity to cartilage (0.5–3 MPa), allowing cell growth.27 Hydrogels

which possess flexible and tunable stress relaxation could guide cell

behavior and fate. It has been found that cells cultured in gels with

faster relaxation, spreading of MSCs was faster, as well as boosting

both the proliferation and osteogenic differentiation of the cells.25

Innate growth factors can be stimulated by cellular adhesive forces, a

feature that has been used by flexible aptamer technology to produce

mimics of the transforming growth factor-beta large latent complex.

Traction forces can thus act as triggers activating specific biological

responses and thus have potential applications in both biological

research and regenerative medicine.26

Lastly, energy-driven, photothermally modified, thermodynami-

cally controlled, and photoluminescent biodegradable materials have

been prepared by researchers.28-30 Tissue regeneration is dependent

upon cellular bioenergetics (CBE) which, within bioenergetic-active

material (BAM) scaffolds, promote mitochondrial membrane potential

(ΔΨm) to provide elevated bioenergetic levels and further accelerate

bone repair.28 For the simultaneous treatment of osteosarcoma and

tissue regeneration in clinical terms, an innovative multifunctional

scaffold with temperature-controlled characteristics has been

reported which can efficiently eliminate human osteosarcoma cells at

48�C, while enhancing osteogenesis of BMSCs at a temperature of

42 ± 0.5�C using 808-nm near-infrared (NIR) light irradiation.30

This review aims to describe the manufacture of biomimetic bone

materials, including the different methods used, their structures, and

scales from microscale to macroscale, to promote the physical and

chemical modification of structural surface features to regulate bone

growth. We describe the latest progress in biomimetic strategies,

including ion doping, functionalization of the dECM, and ambient

physical stimulation, from micro-/nanoscale to macroscale, as well as

the advantages of other functional scaffold materials (Figure 1). Cellu-

lar responses to these scaffolds in vitro, as well as the in vivo process

of new bone formation produced by these strategies will be

highlighted. This summary of recent advances in these fields identifies

important issues and future directions for the design of biomimetic

scaffold materials, specifically in terms of promoting cellular behav-

ioral changes toward substrates in the process of bone tissue

regeneration.31

2 | BIOMIMETIC ION-FUNCTIONALIZED
SCAFFOLDS

Several trace inorganic ions have been discovered that are conducive

to bone tissue regeneration.32 This has inspired researchers to explore
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various bioactive glass dissolution products and doping strategies,

as well as synthetic HA, bioactive glass, and other materials involv-

ing natural/polymer materials. In comparison with other cues of

promoting osteogenesis, the superiority of applying inorganic ions

to facilitate bone trauma repair is multifaceted, including cost-effi-

ciency, improved stability and simplicity, and outstanding efficacy at

low concentrations.33-35 In this section, we will pay attention to

ion-doped and dissoluble scaffold materials with enhanced biologi-

cal activities involving osteogenesis, angiogenesis and antibacterial

properties that are involved in the application of these ion-relevant

materials. Figure 2 shows the distinctive therapeutic effects of

these ions toward bone regeneration released from a biomaterial

scaffold.

2.1 | Ion-doped materials

Neščáková et al. fabricated mesoporous bioactive glass nanoparticles

(MBGNs) using the SiO2–CaO system with Zn2+ ions being doped in

MBGNs. The Zn-MBGNs were able to gradually release zinc ions to

the medium and also showed an enhanced ability to adsorb pro-

teins.10 Among the different bioactive metal ions tested, strontium

has been extensively investigated in the context of bone repair mate-

rials due to its structural and physicochemical similarity to calcium,

promoting bone regeneration and inhibiting bone resorption.10,36-38

Lei et al. developed a SrHAP/chitosan (CS) nanohybrid scaffold by

freeze-drying technology. The SrHAP nanocrystals can uniformly dis-

perse into the scaffolds and, with the release of Sr2+ ions, cell prolifer-

ation, and osteogenic differentiation can be improved. Additionally,

the presence of strontium in the scaffolds promoted ECM mineraliza-

tion, alkaline phosphatase (ALP) activity, and expression of the osteo-

genic genes ALP and COL-1.39

Since the 1970s, the possibility of using silicon, usually acting as the

silicate ion (Si4−), for bone formation has emerged.40 Si has a critical role

in the metabolism of bone formation and is utilized to induce hydroxy-

apatite precipitation into the matrix by elevating its concentration at the

early stages of bone calcification.33 Mao et al. created bioactive bone

regeneration particles (BRPs) using amorphous calcium phosphate and

58S bioglass, composed of β-tricalcium phosphate (β-TCP) and calcium

silicate, that could enhance bone regeneration. The BRPs also showed

outstanding osteoinduction and osteoconduction for alveolar bone

repair.41

Magnesium accounts for approximately half the mineral comple-

ment of bone tissue.42 It is also essential for many metabolic reac-

tions.43 Among many effects of magnesium ions, its direct influence

on osteogenesis is significant. Yoshiwaza et al. found that Mg2+

improved ECM mineralization in human bone marrow stromal cells

(BMSCs), enhancing the expression of collagen-X and vascular endo-

thelial growth factor (VEGF).44 Hung et al. demonstrated that Mg2+

initially induces an osteogenic effect in the marrow cavity before

motivating BMSC differentiation into osteoblasts through activation

of the canonical Wnt signaling pathway. They further demonstrated

the effective application of Mg-based devices in therapy, especially in

the bone regeneration field.45 Minardi et al. constructed a bio-inspired

biomimetic osteogenic niche with osteoinductive potential, composed

of magnesium-doped hydroxyapatite/type-I collagen, which repre-

sents a critical advance in acellular off-the-shelf substitutes for bone

regeneration applications.46

F IGURE 1 Schematic diagram of construction strategies for biomimetic bone scaffolds for cell guidance in bone regeneration
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Calcium is the most abundant mineral in the body and is stored

mainly in the skeleton.47 During the process of bone remodeling, the

extracellular calcium ion concentration can be elevated to some

extent through bone-resorbing osteoclasts.48 This resorption can be

inhibited, as can be the proliferation and differentiation of MSCs49-51

and the osteoblasts can be stimulated.52,53 During the 1980s,

researchers found that an extracellular G-protein-coupled receptor,

namely the calcium sensor receptor (CaSR),54 can be activated,

resulting in increased levels of calcium, which are then able to pro-

mote proliferation, chemotaxis, and osteogenic differentiation of

BMMSCs in a dose-dependent manner.55 In view of the composition

of natural bone and the significant role of calcium in cellular activities,

diverse materials composed of calcium phosphate have emerged as

bone substitute treatments.56-58 However, although the deposition of

calcium phosphate on the surfaces of these bone replacement mate-

rials may benefit osseointegration, the calcium deficiency remains a

problem in bone regeneration.59 It is known that ionic dissolution

products have beneficial effects on cellular activities, suggesting that

dissociated calcium and phosphate ions may promote the osteogenic

differentiation of osteoblasts.60

Because of the beneficial antimicrobial properties of the silver ion

(Ag+) in tissue regeneration applications, incorporation of Ag+ into tis-

sue engineering scaffolds could be useful to inhibit infections with

minimal adverse effects.32 Qing T. et al. found that silver-based

nanoparticles were able to facilitate the proliferation and differentia-

tion of MC3T3-E1 cells, further contributing to the upregulation of

bone formation and regulation markers.61 3D scaffolds incorporating

AgNP-loaded nHA@RGO have been investigated. These composite

scaffolds have been shown to effectively eliminate infection and

inhibit the formation of biofilm, further facilitating bone repair.62

Iron is indispensable for a wide variety of cellular processes in the

human organism,63-65 including the synthesis of DNA, RNA, and pro-

teins, as well as electron transport processes, cellular proliferation, and

differentiation.66,67 In bone regeneration, in vitro experiments have

shown inhibition of osteogenic lineage differentiation in human osteo-

blasts concomitant with decreased calcification caused by iron over-

load.68-70 Furthermore, in vivo studies in zebrafish larvae have shown

reduced osteoblast function and mineralization caused by iron over-

load resulting in the augmented generation of reactive oxygen spe-

cies.59 Deferoxamine, an iron chelator able to remove iron throughout

the body, is able to counteract this effect in osteoblasts progenitors

and has been applied extensively in osteogenesis.70 However, in vivo

experiments found that the exposure of BMSCs to high iron concen-

trations may have negative effects such as impairing differentiation

toward the osteogenic lineage. In contrast, Wang et al. reported posi-

tive effects of iron oxide nanoparticles(IONPs), mediated by MAPK

signaling on the osteogenic differentiation of human BMSCs

in vitro.71 Furthermore, Zhao et al. demonstrated the impacts of both

low and high iron concentrations on osteoblasts.72 They found that

osteoblastic differentiation was inhibited as the increase of iron con-

centration in a concentration-dependent manner while a mild iron

deficiency caused an elevation in cellular activity. However, osteoblas-

tic differentiation may be restricted at critically low iron levels. Conse-

quently, the potential advantages of iron in tissue regeneration need

further exploration.

3 | THE POTENTIAL OF DECELLULARIZED
EXTRACELLULAR MATRIX SCAFFOLDS

The extracellular matrix (ECM) is a complex network of structural and

functional molecules secreted by cells.73 All tissues and organs are

thus largely composed of cells and ECMs. The main components of

the ECM are (i) proteoglycans and glycosaminoglycans (GAGs),

(ii) filamentous proteins such as collagen and elastin, (iii) adhesive pro-

teins such as laminin, vitronectin, and fibronectin. Bone ECM has both

inorganic and organic constituents. The inorganic part, consisting of

calcium phosphate, mainly in the form of hydroxyapatite (HA), is the

source of bone strength,74 while the organic part, composed mostly

of type I collagen, provides the tissue and cell with flexibility and

F IGURE 2 Schematic of inorganic ions released from a
biomaterial scaffold and their associated therapeutic effects toward
bone regeneration. MSC, mesenchymal stem cell
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adhesion, respectively. Decellularized bone is frequently used as a

special scaffold material in bone tissue engineering, due to its ability

to eliminate cellular components and antigenicity and its osteogenic

and biomechanical properties as well as its physiological similarity to

the bone matrix.

Boram et al. demonstrated that the potential of a biphasic calcium

phosphate (BCP) scaffold with attached dECM in bone tissue engi-

neering. Rat BMSCs were cultured on porous BCP scaffolds for

3 weeks, after which the decellularized ECM-deposited scaffolds

(dECM-BCP) were further utilized for study in vitro (Figure 3). The

results indicated that the BCP scaffold with ECM was enhanced the

bioactivity of the materials, as well as offering a stable microenviron-

ment for osteogenesis.13 Wang et al. showed that adipose-derived

ECM (A-ECM) could be combined with chitosan/gelatin conducive to

the attachment and growth of BMSCs. Thus, for ECM scaffolds with

poor mechanical properties, the association of chitosan/gelatin with

the ECM can promote not only the strength of the ECM scaffolds but

also the bioactivity of composite scaffolds, while simultaneously

enhancing the osteogenic ability of chitosan.12

In contrast to decellularized ECM scaffolds, Platelet-rich fibrin

(PRF), which functions as a growth factor vector, has been widely used

in the field of soft and hard tissue regeneration.75-77 However, the bio-

active stability of decellularized PRF (DPRF) is unknown. Chi et al.

investigated whether the incorporation of DPRF into the chitosan/gel-

atin scaffold could synergistically improve both the bioactivity of the

C/G scaffold and the strength of PRF, due to the suitable biocompati-

ble and mechanical properties of C/G scaffolds, but found a lack of bio-

activity. Ultimately, the merging of DPRF can not only promote BMSC

adhesion, proliferation, and osteogenic differentiation with a suitable

microenvironment in vitro but also expedite bone repair in vivo.78

4 | MICRO/NANO-STRUCTURAL
FEATURES OF THE BIOMIMETIC SCAFFOLD

Tissue engineers need to mimic the micro/nano-architecture of natu-

ral bone to investigate the means of stimulating effective tissue

growth. To understand the intrinsic osteoinduction of materials, prob-

ing the tunable structural properties of scaffolds is necessary. Of

these features, primary concern are gross features such as the surface

roughness and morphologies of materials on which cells proliferate

and attach, in addition to substrate modulus and pore size conducive

to osteogenic differentiation, and distinctive structural components

such as fibrils of particular sizes and interconnectivity.79

4.1 | Nanostructured surfaces and interfaces

The design of materials to direct cell behaviors and thus to promote

tissue repair is of great concern in tissue engineering and is essential

F IGURE 3 Schematic diagram of the procedure to generate cell-derived extracellular matrix deposited on biphasic calcium phosphate (BCP)
scaffolds. The rat-derived bone marrow mesenchymal stem cells were seeded on BCP scaffolds, cultured for 1 week in growth medium, and
incubated for 3 weeks with osteogenic medium followed by decellularization using freezing and thawing and sodium dodecyl sulfate treatments.
The decellularized extracellular matrix-biphasic calcium phosphate (dECM-BCP) scaffolds were evaluated in vitro
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for the improvement of bioactive materials.80-82 MSC differentiation

may be triggered by surface topography or by the release of growth

factors, calcium, and phosphate by inflammatory cells such as macro-

phages, monocytes, and osteoclasts.83 On the microscale, the ECM of

bone is in the form of planar lamellae composed of collagen fibers

with HA deposits. Previous studies have shown that rough surfaces

with micro−/nanostructured topographies and patterned surfaces can

significantly enhance the biological efficacy of the materials for

cells.84-87 Zhao et al. created convex micropatterns of different sizes

on a hydroxyapatite bioceramic surface, using a patterned nylon sieve

as the template (Figure 4). These surfaces provided superior wettabil-

ity and surface energy with significantly improved effects on rat bone

marrow stromal cell (bMSC) proliferation, adhesion, and osteogenic

differentiation. The author further showed a much better stimulation

of the cell response with surface pattern sizes that were similar to the

cell size, compared with larger pattern sizes.88 Xia et al. designed Si-

substituted HAp bioceramic scaffolds with specific nanosheet and

nanorod structures using hydrothermal treatment of calcium silicate.

It was found that these surfaces were able to promote cell attachment

and spreading as well as stimulating proliferation and osteogenic dif-

ferentiation in rBMSCs. These effects were enhanced by the incorpo-

ration of Si, with the best effects produced using a Si-substituted HAp

bioceramic with a nanorod surface.89

4.2 | Micro/nano-porous structures of the
scaffolds

Bone tissue engineering scaffolds require interconnected 3D pore

structures that permit cell infiltration as well as allowing nutrient

access and waste removal.90 Most studies describe surfaces that only

permit one-way guidance, resulting in only transverse or longitudinal

migration of cells and asymmetric repair of the tissue defect.91,92

Thus, a necessity for symmetrical regeneration is facilitated migration

of the cells into the center of scaffolds. It has been found that scaf-

folds with oriented porous structures are effective in this regard93,94

as oriented pores are able to promote cell infiltration allowing

improved tissue regeneration both in vivo and in vitro.95 Dai et al.

reported an O-HA-MA/PLGA scaffold with radial pores prepared by

directed cooling, freeze-drying, and PLGA infiltration (Figure 5). It was

found that this type of scaffold allowed bone marrow stem cell

(BMSC) aggregation characterized by spherical cell morphology, while

the cell-free hybrid scaffold facilitated regeneration by the recruit-

ment of surrounding BMSCs and chondrocytes rather than preseeding

any type of cells.96 Shin et al. demonstrated the efficacy of radially

aligned fibrous scaffolds (RAFSs) with PLLA-coated polydopamine in

promoting the directional migration of human mesenchymal stem cells

(hMSCs). The RAFSs were composed of fibers distributed radially

from the periphery to the center, with the polydopamine coating

enhancing cell migration. The radial fiber distribution of the scaffold

provided direction to the hMSC migration while modulating the cell

shape to become elongated and oriented toward the scaffold

center.97

4.3 | 3D scaffold materials with irregular and
hierarchical structures

Treatment of complicated and irregularly shaped bone defects and

the complications of various bone diseases remains a clinical

F IGURE 4 FESEM images of the HAp bioceramic surfaces with a flat surface (S0) as the control sample, and the micropatterned surfaces
using 100 (S1), 200 (S2), and 400 (S3) mesh nylon sieves as templates. The inserted small figures in the top right corner are low magnification
images, and the mark of the “space” denotes the distance between the adjacent convexes
Source: Adapted with permission (Qiu et al.87)
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challenge.98 Although there are a variety of products, including bone

void filters and temporary scaffolds as well as reports of new biomate-

rials, many of these have surgical, technical, and manufacturing short-

comings.99,100 Evidence indicates that inadequate contact with host

bone tissue adversely affects osseointegration.101 Ceramics and

cements, both natural and synthetic, are frequently used for the clini-

cal treatment of bone defects;99 however, rigid ceramics are difficult

to machine, indicating that ceramic constructs cannot be simply

shaped and tuned in clinical treatment to accommodate the defect

site.102 In addition, the fragile and brittle nature of ceramics has

restricted their application. Recently, a novel material allowing shape

recovery has appeared to be a groundbreaking application in regener-

ation medicine.103 The shape recovery feature guarantees scaffold

implantation in a compressed form with minimally invasive surgery,

avoiding the technical, surgical, and manufacturing limitations and all-

owing the scaffold to fit into the defect site. Moreover, as native bone

ECM has a nanofibrous physical structure with 65–70 wt% inorganic

composition,104-106 the 3D scaffolds resemble native physicochemical

structures, which are composed of inorganic nanofibrous with shape-

recovery features, and thus could have potential for bone tissue

regeneration.

Wang et al. prepared 3D superelastic scaffolds composed of flexi-

ble inorganic nanofibers that are capable of self-fitting. First, flexible

SiO2 nanofibers were encapsulated with chitosan (CS) layers using

SiO2 NF–CS bonding points. Chitosan has the advantages of being

biocompatible, biodegradable, and antibacterial and is thus widely uti-

lized for tissue engineering.107,108 Furthermore, chitosan undergoes a

glass transition on hydration, endowing the chitosan scaffolds with

shape recovery properties.109 The prepared SiO2 NF–CS scaffolds

show shape recovery on hydration as well as good elasticity and

resistance to fatigue. They have been shown to be effective in pro-

moting hMSC differentiation in vitro as well as self-fitting to bone

defect sites and promoting bone regeneration in vivo110 (Figure 6).

Second, SiO2–CaO glass nanofibers have excellent flexibility and bio-

activity through their ability to modulate crystallization and chain con-

figuration and this overcoming their inherent fragility (Figure 7a).

Furthermore, the elastic SiO2–CaO nanofibers are divided and assem-

bled into 3D porous scaffolds wrapped in the natural polymer

chitosan using homogenization and lyophilization (Figure 7b). The

SiO2–CaO nanofiber/chitosan (SiO2–CaO NF/CS) scaffolds are elastic

allowing for shape recovery and biomineralization. These properties

result in enhanced regenerative capability as demonstrated in vivo

(Figure 7c)，where the SiO2–CaO NF–CS scaffolds enhanced both

bone regeneration and revascularization.111 The above-mentioned

two strategies for fabricating elastic and shape-recovery porous 3D

scaffolds utilizing flexible inorganic nanofibers with self-fitting ability

and allowing minimally invasive surgery are promising strategies for

innovative bone regeneration scaffolds.

5 | PHYSICAL FACTORS AND
INDUCEMENT-REACTIVE SCAFFOLDS

The strategies of constructing acellular scaffolds involve not only the

optimization of internal structures, surface modification, and growth

factor delivery of the 3D biomaterials, but also a consideration of

external physical cues, including electrical, mechanical, and magnetic

stimuli, as well as photothermal drive can influence biological pro-

cesses, including bone regeneration.21,112,113 Thus, synergistic regula-

tion of bone repair has been employed, combining external physical

stimuli with the internal structures of scaffolds, in particular, those

features that are responsive to stimuli (Figure 8).

5.1 | Photothermally-controlled bone scaffolds

Recently, photothermal therapy (PTT) has been utilized for eliminating

tumors and stimulating tissue regeneration.114-118 PTT and radiother-

apy (RT) are extensively employed in clinical treatment where, in com-

bination with nanomedicine, they have proved successful.119,120

Various biomaterials with photothermal effects have been reported

past a few years involving gold nanoparticles121-123 and carbon

nanomaterials.124-126 Among these, graphene oxide (GO) has shown

great promise due to its ability to absorb near-infrared (NIR) light, its

high photothermal transforming efficiency, and biocompatibil-

ity.127-130 Yanagi et al. demonstrated that a carbon nanotube under a

photothermal effect activated by NIR light promoted osteogenic gene

expression in preosteoblasts. in vivo results indicated that the bone

regeneration of calvarial defects was enhanced in comparison to con-

trols not treated with NIR.131

Photothermally controlled scaffolds have progressed toward mul-

tifunctionality with the capacity of addressing both challenges involv-

ing bone regeneration and the elimination of osteosarcoma cells. Ma

F IGURE 5 Schematic illustration to show the preparation
procedures of an oriented porous O-HA-MA/PLGA scaffold by
cooling in the radial direction. The HA-MA solution was placed in a PE
mold with the bottom attached to a thermal-insulating sponge to
avoid heat exchange from below. The PE mold was placed in a
precooled copper mold to allow crystallization of the solvent from the
radial direction. The cartoons on the lower right side show the 3D and
side view of the structured scaffold
Source: Reprinted with permission (Zhang et al.95)
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et al. designed a bifunctional CS scaffold coated with nHA and GO,

investigating its ability to eliminate osteosarcoma cells and improve

MC3T3-E1 cells, as well as the effects of NIR irradiation on hBMSC pro-

liferation and differentiation. Furthermore, the underlying mechanism of

osteogenesis was discussed (Figure 9). It was found that appropriate

proportions of nHA and GO produced better effects. In this study, 30%

of nHA and GO improved the biocompatibility, while also showing an

excellent photothermal effect in removing HOS and promoting differen-

tiation of hBMSCs. For the evaluation of in vivo tissue regeneration,

results from the micro-CT images and tissue staining indicated that

nHA/GO/CS showed significantly higher new bone formation compared

to controls.30 In a similar report, a bioceramic scaffold was modified

through bioprinting with self-assembled Ca-P/polydopamine nanolayers.

With the photothermal effect of polydopamine, the scaffolds signifi-

cantly induced apoptosis of tumor cells in vitro and inhibited tumor pro-

gression in vivo. Due to the nanostructural surface, the scaffold was

shown to enhance new bone formation with photothermal stimuli in a

rabbit model.132

With the exception of the bifunctional scaffolds with the

photothermal effect, the development of thermodynamically control-

lable bone-like hierarchically staggered architecture has been

reported, including the construction of a high-energy polyacrylic acid-

calcium intermediate, which drives mineralization in collagenous-

deficient gap areas by an energetically downhill process. Liu et al.

aimed to demonstrate the mechanism of formation of the staggered

architecture from a thermodynamic viewpoint and produced osteo-

inductive materials similar to autografts with equivalent effects on cell

homing, osteogenic differentiation, and treatment of bone defects.

The selective mineralization process in the collagenous gap areas was

modulated by a high energy level of PAA-Ca media through an ener-

getically downhill process. Among the three groups, it was found that

HIMC, with structural and functional features similar to native bone

tissue, provided a beneficial microenvironment for cell homing and

multidifferentiation, while recruiting native stem cells for bone defect

repair.29

5.2 | Electrically and magnetically guided bone
scaffolds

Since the discovery of the bioelectrical properties of bone in the

1950s, electrical stimuli have been recognized in clinical therapy as a

supplement to speed fracture healing and promote spinal

fusion.20,133,134 Because of the presence of electric current and

potential in native bone and periosteum, it has been suggested that

they play an essential role in sustaining bone quality and vol-

ume.135,136 Several capacitive biomaterials capable of storing electri-

cal charge on their surfaces have been discovered. These biomaterials

have shown promise in the bone regeneration field. Recent findings

have demonstrated that electrical stimuli can drive bone cells to

migrate, proliferate, and differentiate at particular sites in vitro.137-140

Clinical results also indicated that electrical stimuli could boost bone

healing via interactions between bioelectrics and charged biomole-

cules.135,140 Bandyopadhyay et al. explored the innovatory combina-

tion of bioactive TiO2 nanotubes (TNT) with charge storage to modify

the surface of Ti (CpTi) on enhancing bone cell-material interactions

in vitro and osseointegration in a rat distal femur defect model in vivo.

The results indicated that the polarized TiO2 TNTs grown on the Ti

F IGURE 6 3D nanofibrous scaffolds from flexible inorganic nanofibers. (a) Flexible SiO2 nanofibers with foldability. (b) SEM image of a curved
SiO2 nanofibrous mat showing that SiO2 nanofibers can achieve 180� deflection without fracture. (c) The shape recovery process of SiO2 NF–CS
scaffolds induced by hydration
Source: Adapted with permission (Correia and Mano109)
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surface promoted osteoblast adhesion, proliferation, and differentia-

tion, showing the effect and biocompatibility of TNT-P toward opti-

mizing interactions between surrounding cells and materials in vitro.

Histological and SEM results showed accelerated healing and interfa-

cial bonding between the implant and the bone tissue.141

Since electric microenvironment-stimulated wound repair has

been proposed as a cue for bone regeneration, recovery of a damaged

physiological potential microenvironment appears to be an effective

strategy for bone regeneration.142 Zhang et al. designed biomimetic

electric microenvironment nanocomposite membranes with homoge-

neous scatter of ferroelectric BaTiO3 nanoparticles (BTO NPs) in poly-

vinylidene fluoridetrifluoroethylene (PVDF-TrFE) matrix (Figure 10).

As the nanocomposite membranes cover the bone defect site like

native periosteum, surrounding BMSCs can be attracted by

galvanotaxis and stimulated to differentiate into osteoblasts through

the bioelectric potential produced by the composite membranes. Fur-

thermore, the surface potential of the membranes was found to be

stably conserved having more than half of its original surface potential

12 weeks after implantation.23

F IGURE 7 Schematic diagram of the production of an elastic 3D SiO2–CaO NF/CS scaffold to improve bone repair in osteoporotic rats.
(a) Development of SiO2–CaO nanofibers with superior flexibility. (b) Generation of 3D SiO2–CaO NF/CS scaffold with excellent elasticity.
(c) Repair of cranial defect in an osteoporotic rat via minimally invasive transplantation of the self-deploying scaffold

Source: Reprinted with permission from L. Wang, Qiu, Y. Guo, et al. Smart, elastic, and nanofiber-based 3D scaffolds with self-deploying capability
for osteoporotic bone regeneration. NanoLett. 19 (2019) 9112–9120.110 Copyright (2019) American Chemical Society

F IGURE 8 Illustration of the physical signals (mechanical,
electrical, magnetic, and photic stimuli) and intrinsic cues of scaffolds
synergistically affecting cellular behavior
Source: Adapted with permission (Du et al.31)
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Various piezoelectric materials have been used for creating elec-

troactive scaffolds that have capacities of wirelessly electrostimulating

cells under mechanical stress,143-145 especially piezoelectric nano-

biomaterials.146 Moreover, the utilization of wireless magnetic fields

to activate piezoelectric scaffolds has received significant attention

recently, owing to their minimally invasive character and the simplicity

of manipulation. In this field, Mushtaq et al. designed 3D magneto-

electric inverse opal scaffolds composed of biodegradable PLLA and

electromagnetic nanoparticles, imitating the naturally occurring

porous and piezoelectric bone microenvironment by producing elec-

tric charges wirelessly. The effects of electric stimuli induced by mag-

netic field on the proliferation of MG63 osteoblast cells were

determined using both two-dimensional (2D) membranes and 3D scaf-

folds (Figure 11). Using the 2D membranes, a 40% increase in cell pro-

liferation was observed compared to controls, while use of the 3D

scaffolds resulted in a 134% increase in proliferation.19 Besides the

application of electromagnetic effects for bone regeneration, pure

F IGURE 9 Schematic illustration of the construction of nHA/GO particles, nHA/GO/CS scaffolds, and their bio-applications
Source: Adapted with permission (Ma et al.30)

F IGURE 10 Illustration of the biomimetic electric
microenvironment created by BTO NP/P(VDF-TrFE) composite
membranes promoting bone defect repair
Source: Reprinted with permission from X. Zhang, C. Zhang, Y. Lin,
et al. Nanocomposite membranes enhance bone regeneration through
restoring physiological electric microenvironment. ACS Nano.
10 (2016) 7279–7286.23 Copyright (2016) American Chemical Society
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magnetic stimulation treatment by pulse electromagnetic fields (EMF)

has emerged in clinical therapy for bone healing for many years,

though with limitations.147 in vitro studies have determined that static

magnetic fields (SMF) and EMF could both promote osteoblast

differentiation,148,149 while in vivo findings also demonstrated that

SMF and EMF can improve bone healing and enhance bone integra-

tion with grafts.150 It has been assumed that the underlying biological

mechanism might be cell membrane deformation and cytoskeletal

restructuring induced by magnetic stimuli, owing to the presence of

water acting as a diamagnetic fluid, triggering mechanically stimulated

signaling pathways to promote osteoblast differentiation.151 Magnetic

tissue engineering scaffolds, especially magnetic bone scaffolds that

have exhibited prospects for enhancing bone regeneration, have been

constructed based on these natural biological reactions through

embedding magnetic nanoparticles (MNPs) into diverse matri-

ces.152-154 For instance, the embedding of MNPs into PCL nanofiber

scaffolds indicated that the composite scaffolds not only enhanced

the osteogenic differentiation of rat MSCs in vitro but also promoted

vascularization and bone regeneration in vivo.155 However, the under-

lying mechanisms of interactive response between the magnetic scaf-

folds and cells or tissues remain obscure. One hypothesis is that the

blended MNPs ameliorate physical properties, such as mechanical fea-

tures, hydrophilicity, and degradation rate, thus enhancing cell adhe-

sion and bone regeneration. Another possible reason may be the

generation of an internal magnetic field induced by the incorporation

of MNPs, thereby affecting cell behavior.

F IGURE 11 Construction of magnetoelectric (ME) inverse opal scaffolds and structural characterization of ME NPs and the ME scaffold.
(a) Scheme showing the construction steps starting with the assembly of gelatin spheres, followed by (i) their infiltration with a solution of PLLA

and ME nanoparticles and (ii) the removal of gelatin spheres to obtain 3D and porous ME scaffolds. SEM images of (b) assembled gelatin template
and the inset show its magnified image. (c) SEM image showing the top view of a 3D ME scaffold and the inset shows its magnified image
demonstrating a uniform porous structure. (d) SEM image presenting a cross-sectional view of a uniform and well-connected ME scaffold.
(e) Scheme showing the ME effect induced enhanced cell proliferation on 3D scaffolds under the influence of AC magnetic fields
Source: Adapted with permission (Mushtaq et al.19)
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Besides the use of MNPs-embedded magnetic scaffolds, the stim-

ulation of external magnetic fields can be utilized to promote scaffold

fixation156 and drive cells toward angiogenesis and osteogenesis.157

For instance, an external SMF applied on magnetic PCL/MNP scaf-

folds for osteoblast differentiation and bone formation has been stud-

ied showing that the external SMF stimuli not only facilitated

osteoblast differentiation in vitro, but significantly promoted new

bone regeneration in mouse skull defects, in comparison to magnetic

scaffolds alone.158 In addition，an external magnetic field not only

can stimulate cells toward bone regeneration but can produce a direct

effect on angiogenesis. Sapir et al. demonstrated that an external

alternating magnetic field prompted the formation of vessels in endo-

thelial cells in magnetically reaction alginate scaffolds.159 However,

the underlying mechanisms of how external magnetic fields motivate

osteogenesis and angiogenesis are still unknown and it is assumed

that microdeformation induced by magnetic scaffolds may produce

bending and stretching forces that could mechanically stimulate

cells.157,160

5.3 | Mechanically sensitive bone scaffolds

At the molecular level, cell behavior, for instance in MSCs, may well be

regulated by the mechanical properties of materials as the capacity of

a material substrate to either store or dispel cellular forces could con-

tribute to a strong cue to cells interacting with it.161-163 Regarding

bone which is composed of diverse cells and ECM and is a mechani-

cally sensitive tissue, the effect of mechanical forces on the remo-

deling and structural improvement of bone has been long known.164

In particular, the effect of mechanical cues on cell behavior is impor-

tant for sustaining bone tissue homeostasis.151 External mechanical

forces have been suggested to be a potential of modulating MSC dif-

ferentiation in vitro. As an example, a materials approach with a tun-

able rate of stress relaxation of hydrogels for the 3D culture of cells

has been reported. The study aimed to investigate the effects of

hydrogel substrate viscoelasticity and stress relaxation on cell prolifer-

ation, spread, and MSC differentiation under 3D conditions. It was

found that with the initial elastic modulus of 17 KPa in fast-relaxing

hydrogels, MSCs could develop a mineralized, collagen-1-rich matrix

resembling that of bone.25 Thus, the characteristic of cell

mechanosensitivity to substrate through stress relaxation is a promis-

ing design parameter for biomaterials for bone repair. Another study

demonstrated that mechanical stimuli in vitro could produce highly

mineralized bone formation. Steinmetz et al. found that human MSC

differentiation could be regulated by dynamic mechanical stimuli caus-

ing expression of collagen-I as well as the formation of mineral

deposits in the bone layer of an osteochondral hydrogel.165 Moreover,

external mechanical stimulation can be combined with the natural

physical characteristics of a scaffold for cell regulation. For instance,

the patterns of aligned and unaligned nanofibers affecting MSC differ-

entiation under tensile pressure have been used with good effect.166

Besides external mechanical factors, research has focused on the

important role of intrinsic forces of the scaffold materials.112 Scaffolds

that show beneficial mechanical signals via physical cues, such as stiff-

ness and other mechanical properties, can generate internal mechanical

forces to facilitate cell differentiation167 (Figure 12). For instance, on

2D membranes with 0.1–1 kPa stem cells developed into neurons.

When grown on stiffer substrates (20–80 kPa), the cells had a greater

probability of turning into bone cells.168,169 It appears that the stiffness

of the structure is more significant with a 3D substrate stiffness rang-

ing from 0.7 to 3 MPa resembling that of cartilage being optimal for

osteoblast functionality. In another study, Maggi et al. aimed to investi-

gate the efficacy of stiffness of 3D nanoarchitected scaffolds on stress

and mineralization in osteoblast-like cells. The fabricated 3D scaffolds

with tetrakaidecahedral geometry, referred to as nanolattices, had a

stiffness range of 0.7–100 MPa with each type of nanolattice under

mechanical assays. It was found that 3D scaffolds with Ti-coated sur-

faces under optimal microenvironmental conditions may facilitate cell

growth, as the stiffness resembles that of cartilage (~0.5–3 MPa).27 As

described above, relatively lower stiffness may be beneficial for osteo-

genesis. A recent study reported that by controlling the decalcification

time (1 h, 12 h, and 5 days), distinctive compressive modules

(0.67 ± 0.14 MPa [low]), (26.90 ± 13.16 MPa [medium]), and (66.06

± 27.83 MPa [high]) were constructed with demineralized bone matrix

scaffolds. Both in vitro experiments with cells and in vivo experiments

with subcutaneous implantation in rats indicated that the low scaffolds

could promote osteogenesis and bone regeneration.170 Although it is

widely known that MSCs and osteoblasts respond to both substrate

topography and stiffness,171 the underlying mechanism still being

investigated.

6 | OTHER ACELLULAR BONE SCAFFOLD
MATERIALS

Apart from the strategies of constructing cell-free scaffolds for bone

regeneration described above, other methods will also be discussed,

including surface-immobilized proteins and other biomolecules, utiliza-

tion of cellular bioenergy, and bone adhesives. All approaches seek to

facilitate osteoblast differentiation and bone formation at the graft

site, leading to integration between the implant surface and the native

bone tissue. The use of seeding cells, mainly MSCs, is one of the main

approaches for the construction of cellular scaffolds for bone regener-

ation but has the disadvantages of potentially damaging healthy tissue

as well as substantial costs involved in the isolation and expansion of

the cells. Additionally, a comprehensive understanding of stem cells in

terms of their terminal differentiation and hypertrophy is lacking,

affecting their applications in clinical therapy.172 Cell-free approaches

with a surface-functionalized scaffold can promote bone regeneration

by recruiting endogenous osteoblasts to ameliorate bone defect

repair. Protein immobilization, first performed on glass substrates, is

derived from peptide immobilization. The proteins regarded as

enhancing osseointegration can be divided into two groups: (a) ECM

proteins that present adhesive sites for cells and (b) proteins that pro-

vide signals that activate pathways of bone formation.173 Bone mor-

phogenic protein-2 (BMP-2) has been found to be beneficial in
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osteogenesis and bone metabolism174 but presented safety concerns

for clinical application. Although supraphysiological doses of BMP-2

may cause adverse effects, including immunological reactions, edema,

and heterotopic bone formation,175,176 the protein is indispensable for

osteogenesis. In order to overcome the limitations of short half-life and

rapid clearance caused by supraphysiological doses, a novel biomaterial

vehicle composed of heparin microparticles (HMPs) and alginate

hydrogels surrounded by a PCL nanofiber mesh was manufactured.

The PCL nanofiber mesh can promote initial tissue and cell filtration

into the mesh pores while the functionalized alginate hydrogels act as

the carrier delivering HMP and BMP-2 to facilitate cell attachment and

infiltration, enhancing growth factor activity, and hydrolytic degrada-

tion.177 While the primary limitations are safety and efficacy issues

associated with the burst release of BMP-2, HMP loading may offer a

promising strategy to ameliorate the safety of BMP-2 delivery. A novel

BMP-2 delivery system has been created using the technology of NIR-

responsive hydrogels and inducible transgene expression. This involves

the capture of genetically engineered cells in hydrogels which can be

activated by an NIR laser inducing the release of BMP-2 through photo-

induced mild hyperthermia. The NIR-responsive hydrogels encapsulating

the cells can express BMP-2 in the bone defect and can further induce

the formation of new bone tissue. As the BMP-2 is under strict spatio-

temporal control, this system offers significant advantages for bone tis-

sue engineering.178 Scaffolds manufactured by multiple techniques and

comprised of porous Ti-alloy implants and interconnected channel struc-

tures have been created by Teng et al. The microstructure of the implant

surface sites provided by microarc oxidation for coprecipitation of the

Ca,P layer with BMP-2 facilitated the sustained release of BMP-2.179

Kossover et al. developed a cell-free, biodegradable hydrogel graft com-

posed of polyethylene glycol (PEG) and denatured albumin to promote a

more sustained BMP-2 release compared to PEG-fibrinogen (PEG-Fib)

(Figure 13a). Both hydrogels with rhBMP-2 had similar effects on bone

formation and repair, repairing a 5 mm gap in the tibia simultaneously

with hydrogel resorption from the defect site (Figure 13b). Furthermore,

rhBMP-2 exhibited sustained delivery through the biodegradable

hydrogel while bone formation coincided with its removal from the

defect locale.180 In contrast to a single growth factor with potentially

limited effects, it is possible that a combination of bioactive factors act-

ing on osteoinduction can not only amplify the effects but possibly also

abate adverse effects. Platelet-rich fibrin (PRF), a platelet concentrate

derived from whole blood,181 containing a variety of immune cells and

growth factors, is cost-effective and has been popularized in clinical

treatment compared with commercially available growth factors. The

PRF can provide powerful regeneration stimulation and has potential

applications in tissue regeneration, especially bone regeneration. Zhang

et al. designed nanofiber films composed of polycaprolactone/gelatin

(PG) by electrospinning, acting as barriers against fibrous tissue infiltra-

tion into the defect locales; chitosan/poly (γ-glutamic acid)/hydroxyapa-

tite (CPH) hydrogels were constructed by lyophilization and electrostatic

interaction with PRF to induce bone formation via the release of growth

factors (Figure 14). The multifunctional composite scaffolds provide bar-

riers, osteoconduction, and the release of bioactive substances, promot-

ing mineralization and bone regeneration in vitro and in vivo, and also

provide a novel strategy for clinical bone repair.182 The ECM acts as the

mechanical support for cells in vivo while matrix-cell interactions are

fundamental in modulating cell activities.183 To advance cell viability and

function within materials, immobilizing bioactive ligands on 3D scaffolds

is essential for interaction with stem cells.184,185 Recently, a surface

ligand with a specific amino acid sequence, namely the tripeptide

arginine-glycine-aspartic acid (RGD) motif, has been integrated with

transmembrane cell adhesion proteins for improving cellular adhesion to

the ECM.186 The RGD motif is a cell-recognizable sequence discov-

ered182 in numerous ECM proteins and blood proteins. In this respect,

Yassin et al. designed a superior 3D niche, composed of PLLA-bearing

thiol groups for RGDC adhesion and a copolymer of L-lactide and

trimethylene carbonate (TMC), capable of maintaining hBMSC viability

and stimulating osteogenic differentiation. By incorporating such copoly-

mers with modified PLLA with thiol groups capable of RGDC attachment

and regularly distributed along the polymeric chains, a niche with the

ability to promote the interaction between scaffold materials and cells

F IGURE 12 Mechanical cues created from substrates with different features, (a) stiffness, (b) micropatterning, and (c) nanotopography
Source: Adapted with permission (Baker and Chen167)
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can be constructed. Results indicated that the use of the RGDC-

functionalized scaffolds produced increased ALP activity and

upregulated osteocalcin expressed compared to controls.187 Further-

more, a cell-free and growth factor-free hydrogel that can induce angio-

genesis, osteogenesis, and innervation has been created. The formation

of new blood vessels is critical for the recovery from tissue damage,

especially prior to new bone formation, due to the nutrition and oxygen

requirements of growing tissues. However, the role of nervous tissue is

poorly described compared to angiogenesis although innervation is nec-

essary for the regeneration and repair of many tissues.188 In this respect,

Santos et al. formulated a series of hydrogels composed of elastin-like

polypeptides (ELPs), polyethylene glycol (PEG), and different concentra-

tions of the adhesive peptide IKVAV. For the in vitro evaluation of MSC

differentiation, a gene expression panel of various osteogenic and angio-

genic markers was analyzed, including Runx2, BMP2, OSX, OPN, and

VEGF. The results indicated upregulation of all genes with 50% IKVAV

in comparison to ELP + PEG. For SNs, with the incorporation of IKVAV,

cells incubated with 50% IKVAV showed complex networks of longer

neurites compared to the other incubation compositions. However, the

same incubation conditions induced angiogenesis and innervation enci-

rcling the implant without the presence of inflammation in the subcuta-

neous graft.188 Innate small molecules can be sequestered to regulate

various cellular activities in vitro, but using the native small molecules

for tissue repair in vivo is reported rarely. Recently, the strategy of

sequestration of extracellular adenosin has been showed. By levering

the affinity of boronate molecule with adenosine and its transient surge

F IGURE 13 (a) Hydrogels are formed by photopolymerization. The cross-linked hydrogels containing recombinant human BMP-2 (rhBMP2)
are used for in vitro release studies, swelling and rheological characterizations, or in a rat tibial defect model. (b) μCT imaging of rat hind limbs
implanted with hydrogels. All treatments are divided into best, median, and worst; those relating to the new bone formation observed by
quantitative μCT of the four treatments
Source: Reprinted with permission from O. Kossover, N. Cohen, J. Lewis, Y. Berkovitch, E. Peled, & D. Seliktar. Growth factor delivery for the
repair of a critical size tibia defect using acellular, biodegradable PEG-albumin hydrogel implant. ACS Biomater. Sci. Eng. 6 (2020) 100–111.180

Copyright (2020) American Chemical Society
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F IGURE 14 Schematic illustration of the preparation of triple-layered scaffolds containing P2G3 nanofiber films fabricated by
electrospinning, composite CPH hydrogels formed through electrostatic interaction, and platelet-rich fibrin (PRF) centrifuged from whole blood,
as well as their application in vivo

F IGURE 15 (a) Schematic diagram of scaffold construction. (b) Overview of rGO-MBG-AP in critical bone defect repair
Source: Adapted with permission (Wang et al.197)
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following tissue injury, a synthetic biomaterial showed the sequestration

of innate adenosine and the acceleration of bone repair in the fracture

site of a murine model.189

Graphene, a new allotrope of carbon with a 2D honeycomb lattice,

has received great attention in the fields of materials science190-192

together with its derivatives. With the ability to accelerate differentia-

tion in MSCs and osteoblasts, graphene is attractive for bone tissue

engineering.193 Furthermore, due to its superior mechanical properties

and biocompatibility, graphene has the potential for incorporation with

other scaffold materials to intensify their mechanical features and pro-

mote bioactivity. Additionally, reduced graphene oxide (rGO), also

known as chemically modified graphene, has numerous carboxyl

groups on its surface194 which can be modified to endow bioactive

functionality to recognize specific targets.195 For instance, single-

stranded oligonucleotide aptamers that can bind to target molecules

with high specificity and affinity.196 In this respect, a hierarchically

macro-mesoporous bioactive glass (MBG) with an osteoblast-specific

aptamer and rGO surface coating has been prepared as a novel 3D bio-

active porous scaffold (Figure 15a,b). With the combination of

improved mechanical strength provided by rGO and osteoblast

targeting by the aptamer, the rGO-MBG-AP scaffold was found to be

superior for bone repair in critical bone defects by recruiting osteo-

blasts and promoting their differentiation.197 Another application of

rGO with the incorporation of bioactive peptides was demonstrated by

Eckhart et al. They used a synthetic approach of covalent attachment

of reduced GO and synthetic peptides, namely Pep-G. This innova-

tional technique not only provides conjugated peptides that can be

precisely defined but also can control for the weight of the peptide

molecule. It was found that combining the properties of mechanically

robust 3D constructs and electrostatically assembled layer-by-layer

coatings, the Pep-G materials provided the conductivity and bioactivity

to promote stem cell differentiation when PC12 cells were grown on a

p(Lys)long-G pellet with electrical stimulation, showing the enhance-

ment of adhesion in comparison to the CG pellet control.198 In addition

to the coating of proteins and biomolecules, the surface biosilicification

of scaffold materials without exogenous cells and growth factors can

also be valuable for bone tissue engineering. Thus, through the process

of surface silicification, xenogeneic porcine demineralized cancellous

bone (DCB) could be processed into porous nanosilica-collagen (nSC)

scaffolds to promote bone regeneration. In this report, three types of

silica precursors were acted for surface biosilicification in situ on colla-

gen scaffolds derived from porcine DCB as a template. Due to the sur-

face functionalization, these nSC scaffolds provided the topographical

and chemical cues to produce an osteoinductive microenvironment

that could facilitate native MSC recruitment and osteogenesis with a

probable underlying mechanism being the abundance of negatively

charged silanol groups (Si-OH) of the nanosilica on the scaffolds that

interact with surrounding mineral ions.199 In view of both in vitro and

in vivo results, the nanosilica-functionalization scaffolds promoted in

situ bone regeneration and, moreover, indicated great potential for the

treatment of clinical bone defects.200

In addition to immobilization of the above-mentioned bioactive

agents for promoting osteogenesis, combining these with anti-

inflammatory and antibiotic drugs also assists bone repair.201 Tetracy-

cline (TC) has been applied widely as an antibacterial agent202 due to

its well-known antimicrobial activities. Besides its affinity for Ca2+,

intermolecular interactions, including Van der Waals forces and hydro-

gen bonding, between the hydroxyl groups of TC and the apatite,

facilitate delivery to the bone.203,204 Choosing an appropriate material

as carrier is significant not only to prolong the drug release but also to

produce additional therapeutic effects. Polyurethane, as a synthetic

polymer material, has been shown to enhance new bone formation.

The use of polyurethane as an injectable biodegradation scaffold has

been found to significantly increase antibiotic release compared to

poly(methyl methacrylate) (PMMA) beads, together with facilitating

long-term drug release.205 Another report showed that a slower

release could be realized through the combination of the porous poly-

urethane scaffold and decreased water solubility of vancomycin. Due

to the reduction of water solubility, the burst release was reduced by

the precipitation of the hydrophilic vancomycin hydrochloride.206 A

novel multifunctional carrier composed of microporous silica

nanoparticles and poly(N-isopropylacrylamide-b-(2-(dimethylamino)

ethyl methacrylate) (MSN-PNI-PDMA) has been found effective in

reducing inflammation and infection and enhancing osteogenesis by

loading dexamethasone (DXMS) and an ECM-derived peptide.207

There are various reports on the delivery of antimicrobial compounds

within TNTs for bone regeneration in the literature.208 Lee et al.

reported a variety of bioactive electrospun nanofibrous membrane

with immobilized lactoferrin that promoted bone regeneration while

modulating inflammation. The results indicated that the combination

may be an effective treatment strategy for simultaneously alleviating

inflammation and inducing bone repair.209 Another scaffold material

with anti-inflammatory and osteogenetic properties has been

investigated by Zhang et al. who showed that a tetra-PEG hydrogel

encapsulated with aspirin could promote periodontal ligament stem

cell-mediated bone regeneration through coincubation.210

In summary, biological functionalization of scaffold material sur-

faces not only involving immobilization of proteins, bioactive peptides,

and specific aptamers, but also modification of nanosilica, is a broadly

investigated field with significant potential for translating into clinical

application. Due to cell/GF-free, one-step surgery, the func-

tionalization of scaffold surfaces can simultaneously recruit and pro-

vide adhesive surfaces for cells to augment their biological responses,

further enhancing tissue regeneration.

Instead of the traditional invasive materials for bone fracture repair,

these adhesives may revolutionize bone-implanted surgeries.211-213

Many adhesives can satisfy biological criteria, such as biocompatibility

and cell attachment while the dense layer provided by the adhesives

does not cause bone cell ingrowth because of its nondegradability and

chemical integrity.214 Thus, it is imperative to improve on the advan-

tages of bone adhesives by combining the features of porosity and bio-

activity. Adhesives with these properties have been designed by

blending PEG porogens with pre-encapsulated PSC-BG particles

(Figure 16). Through a series of studies in vitro and in vivo, the

PSC/PEG/CA adhesive showed the promotion of cell growth, prolifera-

tion, and differentiation by the bioactive micrometer-sized pores
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in vitro, while it effected stability of the fracture and acceleration of

bone regeneration in vivo, due to its strong and rapid-acting adhesive

force. Accordingly, bone adhesives open the prospect of high-

performance biomaterials for clinical application.215 In conclusion, the

dual functions of bone adhesives, involving robust instant bonding and

promotion of bone regeneration, are imperative for the clinical treat-

ment of bone fracture without adverse invasive surgeries. Thus, the

bone adhesives represent a novel strategy to provide us with a distinc-

tive direction for bone tissue regeneration. In the field of regenerative

medicine applications, tissue implants as well as the delivery of biological

factors such as growth factors, have improved stem cell transplantation

for many years.216,217 However, there have been complications involv-

ing tumor development and the formation of ectopic tissue caused by

the addition of exogenous cues.218 Thus, there is an imperative need for

“off-the-shelf” materials tunable to present suitable biological features

to promote the efficiency of bone regeneration. In mammals, energy

metabolism plays an important role in many processes including tissue

repair and regeneration. The main source of cellular energy is adenosine

triphosphate (ATP). Recently, the development of cellular bioenergetics

(CBE) has highlighted the strategies of delivery of bioenergy for treat-

ment purposes.219,220 However, long-term bioenergetic effects for bone

repair in complicated tissues still require further research. The

bioenergetic scaffold, composed of synthesized poly-glycerol succinate

prepolymers and different concentrations of ethanediol substitutions

(PEGS) has suitable degradation features that promote the release of

degradation factors. The fragments were internalized through cell endo-

somes and, following hydrolysis to produce metabolic intermediates, can

enter the mitochondria to affect the tricarboxylic acid (TCA) cycle

(Figure 17). Through a series of experiments, both in vitro and in vivo

results demonstrated that the degradation products instead of retaining

the chemical or physical features of the scaffold materials may enhance

bone regeneration via bioenergetic metabolism pathways. Moreover,

the underlying mechanism of the promotion of repair by BAM may be

that the elevated content of extracellular ATP can lead to a signaling cas-

cade for enhanced bone repair, referring to the upregulation of purine

receptors and the transduction of downstream signals via c-Jun at the

level of the gene.28 In conclusion, the development of bioenergetic

materials described here offer an uncomplicated and highly effective

way to regulate the energetic demands at the early stages of bone

repair. Thus, a novel clinically translated strategy of energy-related mate-

rials engineering has the potential to enhance the treatment of patients

with bone disease and other tissue damage.

Although MSCs can successfully mediate healing, the direct appli-

cation of transplanted MSCs is rare.221,222 The importance of

F IGURE 16 Design of bioactive pore-forming adhesives. (a) Commercial CA-based adhesive (blue) has no pores, thus inhibits cell migration
and bone healing. (b) Preliminary design of pore-forming adhesives with encapsulated PEG microparticles (green). Formation of pores by PEG
dissolution enables cell replacement and growth. (c) Bioactive pore-forming adhesives incorporate PSC/PEG composite porogens (red particles
are prewrapped PSC bioactive glass). These adhesives can create pores together with a bioactive HA layer (yellow) to further promote bone
regeneration
Source: Reprinted with permission (Xu et al.215)
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paracrine mechanisms in MSC-mediated processes is now accepted.223

MSC-conditioned media (MSC-CM) which can be collected in vitro

from MSC cultures contain cytokines, chemokines, and growth

factors,224 as well as extracellular vesicles (EVs).225 It has been

reported that MSC-secreted factors are conducive to the regeneration

of bone defects, which may perhaps be attributed to the reduction of

oxidative stress in aged BMSCs and the reverse of age-related bone

loss.226 Moreover, under hypoxia, the enhancement of MSC-CM-

secreted factors can increase bone healing by simulation of endoge-

nous MSCs.227 EVs isolated from MSC-CM incorporated with

bioceramic scaffolds were shown to promote bone regeneration in a

dose-dependent manner in a rat model by activating the P13K/AKt sig-

naling pathway.228 In another report, the encapsulation of MSC-EVs

not only promoted bone regeneration but also enhanced angiogenesis,

induced by EVs through the upregulation of HIF-1α and VEGF expres-

sion.229 However, the preclinical evaluation of MSC-CM and MSC-EVs

is insufficient to meet the requirements to demonstrate the clinical

efficacy of this method. One recent clinical report of bolus CM admin-

istration showed that MSC-CM derived from allogenic BMSCs loaded

via biomaterials promoted bone tissue regeneration successfully in

eight patients.230 Despite the small number of clinical studies, the

potential of MSC-EVs for therapeutic application is based on strong

theoretical principles together with increasing preclinical evidence.

Although the MSC-secreted EVs have significant prospects in the tis-

sue regeneration field, many challenges need to be resolved before

clinical application, including the choice of optimal MSC source and

route of administration, as well as a complete understanding of the bio-

active constituents and mechanisms of action.231

7 | PRODUCTION TECHNIQUES
FOR CELL-FREE BIOMIMETIC SCAFFOLDS

The manufacture of acellular biomimetic scaffolds for bone regenera-

tion, including traditional and free-form technologies, have been

investigated in novel regenerative tissue engineering. We have previ-

ously probed the characteristics and applications of cell-free scaffolds;

here, we investigate the manufacture techniques of both conventional

and novel bone scaffolds.

7.1 | The fabrication of ion-functionalized
scaffolds

Inorganic ions with the capability of rapid dispersion through the cel-

lular membrane and regulation of different cellular activities have

F IGURE 17 (a) Schematic of the chemical structures and proposed in vitro or in vivo degradation mechanism of bioenergetic-active material
(BAMs). (b) Potential mechanism of degradation fragments mediated bioenergetic effects for enhanced bone regeneration. α-KG, α-ketoglutarate;
NADH, reduced form of NAD+

Source: Adapted with permission (Tang et al.28)
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been extensively studied.35,232 Because of the different properties of

the various ions, distinct encapsulation techniques allowing specific

spatial and temporal release to the damaged sites have been investi-

gated.233 The inherently stable nature of these ions allows them to be

used in various ways. Freeze-drying, as a traditional production tech-

nique, is commonly used.7,39,41,46 This can lead to the formation of

solvent ice crystals surrounded by polymer aggregates. When the sol-

vent undergoes direct sublimation from the solid phase into gas, an

interconnected porous structure emerges within the dry polymer scaf-

fold. Apart from lyophilization, solid-state sintering9 and the

microemulsion-assisted sol–gel approach10 have also been used in the

manufacture of biomimetic ion-functionalized scaffolds.

7.2 | The manufacture of decellularized
extracellular matrix scaffolds

To maintain the original tissue's bioactivity, the process of

decellularization must prevent the loss of the original ECM compo-

nents while removing other cellular proteins and nucleic acids. If the

latter components of the decellularized tissue have not been

completely removed, an immune reaction may occur in the host after

implantation,234,235 resulting in inappropriate tissue remodeling and

limiting the regenerative potential of the decellularized tissue.236 Pre-

serving the integrity of the structure of the dECM components is the

key point for various decellularization methods, including physical,

enzymatic, and chemical processes, as well as the combination of two

or three approaches.

Freeze–thaw and osmotic pressure procedures used in physical

decellularization can cause cell lysis without critical disruption of the

structure of the original tissue. The formation of ice crystals can pene-

trate cell membranes during freezing and thawing, which can be

repeated multiple times during the process. With osmotic lysis, either

hypertonic237 or hypotonic solutions can disrupt the plasma mem-

brane through osmotic shock. Other physical decellularization

approaches include the use of hydrostatic pressure,238 sonication,239

and electroporation.240

However, physical decellularization is the mildest decellularization

method, leaving most of the ECM components and structures

undamaged241 and resulting in incomplete removal of cellular frag-

ments from the original tissue. Therefore, a combination of two or

three decellularization methods may be more advantageous than a

single method. Boram et al. demonstrated two decellularization

methods for ECM deposited scaffolds: one involving physical

decellularization with three freeze–thaw cycles in liquid nitrogen and

a 37�C water bath, respectively, and the other a chemical method

with SDS solution immersion.13 Wang et al. described the manufac-

ture of C/G/A-dECM scaffolds with three decellularization methods,

including freeze–thaw cycles, immersion in trypsin/EDTA and iso-

propanol, and treatment with DNase I and RNase A.12 Repeated

freezing and thawing combined with enzymatic methods were used

for the decellularization of PRF,78 similar to those described by Wang

et al. Furthermore, Bianco et al. reported a novel decellularized bone

marrow scaffold produced by a detergent-free protocol with mechani-

cal rupture, enzymatic treatment, and polar solvent extraction.242

Acidic or basic conditions and detergents are considered as the

two chemical methods of decellularization. Treatment of tissues with

acids or bases results in cell degradation and the elimination of cellular

components such as nucleic acids. However, as exposure to bases can

result in the critical loss of GAGs,243,244 this treatment is rarely con-

sidered as an option for the decellularization of cartilage and bone tis-

sue. Another chemical decellularization method involves the use of

detergents, which fall into three categories: nonionic, ionic, and zwit-

terionic. Triton X-100, as one of the nonionic detergents, lyses cells

by insertion into the lipid bilayer, rupturing the cell membrane.

Although destroying the lipid bilayer, the protein–protein interactions

are retained245 as their native structure remains intact. Additionally,

the ionic detergent sodium dodecyl sulfate (SDS) not only ruptures

the cell membrane but completely denatures the proteins. Just as

everything has two sides, ionic detergents are commonly considered

harsher than nonionic detergents, which are more conducive to the

retention of the ECM structure. Zwitterionic detergents are relatively

mild for tissue decellularization, and one of the zwitterionic deter-

gents, 3-([3-chola midopropyl] dimethylammonio)-1-propanesulfonate

(CHAPS) shows properties of both an ionic and nonionic detergent.246

Therefore, compared to their ionic counterparts, zwitterionic deter-

gents cause less protein denaturation and less removal of cellular

components.247,248

To add a beautiful thing to a contrasting beautiful thing, enzy-

matic decellularization is often applied after chemical decellularization,

leading to further cellular degradation and the elimination of

remaining nuclear components from the original tissue. Two classes of

enzymes, proteases and nucleases, are most commonly used. Prote-

ases such as trypsin hydrolyze peptide bonds. Treatment with trypsin

can significantly rupture ECM proteins including elastin and colla-

gen.242 Furthermore, combined with chelating agents such as

ethylenediamine-tetraacetic acid (EDTA), enzymatic approaches can

disrupt cell adhesion to ECM proteins by removal of ions such as

calcium.246

7.3 | The manufacture of biomimetic scaffolds
with micro/nano-structural features

There are diverse methods for the construction of biomimetic scaf-

folds with nano/micro-structural characteristics. The modification of

surfaces and interfaces has a significant influence on the biofunctions

of scaffold implants in vivo. Metal implants with modification of

micro/nano-topography can simulate the hierarchical structure of

bone tissues to a certain extent, and, furthermore, can regulate cell

activities including migration, proliferation, differentiation, and, ulti-

mately osteogenesis and osseointegration in vivo.249-251 Hydrother-

mal treatment is often regarded as a method for the construction of a

nanostructured surface. Xia et al. reported the construction of nano-

structured HAp bioceramic scaffolds with three kinds of surfaces by

hydrothermal reactions: nanosheet, nanorod, and nanorod and
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microrod hybrids. The effects of these three surface topographies on

attachment, proliferation, and osteogenic differentiation of BMSCs

and ASCs, as well as related mechanisms, were systematically investi-

gated.85,86 The combination of nanostructures and silicon-substitution

on hydroxyapatite for bone regeneration has also been demonstrated.

The calcium silicate used as raw material was produced by sintering

chemically precipitated CaS powders, and, furthermore, Si-substituted

HAp scaffolds were also produced through hydrothermal reactions

into nanosheet and nanorod surfaces.89 Zhao et al. designed HAp bio-

ceramics with ordered micropatterned surfaces, which were man-

ufactured via a layer of ordered micropatterned nylon sieves as

templates. Prior to the addition of the ordered micropatterned sur-

faces, the HAp nanoparticles were synthesized by a wet chemical pre-

cipitation method and subsequently added via calcination.88

For the creation of unidirectional pores structures, Wu et al.

reported the manufacture of gelatin-strontium-substituted calcium

phosphate scaffolds. This involved two steps, including coprecipitation

in a gelatin solution followed by the manufacture of oriented microtu-

bular structures using a freeze-drying technique.93 A 3D microtubule-

orientated PLGA scaffold has been constructed based on a phase-

separation method. Specifically, the polymer solution was first poured

into a mold and the mold was cooled from bottom to top until

reaching −20�C, inducing solid–liquid phase separation. After com-

plete crystallization, the phase-separated and solidified polymer/sol-

vent systems were freeze-dried, and, finally, the oriented PLGA

scaffold was completed.94,95

In contrast to the unidirectional pore structure, radially directed

pores have better architectural stability and promote stronger interac-

tions between the new tissues within the scaffold and the surround-

ing native tissues. Dai et al. reported the production of acellular

HA-MA/PLGA scaffolds via controlled directional cooling of HA-MA

solutions and lyophilization of the hybrid scaffold of dry O-HA-MA

scaffolds and PLGA solutions.96 As another radially-aligned scaffold,

fibrous material scaffolds coated with polydopamine have been cre-

ated by electrospinning to guide directional migration of MSCs.97

It is relatively complicated to repair the bone defect with irregular

shapes and hierarchical structures that represent a combination of

soft and hard tissues. A hierarchically structured scaffold for repair of

tendon-to-bone has been designed and manufactured. Three regions

of the scaffold were arranged as follows: collagen fibers are deposited

on the tendon side, composed of an array of channels and alignments,

the middle region is regarded as a region of stress transfer and has a

mineral gradient, while the bone side is a mineralized inverse opal that

promotes the integration of the scaffold with the bone. In terms of

the manufacturing process, first, the HAp gradient was created by

layer-by-layer coating, then the HAp/PLGA-coated scaffolds were

machined through a CO2 laser, and, finally, the composite scaffolds

were completed by removing the opaline lattice which acted as a sac-

rifice template.98 Due to the shape memory effect, chitosan can be

utilized to construct various porous scaffolds for repairing irregular

bone defects.109 Wang et al. reported 3D superelastic, flexible scaf-

folds composed of SiO2 NF–CS and SiO2–CaO NF/CS, respectively.

Both composite scaffolds were fabricated by sol–gel electrospinning,

followed by a lyophilization technique.110,111 Grottkau et al. reported

the creation of anatomically shaped bone scaffolds using 3D printing

molds as well as PLA and PLA-HA casting and salt leaching. This tech-

nique is a superior tool in constructing personalized, patient-specific

bone graft scaffolds with various excellent characteristics.252

7.4 | The manufacture of physical stimuli-
responsive bone scaffolds

Photothermal therapy (PTT) has been reported to have wide applica-

tions due to its dual functions of eliminating tumors while stimulating

tissue regeneration. Recently, bioactive glass (BG) scaffolds

functionalized by CuFeSe2 nanocrystals (BG-CFS) have been prepared

by the solvothermal method with the 3D printing technique. Along

with the solvothermal response processing, the surface of the BG

scaffolds can be spread with CuCuFeSe2 nanocrystals which endow

the BG scaffolds with superior photothermal performance. Further-

more, the composite scaffolds have the capacity of stimulating osteo-

genic gene expression in BMSCs and ultimately promoting

regeneration in the bone defect.114 Other bifunctional scaffolds have

also been reported, including the fabrication of a 3D-printed bio-

ceramic scaffold with a uniformly self-assembled Ca-P/polydopamine

nanolayer surface, which is both biocompatible and biodegradable, as

well as incorporating the superior photothermal effects of

polydopamine.132 The production of MoS2 nanosheets and AKT bio-

ceramic scaffolds via a 3D printing method and a hydrothermal

approach has also been reported.115 Ma et al. reported the fabrication

of novel multifunctional scaffolds comprised of nHA/GO/CS. Among

these materials, GO powders were synthesized through a modified

Hummer's method, following which the GO/nHA was dispersed in

deionized water mixed with the CS scaffolds and subsequently lyophi-

lized.30 Utilizing the highly efficient NIR photothermal effect, the BPs-

PLGA scaffolds with complete biodegradation could facilitate osteo-

genesis in vitro and in vivo. In brief, the BPs were prepared via solvent

exfoliation of bulk BP crystals, after which the BPs-PLGA were made

by mixing the BPs and PLGA, followed by slow evaporation of the sol-

vent.116 Besides these bifunctional photothermal scaffolds an innova-

tive thermodynamically controlled architecture, termed hierarchical

intrafibrillarly mineralized collagen (HIMC), has been constructed, in

which the self-assembly involved two steps: (a) the fabrication of a

high-energy polyacrylic acid-calcium (PAA-Ca) intermediate, and

(b) the drive of an energetically downhill process for selective mineral-

ization in the collagenous gap regions. Finally, the synthesized miner-

alized collagens were lyophilized to form 3D sponge-like scaffolds.29

Tissue regeneration and the regulation of cellular activity through

an exogenous and noninvasive method, especially via the construction

of cell-free biomimetic bone scaffolds, have the means of revolution-

izing the field of tissue engineering. The application of electric and

magnetic fields has gained critical interest due to their advantageous

effects on cell adhesion, proliferation, and differentiation in vitro, as

well as osteogenesis in vivo. Recently, 3D electromagnetic inverse

opal scaffolds with the capacity of generating localized electric fields
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have been devised. First, the gelatin microspheres were prepared

using a microfluidic device, followed by the assembly of the

CFO@BFO core-shell nanoparticles by a two-step method including

hydrothermal synthesis of the CFO core and subsequently sol–gel

synthesis of the BFO shell. Finally, the electromagnetic inverse opal

scaffolds were constructed by infiltration of the assembled gelatin

template with the CFO@BFO/PLLA dispersion under vacuum.19 A

nanocomposite membrane imitating the endogenous electric potential

was prepared and the efficiency of the bone defect repair

investigated. The synthesis procedures involved the coating of

polydopamine on BaTiO3 nanoparticles (BTO NPs), followed by

homogeneous distribution of Dopa@BTO NPs in a poly(vinylidene

fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix.23 Magnetic biomate-

rials possessing magnetic properties through the incorporation of

magnetic iron oxide particles have been widely described. The

approaches for the incorporation of magnetic particles into biomate-

rials involve blending, doping, in situ precipitation, and the “grafting
onto” approach.253 Zhang et al. reported the construction of 3D mag-

netic Fe3O4 nanoparticles combining mesoporous bioactive glass/

polycaprolactone (Fe3O4/MBG/PCL) composite scaffolds. Through

using nonionic block copolymer EO20PO70EO20 (P123) as a structure-

directing agent, the MBG powders were prepared, then, utilizing the

coprecipitation approach with some modifications, magnetic Fe3O4

NPs were synthesized. Finally, the composite scaffolds of Fe3O4/

MBG/PCL were created by a 3D printing technique.153 Novel

magnetoactive 3D porous scaffolds, comprised of poly(vinylidene

fluoride) (PVDP) and magnetostrictive particles of CoFe2O4, have

been prepared. Through the overlapping of nylon templates structures

with different fiber sizes, the solvent casting approach has been uti-

lized for constructing different pore sizes.254 For other bioinspired

composite scaffolds, first, nHA, Fe3O4 NPs, and CS/COL were pre-

pared and the mixture of the four materials was subjected to in situ

crystallization followed by freeze-drying to produce the porous 3D

scaffolds.255

Over the last decade, many researchers have observed that the

application of external forces can activate MSC osteogenic signaling

pathways involving Runx2 and Wnt. However, current studies have

focused on the significant role of internal strength, referring to the

importance of cell-matrix interactions in MSCs. Furthermore, both

external mechanical forces and the interaction between resident cells

and the matrix can induce MSC mechanobiology and lineage specifi-

cation. Several years ago, the effects of substrate alignment and

mechanical stimuli on MSC differentiation were reported. Scaffolds

composed of nanofiber PLGA were synthesized by electrospinning

and the MSC reaction to a combination of cell-matrix interactions and

mechanical stimuli was investigated.166 Maggi et al. reported 3D

nanoarchitected scaffolds with controllable stiffness that were fabri-

cated via two-photon lithography (TPL) direct laser writing. The geo-

metrical shape, referring to the nanolattices, was coated with thin

conformal layers of Ti or W and the outer layer with TiO2. The

mechanosensitive reaction of osteoblast-like cells was then investi-

gated through the track of mineral secretions and the concentrations

of f-actin and vinculin.27 In another study, 3D demineralized bone

scaffolds with different mechanical properties were constructed

through decalcification using EDTA-2Na for different lengths of time.

These scaffolds with distinctive compressive modules were then

investigated in cell experiments and animal studies.170

7.5 | The manufacture of other acellular bone
scaffolds

Considering the specific cell-free bone scaffolds for bone regenera-

tion, we will first discuss the immobilization of growth factors. Fibro-

nectin (FN) domains have been used to bind growth factors.

Specifically, a recombinant fragment of FN containing three fibrin-

binding sequences, was first produced, followed by the binding of

three growth factors, VEGF-A165, PDGF-BB, and BMP-2, to the

domains for accelerating skin repair and bone repair.217 Kossover

et al. reported a strategy of growth factor delivery within

poly(ethylene glycol) (PEG) and fibrinogen hydrogels (PEG-Fib) which

were constructed with PEGylated denatured fibrinogen and additional

PEG-DA. PEG-Alb hydrogels were constructed with PEGylated albu-

min with additional PEG-DA. The hydrogels were first mixed with

photoinitiator stock solution, then cross-linked with rhBMP2, followed

by exposure to UV light. The rhBMP2-containingd hydrogels can pro-

mote the bridging of bone defects through rhBMP2 delivery.180 PRF,

comprising abundant growth factors and immune cells can be

engineered onto hydrogels for bone regeneration. Triple-layered com-

posite scaffolds were constructed with polycaprolactone/gelatin

nanofiber films as a barrier layer by electrospinning while chitosan/

poly(γ-glutamic acid)hydroxyapatite hydrogels were used as the

osteoconduction layer through electrostatic interactions and lyophili-

zation, with PRF as the acceleration cue for bone repair through its

combination with composite scaffolds.182 Liu et al. reported a 3D bio-

mimetic scaffold constructed with PCL/HA further modified with

VEGF. First, the PCL/HA composite microspheres were constructed

through an emulsification solvent evaporation approach, then, the

microsphere-based porous scaffolds were prepared by selective

lasersintering (SLS). Finally, the surface of the composite scaffold was

modified with VEGF165 labeled with fluorescent RBITC for visualizing

the vascularized bone regeneration in vivo.256

The use of surface-immobilized proteins and other biomolecules

is critical for the development of acellular scaffolds as the scaffolds

can be tailor-made for specific needs. Recently, a porous scaffold pre-

pared with poly(LA-co-TMC) and poly[(PDS-LA)-co-LA] by salt

leaching was used to induce osteogenic differentiation. Furthermore,

covalent attachment of the adhesion-mediating RGDC peptide to

scaffolds promoted the differentiation of stem cells.187 An rGO-

coated bioglass scaffold integrated with an osteoblast-specific

aptamer was manufactured. First, porous bioactive glass sol was pre-

pared by an evaporation-induced self-assembly procedure, then, after

the preparation and purification of GO, the MBG scaffolds were

soaked in the GO/ascorbic acid suspension, followed by heat treat-

ment to reduce the GO which can be coated on MBG scaffold. Finally,

the osteoblast-specific aptamer was added to the rGO-MBG scaffold
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and reacted in a reciprocating oscillator for conjugation.197 Zhang

et al. reported the construction of a biomimetic structure with bio-

surface-coated Ti scaffolds. The Si-doped CaP composite scaffolds,

utilizing sugar spheres as fore-forming agents, were coated with

vancomycin-loaded polydopamine-modified albumin nanoparticles,

and cell adhesion-mediating peptides. First, the sugar spheres acting

as pore-forming agents were synthesized by emulsification, and the

porous Ti scaffolds were constructed by the sol–gel approach and

sugar sphere template leaching procedure with the Si-substituted apa-

tite coating processed by incubation in simulated body fluid. The

vancomycin-loaded NPs were prepared via a modified desolvation

approach based on bovine serum albumin. In the final step, a thin pDA

film was first prepared on the surface of the composite Ti scaffolds,

followed by immersion in Van-pBNPs and soaking in the GFOGER

peptide solution. The composite Van-pBNPs/pep@pSiCaP-Ti scaf-

folds were then used for subsequent experiments.257

Fracture fixation and bone repair are clinically challenging due to

the lack of appropriate materials and adequate fixation strategies.

Recently, the use of adhesives has led to the realization of these goals.

A novel class of chemical compounds has been derived from dental

resin composites and self-etch primers with the adhesives being

methodically designed and manufactured using visible light thiol-ene

coupling. Moreover, the precision of the adhesive strength was com-

pleted through fiber-reinforced adhesive patch methods.211 Xu et al.

reported a bone adhesive with a pore structure that was superior to

commercial bone adhesives which may not adequately support cell

infiltration. First, PEG and PEG/PSC porogens were prepared by heat-

melting, grinding, and sieving. Then, the initial PEG/CA pore-forming

adhesives were prepared through the incorporation of the PEG por-

ogens into the mixture containing CA monomers and the PTSA stabi-

lizer. Furthermore, the bioactive PSC/PEG/CA pore-forming adhesives

were constructed by the incorporation of PSC/PEG composite por-

ogens with prewrapped PSC bioactive glass.215 Table 1 shows the

manufacture techniques for different scaffold materials.

8 | PRESENT CLINICAL STRATEGIES FOR
BONE REPAIR AND CHALLENGES TO
CLINICAL TRANSLATION

Autologous, allogeneic, or xenogeneic bone grafts, together with syn-

thetic biomaterials, are regarded as the current available methods in

clinical treatment.

The iliac crest, as main source of autografts, is the preferred

harvesting site. The cancellous bone can be collected intraoperatively

and used for preparing bone blocks or bone chips for the filling of

bone defects.258 To overcome the problem of vascularization, a vas-

cularization cortical autograft has been produced to reconstruct large

bone defects.259 The applications of a free fibula flap in mandibular

and maxillary reconstruction have showed a superior graft survival

ratio.260,261 Bone allografts, as a substitute for autografts, are com-

monly harvested from living donors or cadavers, followed by

processing and, finally, transplantation into another patient262; these

are useful due to their easy availability in different sizes and

shapes.263 Besides the application of allografts alone, their combina-

tion with autologous concentrated bone marrow cells also has been

reported.264-266 Xenografts harvested from different species have

been reported in clinical treatment; these are advantageous due to

availability and their compatible porosity for bone tissue growth and

similar mechanical properties to native bone. Karalashvili et al.

reported a case utilizing decelluarized bovine bone to repair a large

bone defect which showed long-term retention of the graft shape

without resorption and bone integration.267 The bovine cancellous

bone also played a significant role in the management of tibial frac-

tures in elderly patients, showing good healing results.268 Neverthe-

less, the use of xenografts has been hampered by issues such as graft

rejection and failure of tissue integration.269-272

Apart from autologous, allogeneic, and xenogeneic grafts, syn-

thetic scaffolds have been extensively used. HAp scaffolds with

loaded MSCs showed notable osteogenic ability with no adverse

responses after tumor curettage.273 Interconnected porous calcium

hydroxyapatite loaded with bone marrow mononuclear cells was

effective in the repair of osteonecrosis and avoided collapse.274 Com-

paring the efficacy and safety between HAp/collagen and β-TCP, the

former showed superior bone repair capability but with a higher inci-

dence of untoward effects.275 Combining the β-TCP scaffolds with

MSCs also has been reported; these showed more trabecular remo-

deling in clinical femoral defects with the addition of MSCs.276 Fur-

thermore, the application of BoneSave, a commercial bone graft

substitute composed of β-TCP and HAp ceramic, has been investi-

gated. The successful fusion of posterolateral intertransverse spinal277

and effective treatment with loss of the acetabulum278 has been

shown. Calcium phosphate cement produced at ambient temperatures

from hydrolysis is distinct from CaP ceramics. These cements are

commonly used as fillers via injection or as scaffolds by 3D print-

ing279,280; however, due to slow degradation, delayed bone repair

occurred.281 The use of 3D printing, especially 3D printed ceramic

scaffolds282-284 is able to mimic the microarchitecture and sophisti-

cated anatomical structures of the patient's anatomy.285 However,

the potential challenges may hamper the translation of 3D printing

bioceramics to clinical treatment. The information related to clinical

trials and results were added in Table 2.

Although a great deal of research has been published on bone tis-

sue regeneration, a few factors still hinder the translation from basic

research to the clinic. These include the following scientific and tech-

nological challenges: (a) The most appropriate cell type for use in bone

regenerative therapy is still unclear. Although mesenchymal stem cells

have been applied clinically and experimentally, risks remain.286,287

Embryonic (ESCs) and induced-pluripotent stem cells are indispens-

able in adult tissue repair and in addition, still require further labora-

tory manipulation, (b) Sufficient vascularization is required for the

survival of the cells and the subsequent bone repair. However, infiltra-

tion of neovessels often lacks depth of penetration, limiting the size

of viable bone constructs that can be implanted,288,289 (c) Controlling

the scaffold degradation needs precise modification. If a scaffold

degrades rapidly, mechanical failure may occur. Conversely, if a
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TABLE 1 Manufacture techniques for different scaffold materials

Scaffold material Fabrication technique Reference

Sr/BG-G/nHAp Freeze-drying Oryan et al.7

SrHAp/CS Lei et al.39

Sr/MgP bioceramics Solid state sintering Sarkar et al.9

Zn-MBGNs Microemulsion-assisted sol–gel Neščáková et al.10

dECM/BCP Freeze–thaw/SDS solution immersion Kim et al.13

CS/G/A-dECM Freeze–thaw cycles/immersion of trypsin/EDTA/

isopropanol/treatment of nuclease

Wang et al.12

DeBM Mechanical rupture/enzymatic treatment/polar solvent

extraction

Bianco et al.242

Hydroxyapatite (HAp) bioceramic

scaffolds with nanosheet, nanorod, and

micro/nano-hybrid surface

topographies

Hydrothermal reaction Xia et al.85,86

Si-substituted HAp Xia et al.89

HAp bioceramics with ordered

micropatterned surfaces

Ordered micropatterned nylon sieve/wet chemical

precipitation/calcination

Zhao et al.88

G/Sr substituted CaP Coprecipitation/freeze-drying Wu et al.93

MOIP-PLGA Thermal-induced phase separation Shen et al.94

HA-MA/PLGA Controlled directional cooling/lyophilization Dai et al.96

RAFSs Electrospinning Shin et al.97

SiO2 NF–CS Sol–gel electrospinning/lyophilization Wang et al.110,111

SiO2–CaO NF/CS

PLA/PLA-HA 3D printing/casting/salt leaching Grottkau et al.252

BG-CFS Solvothermal method/3D printing Dang et al.114

Ca-P/polydopamine nanolayer surface 3D printing Ma et al.132

MoS2 nanosheets and AKT bioceramic 3D printing/hydrothermal method Wang et al.115

nHA/GO/CS Modified Hummer's method/lyophilization Ma et al.30

BPs-PLGA Solvent exfoliation/solvent evaporation Tong et al.116

Hierarchical intrafibrillarly mineralized

collagen (HIMC)

Two steps self-assembly Liu et al.29

CFO@BFO/PLLA Microfluidic device/hydrothermal/sol–gel Mushtaq et al.19

Fe3O4/MBG/PCL Coprecipitation/3D printing Zhang et al.153

PVDP/CoFe2O4 Solvent casting Fernandes et al.254

nHA/Fe3O4 NPs-CS/COL Crystallization/freeze-drying Zhao et al.255

Ti/W/TiO2 Two-photon lithography (TPL) direct laser writing Maggi et al.27

Porine demineralized bone matrix

scaffolds

Decalcification Hu et al.169

rhBMP-2/PEG-Fib/PEG-Alb PEGylated denatured fibrinogen/PEGylated albumin/

UV light

Kossover et al.180

PCL/G nanofiber-CS/P/HA-PRF Electrospinning/electrostatic interaction/lyophilization Zhang et al.182

PCL/HA/VEGF Emulsification solvent evaporation/selective

lasersintering (SLS)

Liu et al.256

Poly(LA-co-TMC)/poly [(PDS-LA)-co-LA]-

RGDC peptide

Salt leaching/covalent attachment Yassin et al.187

rGO/BG/osteoblast-specific aptamer Evaporation-induced self-assembly/heat-treating/

reciprocating oscillation

Wang et al.197

Van-pBNPs/pep@pSiCaP-Ti Emulsification/sol–gel/sugar sphere template leaching/

modified desolvation/soaking

Zhang et al.257

PSC-BG/PEG/CA adhesives Incorporation of PSC-BG/PEG composite porogens Xu et al.215
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TABLE 2 Clinical trials of scaffold materials for bone regeneration

Scaffold Trials Results Case (n = sample)

HAp MSCs obtained from each patient's

bone marrow cells were forced to

differentiate into osteoblasts

followed by bone matrix formation

on HAp ceramics to heal bone

tumors using tissue-engineered

implants. Serial plain radiographs

and computed tomography images

were used to observe results

The strong osteogenic ability of the

implants, as evidenced by high

osteoblastic activity, was

confirmed. The tissue-engineered

HAp was used to fill the patient's

bone cavity after tumor curettage.

Immediate healing potential was

found and no adverse reactions

were noted in these patients

Bone tumors (n = 3)

IP-CHA We have investigated the

effectiveness of the

transplantation of BMMNCs and

cell-free with IP-CHA on early

bone repair for osteonecrosis of

the femoral head

In the BMMNC group, a reduction in

the size of the osteonecrotic lesion

was observed subsequent to

hypertrophy of the bone in the

transition zone and three patients

were detected extensive collapse.

In the control group, severe

collapse of the femoral head

occurred in six of eight hips

22 patients (n = 30 hips) who used

BMMNCs with IP-CHA and 8

patients (n = 9 hips) with cell-free

IP-CHA of osteonecrosis of the

femoral head

HAp/type I collagen

composite scaffold

The efficacy and safety of HAp/Col

were assessed in comparison

β-TCP. X-ray images and blood

tests and observation of the

surgical site were performed to

evaluate the efficacy and safety of

the implants

The highest grade of bone

regeneration was more frequent in

the porous HAp/Col group than in

the porous β-TCP group

(p = 0.0004 and 0.0254,

respectively). The incidence of

adverse effects was higher in the

porous HAp/Col group than in the

β-TCP group

Bone defects by benign bone tumors

with HAp/Col (n = 63) and β-TCP
(n = 63)

β-TCP scaffold Compare healing quality of

implantation into femoral defects

during revision total hip

arthroplasty, containing either

expanded autologous MSC (trial

group) or Β-phosphate alone

(control group)

A significant difference in the bone

defect healing was observed

between both groups of patients

(p < 0.05). Trabecular remodeling

was found in all nine patients in

the trial group, and only 1 patient

in the control group

Femoral defects with autologous

MSC/β-TCP(n = 9) and β-TCP
(n = 9)

BoneSave (TCP/HAp) Analogue scales for pain, patient

global impression of change, work

status, persisting symptoms and

patient satisfaction data,

radiological evaluation of fusion

was carried out from the most

recent spinal radiographs available

for each patient

Significant postoperative

improvements were seen across all

outcome measures in the large

majority of cases. Successful fusion

was achieved in 56.7% of cases

Posterolateral inter-transverse spinal

defects (n = 45)

CGF fibrin/Bio-oss Design a clinical trial composed of

patients with jaw defects,

concentrated growth factor fibrin/

Bio-Oss bone powder was the test

group; Bio-Oss bone powder alone

was the control group. Bone

alkaline phosphatase (BAP),

osteocalcin, and bone mineral

density levels were measured,

regular examinations and

computed tomography scans were

also performed in the follow-up

period

The BAP and osteocalcin levels had

increased at 1 and 12 weeks

postoperatively in both groups.

Furthermore, the BAP and

osteocalcin levels in the test group

were significantly greater than

those in the control group at 1 and

12 weeks postoperatively (p < 0.05

for all). The bone mineral density in

the bone defect area of the test

group was also significantly greater

than that of the control group at

6 months postoperatively

(p < 0.05). Evaluation of the regular

radiographic scans revealed that

the effects in the test group were

better than those in the control

group

Jaw defects with test groups (n = 20)

and control (n = 20)
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scaffold degrades slowly, an inflammatory reaction may be activated,

hindering tissue repair. Hence, the balance between seasonable deg-

radation and new bone formation is imperative and has proved a

significant challenge,290 (d) Although current 3D construction tech-

niques can be used for the construction of individualized patient

defect models, 3D-printed bioceramics have challenges, including the

TABLE 2 (Continued)

Scaffold Trials Results Case (n = sample)

Bovine-DBM/LLLT A clinical case reported the safe and

positive outcome of low level laser

therapy in conjunction with

demineralized bone matrix of

bovine origin in the surgical

treatment of a periodontal infra

bony defect

By radiological measurement LLLT

+ DBM showed good results in

clinical insertion level (CAL) gain of

4 mm, linear bone gain of 2.5 mm,

bone filling of 37% and reduction

of defect angle from 68� to 32� ,
showing a positive treatment

result. Safe treatment to approach

periodontal regeneration

Moderate chronic periodontitis with

chronic localized periodontal

abscess at 44 and 45(n = 1)

F IGURE 18 A diagrammatic representation of the initial stages of implant osseointegration for nonfunctionalized (current orthopedic
implants) and biomolecule-functionalized implants. After implantation, the implant surface interacts with the biological environment. The surfaces
of nonfunctionalized implants become coated in proteins from the environment forming a variable protein layer (as described by the Vroman
effect). The cellular response to the variable protein layer changes with the composition leading to unfavorable immune response, infection, or
failure to integrate. Biomolecule-functionalized surfaces produce a defined layer of biomolecules for a more controlled biological response leading
to improved osseointegration
Source: Adapted with permission (Stewart et al.173)
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brittleness, unsuitability for load-bearing clinical treatment, and poten-

tial harmful effects of toxic solvents and high temperatures on cell via-

bility.291-293 In addition, the current 3D bioprinters lack the capacity

of describing internal pore architecture, requiring further optimization

for clinical translation,294 (e) The improvement of scaffold mechanical

features has been discussed above. The individual tailoring of

mechanical performance is not sufficient and satisfactory mechanical

performance requires attention to a series of factors in scaffold con-

struction, including the modification of compressive, tensile, elastic,

and fatigue resistance. Combining these factors with other properties

may be conducive to help stimulate osteogenesis,295-297 (f) Large-

scale defects and potentially high numbers of patients need to be

treated by increasing the rate of biofabrication and scaffold produc-

tion.298,299 Additive manufacturing with high-resolution bioprinting

approaches only offer smaller-scale manufacturing solutions, for

example, the SLS-based system has not been applied in the biomedical

field for mass production due to the high cost. Nevertheless, in view

of the commercialization and standardization of future raw materials,

the realization of large-scale production through SLA-based and

FDM-based system will arrive in the near future.

9 | CONCLUSIONS AND FUTURE
DIRECTIONS

As described above, considerable efforts have been exerted for the

reconstruction of bone tissue via biomimetic methods covering sev-

eral biomimetic acellular strategies. To date, these advances, combin-

ing structural design, surface modification, and the application of

external physical stimuli have huge potential for bone tissue regenera-

tion. However, significant challenges remain in mimicking the struc-

ture and features of bone tissue as well as in the broad application of

acellular materials to facilitate tissue repair. It is known that biochemi-

cal cues (e.g., growth factors, hormones, and chemokines) can regulate

biological responses in the human body, yet their side effects, high

cost, and lability hamper the translation into clinical applications.

Recent developments demonstrated that bone regeneration in vivo

may be achieved through the combination of internal structural cues

and external physical stimulation, thus decreasing the dependence on

exogenous cells and biochemical cues in bone tissue engineering. Fur-

thermore, the resulting scaffold-based bone tissue engineering treat-

ments which are safe, convenient, and, importantly, cost-effective,

offer significant advantages for their clinical application.

As for the future outlook for ion-functionalized materials, com-

pared to single ion applications for bone regeneration, multielemental

composites have been considered to be able to further enhance bone

regeneration, or even synergistically improve bone repair; for example,

silver is used for its antimicrobial activity and other ions for the pro-

motion of osteogenesis and angiogenesis. Another example is the

demonstrated synergistic effects of Co2+ and Mg2+ with HA on osteo-

genesis and angiogenesis.300 In the future, more attention should be

paid to these multielement applications including the use of graded

materials that can release ions sequentially. Another major concern is

the precise control of the kinetics of ion release. With further

research, ion-functionalized materials will show great potential for

bone tissue regeneration.31

The future prospects in decellularized tissue engineering should

be considered. If biomaterials can perfectly mimic the structural and

functional properties of the native tissue ECM, including encapsula-

tion of the cell, stimulation of cell growth and ECM production, they

may represent ideal scaffolds for tissue repair in the field of tissue

engineering.301 Although synthetic materials have their benefits, such

as tunable physical and chemical properties, they are unable to fully

replicate the functions and structures of the native tissue, even with

modifications or the addition of bioactive factors.302 Hence, the use

of dECM in tissue engineering will create an environment that is able

to mimic the characteristics of native tissue and to repair the injury

site. However, limitations of the application of dECM in standard clini-

cal therapies still exist. Various methods for decellularization have

been reported, making it difficult to make decisions on which method

is best for a specific application. Keeping the balance between elimi-

nating fully cellular components so as not to trigger an immune reac-

tion and trying to preserve the ECM composition to maintain

biological activity is a great challenge that needs further research.303

Additionally, improving the methods to enhance the physical and

chemical properties of the dECM while utilizing its inherent regenera-

tive capacities will be the key to offer feasible treatment schemes for

bone tissue regeneration.

The promise of tunable morphological and structural properties

of certain materials has great potential. As described above, the com-

plex micro- and nano-scale architectures present in native bone tissue

have been utilized many times in tissue engineering. Future work is

required to address the intricacies of these features in 3D spatial

modeling. It appears that the nanostructured surfaces (nanosheet and

nanorod), rather than the release of Si ions, contribute most to the

early cellular response while Si ions are mainly responsible for the pro-

motion of BMSC differentiation.87 Thus, it is essential to systemati-

cally investigate this cooperation between Si-substitution and

nanosurface structures. The HAp convex micropatterned bioceramics

demonstrated by Zhao et al.88 here might enhance osteoinductive

ability through direct contact with both cells and the surrounding tis-

sue. In addition, these micropatterned HAp bioceramics may provide a

basis for the future development of bone implant scaffold materials as

superior substrates, while the effects of the micropatterns on BMSC

adhesion, proliferation and differentiation require further investiga-

tion. Smart, elastic, highly versatile, and growth factor- and cell-free

3D biomimetic scaffolds with, above all, self-fitting capability are the

ideal features of materials for tissue regeneration, especially for bone

defect repair.

The future direction of the physical cues on stimuli-reactive scaf-

folds needs to be guided correctly. The significant potential of photo-

thermally, electrically, magnetically, and mechanically responsive

scaffolds in bone tissue engineering has been suggested. In terms of

the safety and effects of the stimuli in the human body, relatively few

in vivo and clinical studies have been reported. Thus, the promotion

of the cell-ECM interaction is in its infancy and future directions aim
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to determine the underlying mechanisms of mechanotransduction in

the mechanical stimulation of cells and the role of external cues such

as substrate stiffness. Additionally, the synergistic effect on osteo-

genic differentiation with BMP-2 signaling and mechanotransduction

has been investigated, based on BMP-2 cues and different degrees of

substrate stiffness. Hence, the combination of mechanobiological and

biochemical phenomena will be the novel direction in the field of

future bone tissue regeneration.304

As interdiscipline of materials and medicine, the materdicine

should draw more our attention to the underlying mechanisms of the

interactions between the grafted scaffold materials and the microen-

vironment of the bone defect areas.305 The biological func-

tionalization of material surfaces, due to its superiority on the

improvement of biofunction, has been widely investigated. For exam-

ple, the protein functionalization which requires the specific active

sequence of the biomolecules in the microenvironment can attract

resident endogenous cells and allow them to adhere gradually to the

surfaces,173 indicating the critical importance of incorporating these

biomolecules into the design of biomaterials and scaffolds for bone

repair (Figure 18).Furthermore, sequestration of innate proteins such

as growth factors by biomaterial-based approaches is conducive to

avoid the requirement of exogenous administration and has more

potential in regenerative medicine.306 In comparison to other publica-

tions resembling this review article,14,31 we comprehensively summa-

rize the material and design of bone-mimicking scaffolds, their

production techniques, and the current strategies for clinical bone

repair, as well as techniques to facilitate bone regeneration through

modification of the characteristics of scaffold materials. Scaffolds

have been constructed using acellular approaches including ion-func-

tionalization, incorporation of dECM, micro/nano-features, physical

stimuli, and immobilization of active factors, as well as “smart” fea-

tures, indicating the advances and prospects of engineered bone tis-

sue scaffold materials.

All in all, bone tissue engineering will continually advance toward

the way of innovation of materials and scaffold designs inspired by

the biomimicry of the hierarchical structures of bone tissue, as well as

further investigation of underlying mechanisms in vivo for the promo-

tion of bone regeneration, leading to the final realization of successful

clinical translation.
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