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Introduction
The adult central nervous system (CNS) has limited de novo 
neurogenesis (Blight, 2002; Bechmann, 2005) and only mini-
mal capacity to replace cells lost due to tissue insult, injury or 
disease. This is seen in acquired and inherited brain disease 
(Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple 
sclerosis (MS)) and in CNS injury induced by trauma, vascular 
insult or surgery. Trauma carries the added burden of a break-
down in the blood-brain barrier which introduces systemic 
immunity that exacerbates parenchymal destruction. Immune 
suppression can slow wound progression, but this does not pro-
mote repair. Damaged axons also do not regenerate through gli-
otic scars or inhibitors in myelin (Filbin, 2003). Thus we rely on 
redundancy and rewiring of surviving circuits for partial recov-
ery of lost function. This failure to repair likely reflects insuffi-
cient stem cells, rather than repair competence, since exogenous 
cells are effective in many preclinical models of genetic, chem-
ical and traumatic brain and spinal cord injury (SCI) (Chen et 
al., 2007). Indeed we (Kiel et al., 2008) and others (Windrem et 
al., 2008) have used cell grafts to completely rescue a lethal cell 
autonomous neurodegenerative mouse model. Thus at present 
the objectives for clinical intervention in brain repair are to ar-
rest wound progression and promote cell replacement therapy. 
Here we examine potential sources of replacement cells.

Replacement Cells
For pre-clinical milestones to be translated in clinical practice, 

we must first identify an appropriate graft resource. At present, 
the three sources include allografts of fetal brain tissue, al-
lografts derived from pluripotent embryonic stem cells (ESCs) 
(Murry and Keller, 2008), and autologous neural cells generated 
in vitro by reprogramming patient-specific somatic cells such as 
dermal fibroblasts. Fetal brain allografts were used for PD, the 
first placebo-controlled neurosurgical trial in the U.S., and the 
cell source, fetal dopaminergic neurons, proved both ineffective 
and difficult to standardize (Freed et al., 2001). ESC-derived glial 
progenitor cells were used in a trial for acute SCI sponsored by 
Geron Inc. This trial was based on initially promising pre-clinical 
studies with CNS myelin forming oligodendroglial progenitor 
cell (OPC) transplants (Keirstead et al., 2005). Both pre-clinical 
and clinical trials with such cells have generated sometimes sen-
sational but often controversial results (Burke et al., 2013), and 
the Geron trial was halted early due to cost, immune compli-
cations and apparently cystic nodule formations. Both the fetal 
tissue and embryonic stem (ES) derived cells have ethical limita-
tions, both represent allografts that require immune suppression 
with serious side effects, and cell grafts derived from pluripotent 
ESCs can also carry an unacceptable risk for neoplasia. We 
demonstrated that therapeutic engraftment requires substantial 
cell numbers (Kiel et al., 2008), well within the neoplastic load 
limit of ESC-derived cultures (Sadowski et al., 2010). Thus grafts 
derived from pluripotent cells may never be considered thera-
peutically safe and appropriate for organ repair.

A third potential source of replacement brain cells are autol-
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ogous somatic cells genetically engineered to trans-differentiate 
into neural cells. The reprogramming field has now given us 
this novel and exciting strategy to generate ethically neutral, 
patient-specific replacement cells from induced pluripotent 
stem (iPS) cells. Yamanaka identified four factors that repro-
gram fibroblasts into iPS cells (Takahashi and Yamanaka, 2006), 
extending early work in amphibian (Gurdon and Melton, 2008) 
showing that cell fate can be plastic (Yamanaka, 2009). The 
process appears to work on any cell type (Park et al., 2008b; 
Soldner et al., 2009; Yu et al., 2009) including readily accessible 
cells such as adipose-derived mesenchymal stromal cells (MSCs), 
and iPS lines have now been established from many sources 
(Park et al., 2008a; Soldner et al., 2009). The process requires 
pioneer factors Oct4 and Sox2 (Takahashi et al., 2007; Smale, 
2010) but can also work with Oct4 (Kim et al., 2009; Zhu et al., 
2010) combined with small molecules that promote chroma-
tin remodeling (Huangfu et al., 2008; Lin et al., 2009). Patient 
derived iPS cells now have potential to generate disease specific 
cell types that can replace animals for drug screens. However 
the iPS cell reprogramming is not complete (Kim et al., 2010; 
Lister et al., 2011) raising the concern they may not generate 
valid replacement cells, and since they are immune protected 
autologous cells their neoplastic potential will be even greater 
than ESC-derived allografts.

An alternative to generate autologous cells for graft therapy 
is to find some combination of factors that directly reprogram 
fibroblasts into the desired cell types and avoid the pluripotent 
intermediates. Trans-differentiation has been controversial and 
early reports were either disproved (Bertani et al., 2005; Wood-
bury et al., 2000), misinterpretations due to cell fusion (Lagasse 
et al., 2000; Wang et al., 2003) or remain unconfirmed (Jiang 
et al., 2002). However, Yamanaka has rejuvenated the field and 
recent studies now demonstrate direct reprogramming of pan-
creatic exocrine cells into β-cells (Zhou et al., 2008) and somatic 
fibroblasts into hepatocytes, cardiomyocytes, blood progenitors 
and neurons (Zhou et al., 2008; Ieda et al., 2010; Szabo et al., 
2010; Vierbuchen et al., 2010; Efe et al., 2011; Pfisterer et al., 
2011; Sekiya and Suzuki, 2011; Son et al., 2011; Karow et al., 
2012). The process is not fully understood and to date repro-
gramming to generate some cell types has resulted in only par-
tial phenotypes (Najm et al., 2013; Yang et al., 2013). 

Reprogramming Efficiency
For SCI repair three conclusions are quite clear and none are 
unique to SCI research. First we need a standardized source of 
autologous cells. Second we need rigid and objective approaches 
to resolve graft outcome and evaluate efficacy (Burke et al., 2013). 
Third, in order to generate a safe graft reagent it is imperative that 
we improve the efficiency of the reprogramming process. The low 
efficiency of reprogramming generates very few graftable cells, 
and the necessary mitogen amplification in vitro can compromis-
es the quality control and result in karyotype abnormalities and 
neoplasia concerns (Miura et al., 2006; Tolar et al., 2007). 

All forms of cell reprogramming suffer from low efficiencies. 
For iPS cell reprogramming the efficiency is commonly 0.1%. 
This can be improved under experimental settings by starting 
with fibroblasts that contain drug inducible reprogramming fac-
tor transgenes, although for these the rate remains less than 10%. 
Chromatin remodeling is also an early event (Simonsson and 
Gurdon, 2004) and a limiting factor (Luna-Zurita and Bruneau, 
2013) for cell reprogramming. Small molecules that block DNA 

and histone methylation, which remodel the epigenome by re-
moving transcription repressive marks, also enhance iPS cell re-
programming (Huangfu et al., 2008; Lin et al., 2009). We recently 
identified a histone H1 chaperone that also promotes reprogram-
ming (Tso et al., in preparation). This factor appears to modulate 
chromatin structure by relaxing condensed chromatin, as seen 
with other H1 modifying enzymes (Christophorou et al., 2014) 
and binding proteins (Philpott et al., 1991; Martic et al., 2005; 
Hayakawa et al., 2012). Thus chromatin remodeling factors may 
provide the key to optimizing the reprogramming process.

In vivo Reprogramming
Finally, an emerging strategy to avoid long term culture of 
graft cells is to deliver the exogenous reprogramming factors 
directly into target cells in vivo. A graft-free reprogramming 
strategy would expand our paradigm for cell replacement for 
clinical therapies. Gene delivery methods such as viral vectors 
are feasible, and direct gene transduction using episomal plas-
mids would avoid the safety concerns and oncogenic potential 
of viral vectors. For in vivo reprogramming to work effectively 
it will be necessary to identify target cell populations that can 
serve as a resource for cell reprogramming. For neuronal cell 
replacement, both pericytes (Karow et al., 2012) and astrocytes 
(Niu et al., 2013) can be reprogrammed into induced neurons, 
and elevated levels of the transcription factor Sox10 can convert 
peripheral satellite glia into CNS-like myelinating glia (Weider 
et al., 2015). Another target population in the adult brain are 
NG2 cells (Nishiyama et al., 1996; Nishiyama et al., 2009). NG2, 
a transmembrane proteoglycan expressed by OPCs in vitro, 
identifies presumed myelin lineage glial progenitors in vivo. The 
adult NG2 population includes 5% of the cells in the adult brain 
(Nishiyama, 2007), and at least some of these may generate other 
cell types (Nishiyama et al., 2009). NG2 cells can generate proto-
plasmic astrocytes in grey matter. They can respond to extrinsic 
stimuli and injury. They can also respond to neurotransmitters 
and thus may have a role in neural transmission. While it is not 
clear why NG2 cells do not promote myelin replacement in inju-
ry or disease, it is clear that at least a subset of these cells are good 
targets for transgene delivery to regenerate myelinating oligoden-
drocytes in vivo. To achieve this we will need to identify relevant 
transcription factors to effectively reprogram these cells in vivo. 
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