
fgene-10-00600 July 5, 2019 Time: 15:16 # 1

ORIGINAL RESEARCH
published: 09 July 2019

doi: 10.3389/fgene.2019.00600

Edited by:
Nora L. Nock,

Case Western Reserve University,
United States

Reviewed by:
Mohamed Diwan M.

AbdulHameed,
Biotechnology HPC Software
Applications Institute (BHSAI),

United States
Meijian Guan,

Independent Researcher, Frederick,
United States

Runyu Jing,
Sichuan University, China

*Correspondence:
Zhichao Liu

zhichao.liu@fda.hhs.gov
Tieliu Shi

tlshi@bio.ecnu.edu.cn

Specialty section:
This article was submitted to

Toxicogenomics,
a section of the journal

Frontiers in Genetics

Received: 06 November 2018
Accepted: 05 June 2019
Published: 09 July 2019

Citation:
Ji X, Tong W, Liu Z and Shi T

(2019) Five-Feature Model for
Developing the Classifier

for Synergistic vs. Antagonistic Drug
Combinations Built by XGBoost.

Front. Genet. 10:600.
doi: 10.3389/fgene.2019.00600

Five-Feature Model for Developing
the Classifier for Synergistic vs.
Antagonistic Drug Combinations
Built by XGBoost
Xiangjun Ji1,2, Weida Tong3, Zhichao Liu3* and Tieliu Shi1,4*

1 The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute
of Biomedical Sciences–School of Life Sciences, East China Normal University, Shanghai, China, 2 Guangdong Provincial
Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,
3 National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States,
4 National Center for International Research of Biological Targeting Diagnosis and Therapy/Guangxi Key Laboratory
of Biological Targeting Diagnosis and Therapy Research/Collaborative Innovation Center for Targeting Tumor Diagnosis
and Therapy, Guangxi Medical University, Nanning, China

Combinatorial drug therapy can improve the therapeutic effect and reduce the
corresponding adverse events. In silico strategies to classify synergistic vs. antagonistic
drug pairs is more efficient than experimental strategies. However, most of the
developed methods have been applied only to cancer therapies. In this study, we
introduce a novel method, XGBoost, based on five features of drugs and biomolecular
networks of their targets, to classify synergistic vs. antagonistic drug combinations from
different drug categories. We found that XGBoost outperformed other classifiers in
both stratified fivefold cross-validation (CV) and independent validation. For example,
XGBoost achieved higher predictive accuracy than other models (0.86, 0.78, 0.78, and
0.83 for XGBoost, logistic regression, naïve Bayesian, and random forest, respectively)
for an independent validation set. We also found that the five-feature XGBoost model is
much more effective at predicting combinatorial therapies that have synergistic effects
than those with antagonistic effects. The five-feature XGBoost model was also validated
on TCGA data with accuracy of 0.79 among the 61 tested drug pairs, which is
comparable to that of DeepSynergy. Among the 14 main anatomical/pharmacological
groups classified according to WHO Anatomic Therapeutic Class, for drugs belonging
to five groups, their prediction accuracy was significantly increased (odds ratio < 1)
or reduced (odds ratio > 1) (Fisher’s exact test, p < 0.05). This study concludes that
our five-feature XGBoost model has significant benefits for classifying synergistic vs.
antagonistic drug combinations.

Keywords: drug combination, XGBoost classifier, synergistic drug pair, antagonistic drug pair, model
performance

INTRODUCTION

The de novo drug discovery paradigm of “one drug, one target, and one disease” has
been greatly challenged by the increasing rate of drug attrition in clinical trials and drug
withdrawal due to severe adverse drug reactions (ADRs) at the post-marketing stage (Wood,
2006). Considering the complexity of disease etiology and pathogenesis, alternative drug

Frontiers in Genetics | www.frontiersin.org 1 July 2019 | Volume 10 | Article 600

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00600
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2019.00600
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00600&domain=pdf&date_stamp=2019-07-09
https://www.frontiersin.org/articles/10.3389/fgene.2019.00600/full
http://loop.frontiersin.org/people/627649/overview
http://loop.frontiersin.org/people/39650/overview
http://loop.frontiersin.org/people/293118/overview
http://loop.frontiersin.org/people/582456/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00600 July 5, 2019 Time: 15:16 # 2

Ji et al. Model for Classifying Drug Combinations

development approaches such as drug combinations have
been promoted to provide more effective and safer regimens
(Flemming, 2014; Sarah, 2017). Combinatorial drug treatments
could work synergistically to boost efficacy, or act additively
or antagonistically to alleviate ADRs (Jia et al., 2009). Drug
combinations have been widely used to counter drug resistance
in cancer therapy (Webster, 2016). One example of this
is the combination of docetaxel with two HER2 inhibitors
(i.e., pertuzumab and trastuzumab) for treating HER2-positive
metastatic breast cancer, which achieved an approximately 16-
month improvement in overall survival (OS) compared with
the conventional single treatment option (Swain et al., 2015).
Synthetic lethality could be employed when discussing feasible
therapeutic strategies for treating gastric cancer (Guo et al.,
2017). Besides oncological drug development, the use of drug
combinations is also a popular approach for antibacterial and
antifungal therapy (Spitzer et al., 2011) and diabetes (Lu et al.,
2017; Xu et al., 2017). For example, Hsp90 inhibitors and the
antifungal drugs azoles were combined to treat patients infected
with Candida albicans and Saccharomyces cerevisiae (Hill et al.,
2013). As mentioned above, the use of drug combinations has
also been applied to alleviate ADRs. One example is fixed-
dose combination therapies for treating type 2 diabetes, which
effectively eliminated the side effects of diabetes drugs such as
cardiovascular toxicity and enhanced the efficacy (Bell, 2013).

Recent success in drug combinations has primarily been
the result of serendipity or clinical observation, which is
time-consuming and knowledge-driven (Foucquier and Guedj,
2015). Computational approaches offer a rational and exhaustive
exploration of all possible drug combination opportunities
by integrating different biomedical data profiles (Sun et al.,
2013; Bulusu et al., 2016). Efforts have been made to develop
in silico approaches to accelerate effective drug combination
discovery. These computational approaches are mainly divided
into three categories: transcriptomic profiles and cell-based drug
sensitivity assay-based modeling, network/system biology-based
approaches, and machine learning algorithms. For example,
Preuer et al. (2018) developed a deep learning modeling
named DeepSynergy to predict anti-cancer drug synergy by
incorporating chemical and genomic data, yielding an AUC of
0.90. In addition, the predictive performance of DeepSynergy
was also superior to that of other state-of-the-art methodologies,
including random forest (RF), gradient boosting machine,
support vector machine, and elastic net. The pros and cons
of these in silico approaches have been intensively discussed
elsewhere (Bulusu et al., 2016).

Questions have been raised about how to integrate the
diversity of biological information into a framework to improve
the performance of tools for predicting the efficacy of drug
combinations. First, the current in silico drug combination
models are mainly focused on the field of oncology (Sun et al.,
2015; Preuer et al., 2018). There is thus a lack of in silico
models to explore the opportunities for using drug combinations
in other therapeutic categories such as pediatric and infectious
diseases. Second, numerous accumulative biological datasets have
been generated and become widely available, so a comprehensive
assessment of the predictive power of diverse biological profiles

is imperative to provide useful information for further model
development. Finally, no approach at in silico modeling will
provide universally valid results. Therefore, we need to carefully
define the domain in which modeling results are applicable
to maximize their utility. To address these unresolved issues,
there is an urgent need for novel methodologies and model
development strategies.

XGBoost as a machine learning algorithm has become well
established in the machine learning community and gained
a positive reputation through numerous machine learning
challenges (Chen and Guestrin, 2016). XGBoost is an ensemble
method based on gradient boosted trees. Considering the
rationale behind XGBoost, it may be a promising algorithm
to integrate diverse biological information seamlessly and yield
satisfactory predictive results. To the best of our knowledge, the
XGBoost methodology has not been applied to classify synergistic
vs. antagonistic drug combinations.

In this research, the XGBoost methodology is intended
to classify synergistic vs. antagonistic drug combinations. To
investigate the potential for applying the XGBoost methodology,
we employed five different data profiles, namely, chemical
structure information, human phenotypic information,
pathways, protein targets, and protein–protein interactions,
for model development. The proposed XGBoost model was
comprehensively assessed based on feature importance,
performance metrics, and degree of overfitting. The model was
also compared with state-of-the-art machine/deep learning
algorithms including RF, logistic regression (LR), naïve
Bayes (NB) classifier, and DeepSynergy. The domains to
which the proposed XGBoost model is applicable were also
investigated by ranking model performance across different
therapeutic categories.

MATERIALS AND METHODS

The workflow of this study was illustrated in Figure 1, which
included major four parts: data curation, feature extraction,
model development, and model interpretation.

Data Curation
To curate the drug pairs with known combination effectiveness,
three data resources including the Drug Combination Database
(DCDB) (Liu et al., 2014), Therapeutic Target Database (TTD)
(Zhu et al., 2010), and the literature in PubMed (Fiorini et al.,
2017) were used.

The DCDB1 is devoted to the research and development of
multi-component drugs (Liu et al., 2014). The updated DCDB
2.0 collected 1,363 drug combinations (330 approved and 1,033
investigational, including 237 unsuccessful usages), involving 904
individual drugs and 805 targets. In this study, the combinatorial
medical effectiveness of 655 drug combinations corresponding
to 544 synergistic drug pairs and 111 antagonistic ones was
retrieved from DCDB.

1http://www.cls.zju.edu.cn/dcdb/index.jsf (accessed April, 2019).
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FIGURE 1 | Flowchart of the study: The workflow includes data curation, feature extraction, model development, and model interpretation.

Therapeutic Target Database2 is a database to provide
information about the known and explored therapeutic
protein and nucleic acid targets, the targeted disease, pathway

2http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp

information, and the corresponding drugs directed at each
of these targets. It contains 75 drug combinations. In this
study, the combinatorial medical effectiveness of 23 drug
combinations (e.g., 23 synergistic drug pairs vs. 0 antagonistic
ones) were employed.
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PubMed3 comprises more than 28 million citations for the
biomedical literature from MEDLINE, life science journals,
and online books (Suarez-Almazor et al., 2000; Boddy, 2009).
In this study, the combinatorial medical effectiveness of 167 drug
combinations (e.g., 116 synergistic drug pairs vs. 51 antagonistic
ones) was mined from PubMed with the Java library OpenNLP4

for text mining (Supplementary Table S1).
Together, a union list of 822 drug pairs with known

combinatorial medical effectiveness based on the three resources
was obtained. Among them, 660 are synergistic drug pairs and
162 are antagonistic ones (Supplementary Table S2).

Feature Extraction
A list of seven features to describe the synergistic effect of drug
pairs were generated in this study. These seven features were
designed to comprehensively cover the molecular and phenotypic
characteristics of drugs as well as their on/off targets. The details
of these seven features are listed below:

(1) Disease intersection degree (DID): Drug–disease
relationships were obtained from DrugBank (Wishart et al.,
2018) and TTD (Li et al., 2018). DID represents the proportion
of the same indications of two drugs. The higher the DID, the
greater the proportion of the same indications of two drugs. The
formula of DID is as follows:

DIDa,b =
Da ∩ Db

Da ∪ Db
(1)

Among these values, Da and Db represent the diseases treated by
drugs a and b, respectively.

(2) Adverse drug reaction intersection degree (ADRID): ADRs
were obtained from SIDER (Kuhn et al., 2016) and ADReCS (Cai
et al., 2015). We defined ADRID as the Jaccard similarity between
ADRs between two drugs. ADRID represents the proportion of
the same ADRs of two drugs. The formula of ADRID is as follows:

ADRIDa,b =
ADRa ∩ ADRb

ADRa ∪ ADRb
(2)

Among them, ADRa and ADRb represent the ADRs of drugs a
and b, respectively.

(3) Biological process similarity (BPS): BPS indicates the
similarity between the biological processes for the interactants
of two drugs. The higher the BPS, the greater the similarity of
the biological process derived from the targets of two drugs.
This feature was measured by GOSemSim (Yu et al., 2010).
Targets, enzymes, and transporters of drugs were obtained from
DrugBank (Wishart et al., 2018) and DGIDB (Cotto et al.,
2018). BPS was calculated in R with the GOSemSim package
which can be downloaded from http://www.bioconductor.org/
packages/release/bioc/html/GOSemSim.html.

(4) Similarity of mode of action (SMA): This feature indicates
the similarity of the mode (promotive/inhibitory) by which drugs
act on the target in a drug pair. The higher the SMA, the
greater the similarity of the mode (promotive/inhibitory) of
action on the target of the two drugs. Drug–target interactions

3https://www.ncbi.nlm.nih.gov/pubmed/
4http://opennlp.apache.org/

were obtained from DrugBank (Wishart et al., 2018) and DGIdb
(Griffith et al., 2013). A protein interactive network with direction
was obtained from KEGG (Kanehisa et al., 2016) and SIGNOR
(Perfetto et al., 2016). All the interactions were directional and
classified as promotive/inhibitory. The mode through which a
chemical x acts on another non-adjacent chemical z depends on
the relations of chemicals in all the shortest paths from x to z.
If there are three chemicals, x, y, and z, with no direct link
from x to z:

(a) If x promotes y and y promotes z, then x promotes z;
(b) If x promotes y and y inhibits z, then x inhibits z;
(c) If x inhibits y and y inhibits z, then x promotes z.
Then, the formula of SMA is as follows:

AMSa,b =

∑M
i=1

∑X
x=1 c(ai,b)x

X +
∑N

j=1

∑Y
y=1 c(a,bj)y

Y∑M
i=1

∣∣∣∑X
x=1 c(ai,b)x

∣∣∣
X +

∑N
j=1

∣∣∣∑Y
y=1 c(a,bj)y

∣∣∣
Y

(3)

ai and bj are the targets of drugs a and b, respectively. c(ai, b)x
is the coefficient of the shortest path x from ai to b. The
interpretation of c(ai, b) also applies to c(bj, a). If c(ai, b)x = 1,
it means that the mode (promotive/inhibitory) of action of drug
b on the target ai through path x is the same as the mode
(promotive/inhibitory) through which drug a acts on target ai.
If c(ai, b)x = −1, this means that the mode by which drug b acts
on the target ai through path x is the opposite of the mode by
which drug a acts on target ai. The numerator is normalized by
the denominator in the formula. SMAa,b ranges from −1 to 1.
If the modes by which drug b acts on all the targets of drug a are
the same as the modes by which drug a acts on them, SMAa,b = 1;
alternatively, if the modes by which drug b acts on all the targets
of drug a are the opposite of the modes by which drug a acts on
them, SMAa,b =−1.

(5) Separation score (SS): This score is initially used to
calculate module distances of two diseases, which is referred to
as network separation (Menche et al., 2015). We first mapped all
drug targets to the protein interaction network from InWeb_IM
(Uhlik et al., 2016). In our model, separation score quantifies the
network-based separation Sab of two drugs a and b by comparing
the mean shortest distances <daa> and <dbb> between the
respective drugs, to the mean shortest distance <dab> between
their targets:

sab =< dab > −
< daa > + < dbb >

2
(4)

(6) Chemical structure similarity: The simplified molecular-input
line-entry system (SMILES) is a specification in form of a line
notation for describing the structure of chemical species using
short ASCII strings (Weininger, 1988). SMILES information
was obtained from DrugBank. Chemical structure similarity
was calculated by Tanimoto similarity of SMILES in RDKit
(Saubern et al., 2011).

(7) ATC similarity: We used the World Health Organization
(WHO) ATC classification system (Skrbo et al., 2004).
The ATC similarity between two drugs was induced from
Gottlieb et al. (2012).

Frontiers in Genetics | www.frontiersin.org 4 July 2019 | Volume 10 | Article 600

http://www.bioconductor.org/packages/release/bioc/html/GOSemSim.html
http://www.bioconductor.org/packages/release/bioc/html/GOSemSim.html
https://www.ncbi.nlm.nih.gov/pubmed/
http://opennlp.apache.org/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00600 July 5, 2019 Time: 15:16 # 5

Ji et al. Model for Classifying Drug Combinations

The calculated features were listed in
Supplementary Table S2.

Model Development
The XGBoost Classifier
XGBoost (Extreme Gradient Boosting) is a machine learning
technique for regression and classification problems based on the
Gradient Boosting Decision Tree (GBDT) (Chen and Guestrin,
2016). The XGBoost model has been widely applied in all kinds
of data mining fields for regression and classification, but has
not yet been imported into the field of pharmacology. XGBoost
is essentially an ensemble method based on gradient boosted
tree (Friedman, 2001). In the regression tree, the inside nodes
represent values for an attribute test and the leaf nodes with
scores represent a decision. The result of the prediction is the sum
of the scores predicted by K trees, as shown in the formula below:

ŷi =
∑K

k=1
fk (xi) , fk ∈ F (5)

where xi is the i-th training sample, fk(xi) is the score for the
k-th tree, and F is the space of functions containing all regression
trees. The objective function to be optimized is given by the
following formula:

obj (θ) =
∑n

i=1
l
(
yi, ŷi

)
+

∑K

k=1
�
(
fk
)

(6)

The former
∑n

i=1 l
(
yi, ŷi

)
is a differentiable loss function that

measures whether the model is suitable for training set data.
The latter

∑K
k=1 �

(
fk
)

is an item that punishes the complexity
of the model. When the complexity of the model increases, the
corresponding score is deducted.

In this study, variables input into the XGBoost classifier are
the features of drug pairs and the variables that are output
are the predicted classes and the corresponding possibilities
of combinatorial medical effectiveness in a scale of 0∼1. The
probability over 0.5 indicates that the combination is inclined to
be synergistic, and the one under 0.5 means that the combination
is inclined to be antagonistic. Some prediction values of drug
combinations are around 0.5, which reflect that the combination
is inclined to be additive.

Model Generation
(1) Division of training set and independent validation set: Of
the 822 drug pairs curated with known combinatorial medical
effectiveness, 173 drug pairs (synergistic drug pairs: antagonistic
drug pairs ratio = 127:46) contain all the seven features described
above were used for model construction and comparison since
other models built by other classifiers (LR, NB, and RF) only
accept the drug pairs with all features available as input.

Overall, 173 drug pairs were randomly divided into
training set (approximately two-thirds, 115 drug pairs) and
independent validation set-I (approximately one-third, 58 drug
pairs) by keeping the original prevalence, which resulted in
synergistic/antagonistic ratios of 85/30 and 42/16 in the training
and validation sets, respectively (Supplementary Tables S3, S4).

To further verify the model performance of our
developed model, we employed combination drugs used

in TCGA project (The Cancer Genome Atlas Research
Network et al., 2013). Specifically, we extracted the medical
information of patients from The Cancer Genome Atlas
(TCGA) project with the R package RTCGA5. Most
of the patients were administered more than one drug,
showing the necessity of multidrug therapy (Supplementary
Figure S1). We consider that these patients had all
undergone combinatorial therapy with synergistic effects.
We screened out 659 patients who took just two kinds
of drug with an overlap of at least 5 days, including
90 different drug combinations (Supplementary Tables
S3, S4). The 90 drug combinations pairs were use as the
independent validation-II.

(2) Feature selection: To compare the model performance with
different combinations composed of seven preliminary features,
XGBoost model were built with different feature combination,
yielding 127 (i.e.,

∑7
i=1 C

i
7 = 127) XGBoost models. The model

performance of 127 XGBoost models were evaluated base on the
average accuracy from 50 time of fivefold CV. The optimized
feature combination was determined by the corresponding
XGBoost model with highest accuracy, which was used as the
final model for further analysis.

(3) Model evaluation: Six performance metrics were used
including AUC, accuracy, sensitivity, specificity, negative
predictive value (NPV), and positive predictive value (PPV) to
evaluate the models. Synergistic combinations were classified
as positive while antagonistic combinations were classified as
negative. For training set, the average value of each performance
metrics based on 50 runs of fivefold CV were presented. For
independent validation set-I, six performance metrics were
generated and further compared with the CV results, which was
used to investigate whether the built model suffered over-fitness.
To further investigate whether the XGBoost model performance
was better than chance, a permutation test by using Y-scrambling
strategy was implemented. Specifically, 2,000 permuted datasets
were generated for the training set, in which the effect of
drug pairs was randomly scrambled. For each permutation,
the accuracy was calculated. Then, the p-value was calculated
to assess the probability of the accuracy based on real data
obtained by chance. For independent validation set-II, only
the sensitivity was calculated since the comparison drug pairs
are all synergistic.

(4) Comparison with state-of-the-art methods: To further
compare the model performance of XGBoost with the state-of-
the-art methods, four classifiers including RF, LR, NB classifier,
and DeepSynergy (Preuer et al., 2018). The default parameters
were used for LR, and NB with sklearn package in Python v3.5.
For RF, we tested different numbers of estimators (trees) and
features considered in each split. The performance is not well
correlated with the hyperparameters. Thus, the performance of
RF presented is generated based on default parameters. For
DeepSynergy, 14 drug pairs are overlapped in the validation set-II
and labeled with yellow background in Supplementary Table S7.
DeepSynergy and our XGBoost were employed to compare their
model performance with these drug pairs.

5https://rtcga.github.io/RTCGA/
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Model Interpretation
Applicability Domain of the Developed XGBoost
Model
Since the drug combination pairs curated cover a wide spectrum
of different therapeutic categories, a defined applicability domain
would be helpful for further application for various purpose.
Therefore, those drug pairs with 50 correct or incorrect
predictions were extracted based on the average accuracy of
50 runs of fivefold CV and further classified according to the
second level of WHO Anatomic Therapeutic Class (ATC6) (Skrbo
et al., 2004). Fisher’s exact tests were performed on these drug
pairs for each drug category. The odds ratio is calculated by
dividing the ratio of a certain kind of drug in drug pairs
with correct prediction to all drugs with correct prediction
on the one hand by the ratio of a certain kind of drug in
drug pairs with incorrect prediction to all drugs with incorrect
prediction on the other.

Pathway Analysis
To determine the association between predictive accuracy and
biological relevance of the drug targets, the targets belonging to
those drug pairs with 50 correct or incorrect predictions stated
above were extracted and mapped to pathways in KEGG for
enrichment analysis, respectively (Kanehisa et al., 2016). The
enrich pathways were adjusted p-values less than 0.01 were
considered as statistically significant pathways.

Code Availability
The codes used for the generation of these features have been
uploaded in https://github.com/514419407/Five-feature-Model-
for-Predicting-the-Effects-of-Drug-Combinations-Built-by-XG
Boost.git. XGBoost model was constructed by the xgboost
package in Python. Other models built by other classifiers
(LR, NB, and RF) were constructed by the sklearn package in
Python. The xgboost and sklearn packages can be downloaded
from https://pypi.org/. The values of all key hyperparameters of
different algorithms are in Supplementary Table S5.

RESULTS

Feature Selection
Figure 2 shows the average accuracy from 50 repetitions of the
fivefold CV for the feature selection process in the XGBoost
models. A total of 127 (i.e.,

∑7
i=1 C

i
7 = 127) XGBoost models

were developed based on the different combination of the seven
features. The performance of all XGBoost models roughly tend
to be stable after the size of features combination reached five;
further increasing the number of features did not change the
model performance or slightly decreased the performance. Thus,
the five features with the highest accuracy were selected for the
construction of the XGBoost model. The optimized five features
included DID, ADRID, BPS, SMA, and separation score.

To further investigate the performance contribution of each
optimized features, the performance of the models constructed

6http://www.whocc.no/atcddd/

FIGURE 2 | Model performance of XG models with different feature
combinations: The average accuracy of 50 runs of cross-validation (CV) was
calculated for different XG models.

with different five feature combinations (one feature alone,
leaving one feature out, and all five features) by the XGBoost
classifier (Table 1). The results show that, among the metrics
used for model evaluation, which include AUC, sensitivity,
specificity, PPV, NPV, and accuracy, sensitivity achieved the
best result in all models. The model with all the features
showed the best performance, especially for specificity, which

TABLE 1 | Performance of models constructed with different feature combinations
(one feature alone, leave one feature out, and all features) by the
XGBoost classifier.

Features AUC Sensitivity Specificity PPV NPV Accuracy

DID 0.46 0.79 0.03 0.70 0.53 0.65

ADRID 0.57 0.82 0.08 0.72 0.50 0.64

BPS 0.66 0.89 0.37 0.74 0.51 0.62

SMA 0.55 0.86 0.38 0.73 0.40 0.65

SS 0.60 0.87 0.30 0.75 0.48 0.56

No DID 0.74 0.89 0.46 0.73 0.62 0.70

No ADRID 0.71 0.90 0.30 0.73 0.55 0.69

No BPS 0.70 0.90 0.24 0.75 0.56 0.67

No SMA 0.73 0.92 0.40 0.74 0.58 0.68

No SS 0.73 0.91 0.43 0.73 0.59 0.68

All 0.77 0.95 0.63 0.82 0.67 0.79

DID, disease intersection degree; ADRID, adverse drug reaction intersection
degree; BPS, biological process similarity; SMA, similarity of mode of action;
SS, separation score. PPV, positive predictive value: TP/(TP+FP). NPV, negative
predictive value: TN/(TN+FN). The average metrics of each model are displayed
from 50 repetitions of the fivefold cross-validation (CV) carried out in the training
set. The column names are the models made up of different combinations. The
first five rows are models constructed with one feature alone; the middle five rows
are models constructed when leaving one feature out; the last row is the model
constructed with all five features.
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FIGURE 3 | The t-test for the five optimized features.

was much higher (at least 0.2) than those of the other models
used in the comparison. Even for the SMA, the feature with
the lowest F-score, the performance of all the leave-one-feature-
out models was far behind that of the model built with all five
features, showing the necessity of including all features in our
model. The similar pattern was also observed based on Fisher’s
exact test. All these features were found to differ significantly
between synergistic drug pairs and antagonistic drug pairs (t-test,
p < 0.05), except for in the DID (t-test, p = 0.53) in the training
set (Figure 3 and Supplementary Table S6). Synergistic drug
pairs show significantly higher ADRID, the SMA, and separation
score, while showing significantly lower BPS (t-test, p < 0.05).
The contribution of each feature to the XGBoost classifier is
measured according to the intrinsic criterion of the XGBoost
model, F-score (Chen and Guestrin, 2016) (Figure 4). The
DID shows no significant difference between synergistic drug
pairs and antagonistic drug pairs which is similar to its low
contribution to the XGBoost classifier.

Model Performance for Validation Set-I
An extensive comparison of models built by XGBoost and
other models was performed with all five features (see section
“Materials and Methods”). Figure 5 shows the six performance
metrics based on 50 runs of in fivefold CV and independent
validation (IV) for models built with different classifiers
(Supplementary Tables S6, S7). The standard deviations of all

FIGURE 4 | Feature importance contributed to the XGBoost model measured
by F-score: The average F-score of each model is displayed from 50
repetitions of the fivefold cross-validation (CV) carried out in the training set.
Features in order of their contributions from large to small are as follows: BPS,
biological process similarity; ADRID, adverse drug reaction intersection
degree; SS, separation score; DID, disease intersection degree; SMA, the
similarity of mode of action.

CV metrics in the model built by XGBoost are all lower than
those built by other classifiers when the values of all CV metrics
in the XGBoost model are greater than those in models built by
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FIGURE 5 | Predictive values and standard deviation for six different metrics [AUC, sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), accuracy] for the models constructed by different classifiers for both cross-validation (CV) and independent validation (IV). LR, logistic regression; NB, naïve
Bayesian; RF, random forest.

other classifiers including RF, LR, and NB. A similar trend can
also be observed for the other four IV performance metrics. For
example, the values of four IV metrics in the XGBoost model
are greater than those in models built by other classifiers. The
values of accuracy in the XGBoost model in both CV and IV
are at least 0.03 higher than those in models built by other
classifiers. The performance ranks of the models on the IV set in
terms of sensitivity and PPV are exactly consistent with the CV
results. Since F1 score [2∗((precision∗recall)/(precision+recall))]
conveys the balance between the precision and the recall, we also
compared the values of F1 score among different models. The
values of F1 score in the XGBoost model in both CV and IV are
at least 0.025 higher than those in models built by other classifiers
(Supplementary Table S8), with more true positives and fewer
false negatives.

We also compared the difference in the six-performance
metrics between the CV and IV (Figure 6), denoted as |CV− IV|,
for the models constructed using four classifiers. The |CV − IV|
value measures the concordance; that is, a large |CV − IV| value
indicates either overtraining in the training model (CV > IV) or
an unreliable extrapolation (IV > CV), since the performance
of the internal validation should not be significantly better than
that of the external validation. In addition to the best overall
performance in both CV and IV, the XGBoost model also has the
smallest |CV − IV| values of the metrics (AUC, sensitivity, and
specificity) among the different models.

Figure 7 shows the results of the permutation tests
to assess whether the models predict the validation set
better than would be expected by chance alone (see section
“Materials and Methods”). If the predictive performance of
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FIGURE 6 | Absolute difference, |CV – IV|, between the predictive
performance for the six performance metrics in the fivefold cross-validation of
the training set and the independent validation set for the models constructed
by different classifiers.

FIGURE 7 | Comparison of the prediction accuracy of the validation set
between 2,000 models derived from a permutation test (randomly permuted)
and the real dataset (colored solid dots).

a model measured by the real training set is not greater
than that measured by the permutated training sets, we can
conclude that the model measured by the real training set
performs no better than the random results. Similar to the
findings described in the previous section, the XGBoost model
achieved the best performance in permutation tests. Unlike
XGBoost, some of the values of prediction accuracy of the
validation set derived from permutation tests were higher than
those of the validation set derived from the real dataset in
all other models.

FIGURE 8 | The distribution of predicted probability values derived from
XGBoost models for the two independent validation sets.

Model Evaluation by Validation Set-II
To further confirm the performance of XGBoost, we tested the
validation set obtained from TCGA with the XGBoost model.
Of the 90 drug pairs involved in patients who underwent
combinatorial therapy with a synergistic effect in TCGA (see
section “Materials and Methods”), 61 drug pairs contained at
least one feature in the XGBoost model. The XGBoost model
classified these drug pairs with accuracy of 0.787 (Supplementary
Table S7). These 61 drug pairs were used in 610 patients
with 27 cancer types, with accuracy of over 0.94 calculated by
the number of patients in TCGA, further demonstrating the
robustness of our model.

To further validate the classification ability of the five-
feature XGBoost model, we compared the prediction ability
of the prediction ability between the five-feature XGBoost
model and DeepSynergy. The original data profiles of the
five-feature XGBoost model and DeepSynergy are different.
To compare the prediction performance between the five-feature
XGBoost model and DeepSynergy, we detected 14 overlapped
drug pairs between the validation set-II of the five-feature
XGBoost model and the prediction dataset of DeepSynergy since
TCGA data are focused on cancer therapy. We displayed the
predicted accuracy of the 14 overlapped drug pairs in 38 cell
lines in DeepSynergy and in validation set-II. The highest
accuracy could reach to 0.86 by using DeepSynergy, which
is comparable to the accuracy (0.787) generated by XGBoost
(Supplementary Table S9).

Distribution of Predicted Effectiveness
by the Developed XGBoost Model
Figure 8 illustrated the distribution of possibility values
for the two independent validation sets (Supplementary
Tables S6, S7). The average possibility value of validation set-
I and validation set-II since the drug pairs are 0.7788 ± 0.3074
and 0.7384 ± 0.3079. The large standard deviation indicated
that the possibility values could be utilized to quantitatively
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reflect the effectiveness of drug combination pairs. Specifically,
the scale of possibility is in a range of 0 to 1. The bigger
possibility values indicated the higher synergistic effect. The
lower possibility values mean the stronger antagonistic effect
of drug pairs. The drug pairs with addictive effect were with
possibility values around 0.5.

Applicability Domain of XGBoost Models
We then aimed to determine whether our model is able to
classify drug pairs varied in different drug categories (see section
“Materials and Methods”). Of the 822 drug pairs that we collected,
the effectiveness of 745 drug pairs was correctly predicted at
least once, while the effectiveness of 218 drug pairs was wrongly
predicted at least once. The effectiveness of 604 drug pairs was
correctly predicted in all 50 iterations, while the effectiveness of
77 drug pairs was wrongly predicted in all 50 iterations, showing
the stability of the five-feature XGBoost model.

Drugs belonging to drug pairs with consistent prediction
in all 50 iterations (both correct and incorrect predictions)
were extracted to measure the predictive accuracy for different
therapeutic categories. Among the 14-main anatomical/
pharmacological groups classified based on WHO Anatomic
Therapeutic Class (ATC, see text footnote 6), for drugs belonging
to five groups, there are significant increases (odds ratio < 1)

TABLE 2 | Association of prediction accuracy and drug classification according to
ATC codes by the stratified fivefold cross-validation.

Anatomical main
group

Abbreviation Odds ratio P-value #Drugs

Antineoplastic and
immunomodulating
agents

L 0.20 0.00 218

Nervous system N 2.19 0.00 151

Various V 4.43 0.00 27

Anti-infectives for
systemic use

J 0.41 0.01 86

Alimentary tract and
metabolism

A 1.84 0.03 50

Musculo-skeletal
system

M 2.00 0.07 24

Respiratory system R 1.77 0.10 32

Genito urinary system
and sex hormones

G 1.61 0.19 33

Blood and blood
forming organs

B 0.27 0.24 28

Antiparasitic products,
insecticides and
repellents

P 1.68 0.27 21

Dermatologicals D 1.16 0.60 48

Sensory organs S 1.09 0.76 60

Cardiovascular system C 1.04 0.89 99

Systemic hormonal
preparations, excl. sex
hormones and insulins

H 0.86 1.00 8

The table is sorted according to P-values from low to high. The employed drugs
belong to drug pairs with consistent prediction in all 50 iterations (both correct and
incorrect predictions).

or reductions (odds ratio > 1) on their predictive accuracy
(Fisher’s exact test, p < 0.05) (Table 2, see section “Materials
and Methods”). Specifically, among the drugs belonging
to five groups, for antineoplastic and immunomodulating
agents (abbreviated to L) and anti-infectives for systemic use
(abbreviated to J), there is a significantly higher proportion
of drugs in drug pairs with correctly predicted effectiveness
than that of drugs in drug pairs with incorrectly predicted
effectiveness (Fisher’s exact test, p < 0.01; odds ratio < 1);
for the drugs belonging to other three groups, there is a
significantly lower proportion of drugs in drug pairs with
correctly predicted effectiveness than that of drugs in drug
pairs with incorrectly predicted effectiveness (Fisher’s exact test,
p < 0.01; odds ratio > 1).

Associating Pathways With the Potential
of the Five-Feature XGBoost Model
We next investigated whether our model can classify synergistic
vs. antagonistic drug pairs with targets belonging to different
pathways (see section “Materials and Methods”). We enriched
the targets of drugs in correctly and incorrectly predicted
drug pairs to 139 and 96 KEGG pathways (Bonferroni,
p-value < 0.01), respectively (Kanehisa et al., 2016). Forty-three
pathways exclusively belonged to the correctly predicted drug
pairs (Table 3). The results of pathway analysis correspond to
the results of drug category analysis. A number of pathways are
associated with antineoplastic and immunomodulating agents,
anti-infectives for systemic use including for malaria (Nosten and
White, 2007), and bacterial invasion of epithelial cells.

DISCUSSION

The five-feature XGBoost model is an important advance for
the classification of synergistic and antagonistic drug pairs.
Classifying synergistic vs. antagonistic drug pairs experimentally
is time-consuming and labor-intensive. In silico methods can
thus be of tremendous benefit in this field of study. In this
paper, we propose a model for efficiently classifying synergistic
and antagonistic drug pairs. Its comparison with other models
showed that it confers major advantages in accurately classifying
synergistic vs. antagonistic drug pairs in combination, both with
and without the existence of all five features.

With the extremely low |CV − IV| value of sensitivity and
the highest values in sensitivity and accuracy received from the
XGBoost classifier, the five-feature XGBoost model shows much
greater ability to predict the effects of combinatorial therapies
with synergistic effects than those with antagonistic effects. Thus,
our model is reliable for use as a filter to generate candidates of
synergistic drug pairs. For example, the combination of caffeine
and hexobarbital is an antagonistic drug pair that was wrongly
classified as a synergistic drug pair by our model. This may
have been due to the lack of feature values (DID and ADRID)
in this drug pair.

According to our research, our model is preferable to classify
synergistic vs. antagonistic drug pairs composed of antineoplastic
and immunomodulating agents, anti-infectives for systemic use
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TABLE 3 | Forty-three pathways exclusively belonging to correctly
predicted drug pairs.

Pathway name #Gene p-Value

Proteasome 40 3.06E-54

Cytokine–cytokine receptor interaction 59 3.10E-31

Jak-STAT signaling pathway 35 2.27E-18

Epithelial cell signaling in Helicobacter pylori infection 24 2.72E-17

Leukocyte transendothelial migration 29 2.25E-16

NOD-like receptor signaling pathway 21 2.76E-15

Arrhythmogenic right ventricular cardiomyopathy (ARVC) 22 5.84E-14

Shigellosis 20 1.53E-13

Hematopoietic cell lineage 21 3.44E-11

African trypanosomiasis 14 1.37E-10

Malaria 16 2.57E-10

Rheumatoid arthritis 20 6.71E-10

Adherens junction 18 9.96E-10

Base excision repair 13 1.15E-09

PPAR signaling pathway 16 5.14E-08

Dorso-ventral axis formation 10 1.70E-07

Bacterial invasion of epithelial cells 15 4.84E-07

RIG-I-like receptor signaling pathway 15 5.97E-07

Wnt signaling pathway 21 1.29E-06

Protein digestion and absorption 15 3.99E-06

Arginine and proline metabolism 12 1.23E-05

Axon guidance 18 1.60E-05

Parkinson’s disease 17 9.34E-05

Caffeine metabolism 5 9.90E-05

One carbon pool by folate 7 0.0001

Nucleotide excision repair 10 0.0001

Taste transduction 10 0.0006

Vibrio cholerae infection 10 0.0009

Tyrosine metabolism 8 0.0054

Type I diabetes mellitus 8 0.0078

Protein processing in endoplasmic reticulum 16 0.0094

ECM–receptor interaction 11 0.0105

Terpenoid backbone biosynthesis 5 0.0115

Nicotinate and nicotinamide metabolism 6 0.0127

Vitamin digestion and absorption 6 0.0127

Fat digestion and absorption 8 0.0129

DNA replication 7 0.0176

Allograft rejection 7 0.0189

Renin–angiotensin system 5 0.0189

Graft-versus-host disease 7 0.0378

Autoimmune thyroid disease 8 0.0378

Pyruvate metabolism 7 0.0378

Glycerophospholipid metabolism 10 0.0378

(Table 2). This may be due to the fact that cancer patients
receive combinatorial drug therapy with targeted drugs in some
circumstances (Al-Lazikani et al., 2012). The results of pathway
analysis correspond to the results of drug category analysis. For
example, malaria is treated by anti-infectives for systemic use
and a pathway in KEGG belonging to the correctly predicted
drug pairs. The reason for the excellent performance of the
five-feature XGBoost model in malaria is according to the

performance in anti-infectives for systemic use (Table 2) and
malaria pathway (Table 3) that our prediction model follows
the rules of combinatorial therapy for malaria of reducing
the risk of treatment failure and reducing the side effects
(Nosten and White, 2007).

Besides the advantages stated above, XGBoost can be
constructed and performs prediction when drug pairs do not
contain all five features, so it is more practical than other models
as, among our 822 collected known drug pairs, only 173 contain
all five features (Supplementary Table S2).

The five-feature XGBoost model contains relatively few
features compared with other models (Sun et al., 2015). However,
the features in our model are ubiquitous among drugs and
other molecules potentially available for medical usage with
vital medical significance. Intriguingly, our synergistic drug pairs
show no significant difference from antagonistic drug pairs
according to DID. This may be because not all the indications
of the drug have been detected yet. In addition, although the
SMA uses more precise information (promotive/inhibitory drug–
target and protein–protein relationships) than other features, it
makes the smallest contribution to our model. This may be due
to the fewer related data.

It is worthwhile to consider some additional studies to
further our knowledge and improve the prediction results
from this study. First, the current in silico drug combination
models are mainly focused on the field of oncology. There is
thus a lack of in silico models to explore the opportunities
for using drug combinations in other therapeutic categories
such as pediatric and infectious diseases. Second, numerous
accumulative biological datasets have been generated and become
widely available, so a comprehensive assessment of the predictive
power of diverse biological profiles is imperative to provide useful
information for further model development. Third, the fine-
tuning hyperparameters of machine-learning algorithm such as
RF may provide improved model performance, however, it is
not the focus of current study. Final, some novel algorithms for
drug combination effectiveness prediction such as TreeCombo is
worth exploring for better prediction results (Janizek et al., 2018).

CONCLUSION

In conclusion, we applied one machine-learning methodology,
XGBoost, to classify the effects of drug combinations, which was
greatly successful. In future work, deep learning algorithm such
as RNN is also worth investigating for potential performance
improvement. Although some other important features such as
gene expression are not incorporated into our model (Sun et al.,
2015), it may make a major contribution to predicting the effects
of drug combinations.

AUTHOR CONTRIBUTIONS

ZL and TS designed the study. ZL and XJ performed the
data analysis and wrote the manuscript. TS, XJ, ZL, and WT
revised the manuscript. All authors read and approved the
final manuscript.

Frontiers in Genetics | www.frontiersin.org 11 July 2019 | Volume 10 | Article 600

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00600 July 5, 2019 Time: 15:16 # 12

Ji et al. Model for Classifying Drug Combinations

FUNDING

This work was supported by the National High
Technology Research and Development Program of
China (Grant Nos. 2015AA020108 and 2016YFC0902100),
the China Human Proteome Project (Grant Nos.
2014DFB30010 and 2014DFB30030), the National
Science Foundation of China (Grant Nos. 31671377,
31401133, 31771460, and 91629103), and the 111 Project
(Grant No. B14019).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2019.00600/full#supplementary-material

FIGURE S1 | The distribution of patient sample size with different numbers of
drugs during medical therapy from TCGA.

TABLE S1 | Information on 167 drug combinations retrieved from PubMed.

TABLE S2 | Features and real effectiveness of 822 known drug pairs.

TABLE S3 | Patients who took just two kinds of drugs with an overlap of at least
5 days from TCGA.

TABLE S4 | Tumor types included in Supplementary Table S2.

TABLE S5 | Key hyperparameters used in different models.

TABLE S6 | Features and real effectiveness used in the training set and
validation set-1.

TABLE S7 | Features, real effect, and predicted effect of 61 drug pairs from TCGA
based on the five-feature XGBoost model.

TABLE S8 | The values of F1 score in CV and IV.

TABLE S9 | Accuracy of the 14 overlapped drug pairs in 38 cell lines in
DeepSynergy and in validation set-2.

REFERENCES
Al-Lazikani, B., Banerji, U., and Workman, P. (2012). Combinatorial drug therapy

for cancer in the post-genomic era. Nat. Biotechnol. 30, 679–692. doi: 10.1038/
nbt.2284

Bell, D. S. H. (2013). Combine and conquer: advantages and disadvantages of fixed-
dose combination therapy. Diabetes Obes. Metab. 15, 291–300. doi: 10.1111/
dom.12015

Boddy, K. (2009). When is a search not a search? A comparison of searching
the AMED complementary health database via EBSCOhost, OVID and
DIALOG. Health Info. Libr. J. 26, 126–135. doi: 10.1111/j.1471-1842.2008.
00785.x

Bulusu, K. C., Guha, R., Mason, D. J., Lewis, R. P. I., Muratov, E., Kalantar
Motamedi, Y., et al. (2016). Modelling of compound combination effects
and applications to efficacy and toxicity: state-of-the-art, challenges and
perspectives. Drug Discov. Today 21, 225–238. doi: 10.1016/j.drudis.2015.
09.003

Cai, M. C., Xu, Q., Pan, Y. J., Pan, W., Ji, N., Li, Y. B., et al. (2015). ADReCS: an
ontology database for aiding standardization and hierarchical classification of
adverse drug reaction terms. Nucleic Acids Res. 43, D907–D913. doi: 10.1093/
nar/gku1066

Chen, T., and Guestrin, C. (2016). “XGBoost: a scalable tree boosting system,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, (San Francisco, CA: ACM).

Cotto, K. C., Wagner, A. H., Feng, Y. Y., Kiwala, S., Coffman, A. C., Spies, G.,
et al. (2018). DGIdb 3.0: a redesign and expansion of the drug-gene interaction
database. Nucleic Acids Res. 46, D1068–D1073. doi: 10.1093/nar/gkx1143

Fiorini, N., Lipman, D. J., and Lu, Z. (2017). Towards PubMed 2.0. eLife 6:e28801.
doi: 10.7554/eLife.28801

Flemming, A. (2014). Finding the perfect combination. Nat. Rev. Drug Discov.
14:13. doi: 10.1038/nrd4524

Foucquier, J., and Guedj, M. (2015). Analysis of drug combinations: current
methodological landscape. Pharmacol. Res. Perspect. 3:e00149. doi: 10.1002/
prp2.149

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting
machine. Ann. Statist. 29, 1189–1232.

Gottlieb, A., Stein, G. Y., Oron, Y., Ruppin, E., and Sharan, R. (2012). INDI: a
computational framework for inferring drug interactions and their associated
recommendations. Mol. Syst. Biol. 8:592. doi: 10.1038/msb.2012.26

Griffith, M., Griffith, O. L., Coffman, A. C., Weible, J. V., Mcmichael, J. F., Spies,
N. C., et al. (2013). DGIdb - Mining the druggable genome. Nat. Methods 10,
1209–1210. doi: 10.1038/nmeth.2689

Guo, J., Yu, W., Su, H., and Pang, X. (2017). Genomic landscape of gastric cancer:
molecular classification and potential targets. Sci. China Life Sci. 60, 126–137.
doi: 10.1007/s11427-016-0034-1

Hill, J. A., Ammar, R., Torti, D., Nislow, C., and Cowen, L. E. (2013). Genetic
and genomic architecture of the evolution of resistance to antifungal drug
combinations. PLoS Genet. 9:e1003390. doi: 10.1371/journal.pgen.1003390

Janizek, J. D., Celik, S., and Lee, S.-I. (2018). Explainable machine learning
prediction of synergistic drug combinations for precision cancer medicine.
bioRxiv [Preprint]. doi: 10.1101/331769

Jia, J., Zhu, F., Ma, X., Cao, Z. W., Li, Y. X., and Chen, Y. Z. (2009). Mechanisms
of drug combinations: interaction and network perspectives. Nat. Rev. Drug
Discov. 8, 111–128. doi: 10.1038/nrd2683

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016).
KEGG as a reference resource for gene and protein annotation. Nucleic Acids
Res. 44, D457–D462. doi: 10.1093/nar/gkv1070

Kuhn, M., Letunic, I., Jensen, L. J., and Bork, P. (2016). The SIDER database of
drugs and side effects. Nucleic Acids Res. 44, D1075–D1079. doi: 10.1093/nar/
gkv1075

Li, Y. H., Yu, C. Y., Li, X. X., Zhang, P., Tang, J., Yang, Q., et al. (2018). Therapeutic
target database update 2018: enriched resource for facilitating bench-to-
clinic research of targeted therapeutics. Nucleic Acids Res. 46, D1121–D1127.
doi: 10.1093/nar/gkx1076

Liu, Y., Wei, Q., Yu, G., Gai, W., Li, Y., and Chen, X. (2014). DCDB 2.0: a
major update of the drug combination database. Database 2014:bau124. doi:
10.1093/database/bau124

Lu, J., Xia, Q., and Zhou, Q. (2017). How to make insulin-producing pancreatic
beta cells for diabetes treatment. Sci. China Life Sci. 60, 239–248. doi: 10.1007/
s11427-016-0211-3

Menche, J., Sharma, A., Kitsak, M., Ghiassian, S. D., Vidal, M., Loscalzo, J.,
et al. (2015). Uncovering disease-disease relationships through the incomplete
interactome. Science 347:1257601. doi: 10.1126/science.1257601

Nosten, F., and White, N. J. (2007). Artemisinin-based combination treatment of
falciparum malaria. Am. J. Trop. Med. Hyg. 77, 181–192. doi: 10.4269/ajtmh.
2007.77.181

Perfetto, L., Briganti, L., Calderone, A., Cerquone Perpetuini, A., Iannuccelli, M.,
Langone, F., et al. (2016). SIGNOR: a database of causal relationships between
biological entities.Nucleic Acids Res. 44, D548–D554. doi: 10.1093/nar/gkv1048

Preuer, K., Lewis, R. P. I., Hochreiter, S., Bender, A., Bulusu, K. C., and Klambauer,
G. (2018). DeepSynergy: predicting anti-cancer drug synergy with deep
learning. Bioinformatics 34, 1538–1546. doi: 10.1093/bioinformatics/btx806

Sarah, C. (2017). Identifying synergistic drug combinations. Nat. Rev. Drug Discov.
16:314. doi: 10.1038/nrd.2017.76

Saubern, S., Guha, R., and Baell, J. J. (2011). KNIME workflow to assess PAINS
filters in SMARTS format. Comparison of RDKit and indigo cheminformatics
libraries. Mol. Inform. 30, 847–850. doi: 10.1002/minf.201100076

Skrbo, A., Begovic, B., and Skrbo, S. (2004). Classification of drugs using the
ATC system (Anatomic, Therapeutic, Chemical Classification) and the latest
changes. Med. Arh. 58(1 Suppl. 2), 138–141.

Frontiers in Genetics | www.frontiersin.org 12 July 2019 | Volume 10 | Article 600

https://www.frontiersin.org/articles/10.3389/fgene.2019.00600/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00600/full#supplementary-material
https://doi.org/10.1038/nbt.2284
https://doi.org/10.1038/nbt.2284
https://doi.org/10.1111/dom.12015
https://doi.org/10.1111/dom.12015
https://doi.org/10.1111/j.1471-1842.2008.00785.x
https://doi.org/10.1111/j.1471-1842.2008.00785.x
https://doi.org/10.1016/j.drudis.2015.09.003
https://doi.org/10.1016/j.drudis.2015.09.003
https://doi.org/10.1093/nar/gku1066
https://doi.org/10.1093/nar/gku1066
https://doi.org/10.1093/nar/gkx1143
https://doi.org/10.7554/eLife.28801
https://doi.org/10.1038/nrd4524
https://doi.org/10.1002/prp2.149
https://doi.org/10.1002/prp2.149
https://doi.org/10.1038/msb.2012.26
https://doi.org/10.1038/nmeth.2689
https://doi.org/10.1007/s11427-016-0034-1
https://doi.org/10.1371/journal.pgen.1003390
https://doi.org/10.1101/331769
https://doi.org/10.1038/nrd2683
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1093/nar/gkx1076
https://doi.org/10.1093/database/bau124
https://doi.org/10.1093/database/bau124
https://doi.org/10.1007/s11427-016-0211-3
https://doi.org/10.1007/s11427-016-0211-3
https://doi.org/10.1126/science.1257601
https://doi.org/10.4269/ajtmh.2007.77.181
https://doi.org/10.4269/ajtmh.2007.77.181
https://doi.org/10.1093/nar/gkv1048
https://doi.org/10.1093/bioinformatics/btx806
https://doi.org/10.1038/nrd.2017.76
https://doi.org/10.1002/minf.201100076
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00600 July 5, 2019 Time: 15:16 # 13

Ji et al. Model for Classifying Drug Combinations

Spitzer, M., Griffiths, E., Blakely, K. M., Wildenhain, J., Ejim, L., Rossi, L., et al.
(2011). Cross-species discovery of syncretic drug combinations that potentiate
the antifungal fluconazole. Mol. Syst. Biol. 7:499. doi: 10.1038/msb.2011.31

Suarez-Almazor, M. E., Belseck, E., Homik, J., Dorgan, M., and Ramos-Remus,
C. (2000). Identifying clinical trials in the medical literature with electronic
databases: MEDLINE alone is not enough. Control. Clin. Trials 21, 476–487.
doi: 10.1016/s0197-2456(00)00067-2

Sun, X., Vilar, S., and Tatonetti, N. P. (2013). High-throughput methods for
combinatorial drug discovery. Sci. Transl. Med. 5:205rv201.

Sun, Y., Sheng, Z., Ma, C., Tang, K., Zhu, R., Wu, Z., et al. (2015). Combining
genomic and network characteristics for extended capability in predicting
synergistic drugs for cancer. Nat. Commun. 6:8481. doi: 10.1038/ncomms9481

Swain, S. M., Baselga, J., Kim, S.-B., Ro, J., Semiglazov, V., Campone, M., et al.
(2015). Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic
breast cancer. N. Engl. J. Med. 372, 724–734.

The Cancer Genome Atlas Research Network, Chang, K., Creighton, C. J., Davis,
C., Donehower, L., Drummond, J., et al. (2013). The cancer genome atlas
pan-cancer analysis project. Nat. Genet. 45, 1113–1120. doi: 10.1038/ng.2764

Uhlik, F., Kosovan, P., Zhulina, E. B., and Borisov, O. V. (2016). Charge-controlled
nano-structuring in partially collapsed star-shaped macromolecules. SoftMatter
12, 4846–4852. doi: 10.1039/c6sm00109b

Webster, R. M. (2016). Combination therapies in oncology. Nat. Rev. Drug Discov.
15, 81–82.

Weininger, D. (1988). SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28,
31–36. doi: 10.1093/bioinformatics/btn181

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., et al.
(2018). DrugBank 5.0: a major update to the DrugBank database for 2018.
Nucleic Acids Res. 46, D1074–D1082. doi: 10.1093/nar/gkx1037

Wood, A. J. (2006). A proposal for radical changes in the drug-approval process.
N. Engl. J. Med. 355, 618–623. doi: 10.1056/nejmsb055203

Xu, W., Mu, Y., Zhao, J., Zhu, D., Ji, Q., Zhou, Z., et al. (2017). Efficacy and
safety of metformin and sitagliptin based triple antihyperglycemic therapy
(STRATEGY): a multicenter, randomized, controlled, non-inferiority clinical
trial. Sci. China Life Sci. 60, 225–238. doi: 10.1007/s11427-016-0409-7

Yu, G., Li, F., Qin, Y., Bo, X., Wu, Y., and Wang, S. (2010). GOSemSim:
an R package for measuring semantic similarity among GO terms and
gene products. Bioinformatics 26, 976–978. doi: 10.1093/bioinformatics/
btq064

Zhu, F., Han, B., Kumar, P., Liu, X., Ma, X., Wei, X., et al. (2010). Update
of TTD: therapeutic target database. Nucleic Acids Res. 38, D787–D791.
doi: 10.1093/nar/gkp1014

Disclaimer: The views presented in this article do not necessarily reflect current
or future opinion or policy of the United States Food and Drug Administration.
Any mention of commercial products is for clarification and not intended
as an endorsement.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Ji, Tong, Liu and Shi. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 13 July 2019 | Volume 10 | Article 600

https://doi.org/10.1038/msb.2011.31
https://doi.org/10.1016/s0197-2456(00)00067-2
https://doi.org/10.1038/ncomms9481
https://doi.org/10.1038/ng.2764
https://doi.org/10.1039/c6sm00109b
https://doi.org/10.1093/bioinformatics/btn181
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1056/nejmsb055203
https://doi.org/10.1007/s11427-016-0409-7
https://doi.org/10.1093/bioinformatics/btq064
https://doi.org/10.1093/bioinformatics/btq064
https://doi.org/10.1093/nar/gkp1014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Five-Feature Model for Developing the Classifier for Synergistic vs. Antagonistic Drug Combinations Built by XGBoost
	Introduction
	Materials and Methods
	Data Curation
	Feature Extraction
	Model Development
	The XGBoost Classifier
	Model Generation

	Model Interpretation
	Applicability Domain of the Developed XGBoost Model
	Pathway Analysis

	Code Availability

	Results
	Feature Selection
	Model Performance for Validation Set-I
	Model Evaluation by Validation Set-II
	Distribution of Predicted Effectiveness by the Developed XGBoost Model
	Applicability Domain of XGBoost Models
	Associating Pathways With the Potential of the Five-Feature XGBoost Model

	Discussion
	Conclusion
	Author Contributions
	Funding
	Supplementary Material
	References


