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Introduction
Based on the latest global cancer burden data 
published by the World Health Organization in 
2020, oesophageal cancer (EC) ranked seventh in 
incidence and sixth in mortality worldwide.1 EC 
has two predominant histological subtypes: 
oesophageal adenocarcinoma (EAC) and oesoph-
ageal squamous cell carcinoma (ESCC). In 
Western developed countries, EAC is the pre-
dominant histological type of EC.2 In East Asian 
countries, such as China and Japan, ESCC 
accounts for ⩾90% of patients with EC.1 The 
symptoms of early ESCC are insidious. In China, 
60–70% of patients with ESCC are at an advanced 
stage at diagnosis.3 The 5-year overall survival 
(OS) rate of ESCC is less than 20%.4 Hence, the 
treatment of ESCC remains a severe healthcare 
challenge.

Tumour immunotherapy has rapidly grown over 
the past few decades, particularly for immune 

checkpoint inhibitors (ICIs). ICIs are monoclo-
nal antibodies that can inhibit tumour progres-
sion by relieving the immunosuppressive effects 
generated by immune checkpoint-related mole-
cules and can enhance the body’s anti-tumour 
response.5 The emergence of ICIs has expanded 
treatment options for patients with ESCC. The 
Food and Drug Administration (FDA) has for-
mally recommended ICIs for the treatment of 
advanced EC.6

Surgery remains one of the cornerstones of current 
therapy for ESCC. However, recurrence occurs in 
approximately 50% of the patients within 5 years 
after surgery.7,8 The CROSS9 and JCOG990710 tri-
als reported that patients with resectable ESCC 
could benefit from neoadjuvant chemoradiotherapy 
(nCRT) or adjuvant chemotherapy. The NICE,11 
ESONICT-112 and PALACE-113 trials demon-
strated that ICIs plus chemotherapy as neoadjuvant 
therapy are conducive to achieve a pathological 
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complete response (pCR) after surgery in patients 
with resectable ESCC. Additionally, the 
CHECKMATE-577 trial6 reported that nivolumab 
adjuvant treatment significantly prolonged disease-
free survival (DFS) compared to that of placebo in 
patients with ESCC (Table 1).

For metastatic, unresectable ESCC, systemic 
chemotherapy is the standard treatment. However, 
the median overall survival (mOS) of standard first-
line chemotherapy for ESCC, containing platinum 
and 5-fluorouracil (5-FU), was mostly below 
9 months.5 A series of trials on advanced ESCC, 
such as KEYNOTE-590,14 CHECKMATE-64815 

and ESCORT-1st,16 have demonstrated that the 
addition of ICIs to first-line therapy improves sur-
vival outcomes. Moreover, the KEYNOTE-590 
trial was the first to report that the effectiveness of 
pembrolizumab combined with chemotherapy as 
the first-line treatment for metastatic unresectable 
advanced ESCC is better than that of chemother-
apy alone. Compared with KEYNOTE-590 and 
CheckMate-648, the ESCORT-1st trial showed 
better survival outcomes. This is likely reflective of 
the biological differences in ESCC between 
Western and Asian patients and possibly the dif-
ferential activity of various chemotherapeutic 
agents17 (Table 2).

Table 1.  ICIs in neoadjuvant/adjuvant therapy of ESCC.

Trial Line Phase N N 
(ESCC)

Intervention Primary 
endpoints

pCR of 
ESCC 
group 
(%)

MPR of 
ESCC 
group 
(%)

Median 
follow-
up 
(months)

DFS of 
ESCC 
group

Severe AEs 
incidence of 
ESCC group 
(%)

CHECKMATE-5776 Adjuvant III 794 230 Nivolumab versus placebo DFS / / 24.4 22.4 
versus 
11.0

34 versus 32

NICE11 Neoadjuvant II 107 100 Camrelizumab +  
chemoradiotherapy versus 
chemoradiotherapy

eCR 47.2* 
versus 
33.3*

/ 14.7 / /

ESONICT-112 Neoadjuvant II 30 30 Sintilimab +  
chemotherapy

pCR 22 52 6 / 3

PALACE-113 Neoadjuvant I 20 20 Pembrolizumab +  
chemoradiotherapy

Safety 55.6 89 6.6 / 65

AE, adverse event; ICI, immune checkpoint inhibitor; DFS, disease-free survival; eCR, endoscopic complete response; ESCC, oesophageal 
squamous cell carcinoma; MPR, major pathological response; pCR, pathological complete response; PFS, progression-free survival.
*eCR.

Table 2.  ICIs in First-Line treatment of ESCC.

Trail Line Phase N No. of 
patients 
with ESCC

PD-L1 status Intervention Group mOS 
(months)

mPFS 
(months)

DOR 
(months)

ORR (%)

JUPITER-0618 First III 514 514 Regardless 
of PD-L1 
status

Toripalimab +  
chemotherapy versus 
placebo +  
chemotherapy

Overall 
Population

17.0 versus 
11.0

5.7 versus 
5.5

/ 69.3 
versus 
52.1

KEYNOTE-59019 First III 749 548 PD-L1 
CPS ⩾ 10

Pembrolizumab +  
chemotherapy versus 
placebo +  
chemotherapy

Overall 
population

12.4 versus 
9.8

6.3 versus 
5.8

8.3 versus 
6.0

45 versus 
29.3

ESCC +  
PD-
L1positive 
group

13.9 versus 
8.8

 

ESCC group: 12.6 versus 
9.8

6.3 versus 
5.8

/ /

(Continued)
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Trail Line Phase N No. of 
patients 
with ESCC

PD-L1 status Intervention Group mOS 
(months)

mPFS 
(months)

DOR 
(months)

ORR (%)

CHECKMATE-64815 First III 970 468 PD-L1 
CPS ⩾ 10

Nivolumab +  
chemotherapy versus  
chemotherapy

Overall 
population

13.2 versus 
10.7/12.7 
versus 10.7

/ 8.2 versus 
7.1/11.7 
versus 7.1

47 versus 
20/28 
versus 28

Tumour-
cell PD-L1 
CPS ⩾ 10

15.4 versus 
9.1/13.7 
versus 9.1

/ 8.4 versus 
5.7/11.8 
versus 5.7

53 versus 
20/35 
versus 20

Nivolumab +  
ipulizumab versus  
chemotherapy 

Overall 
population

12.7 versus 
10.7

/ 11.7 
versus 7.1

28 versus 
28

Tumour-
cell PD-L1 
CPS ⩾ 10

13.7 versus 
9.1

/ 11.8 
versus 
5.7

35 versus 
20

ORIENT-1520 First III 659 659 PD-L1 
CPS ⩾ 10

Sintilimab +  
chemotherapy versus 
placebo +  
chemotherapy

Overall 
population

16.7 versus 
12.5

7.2 versus 
5.7

9.7 versus 
6.9

66 versus 
45

Tumour-
cell PD-L1 
CPS ⩾ 10

17.2 versus 
13.6

8.3 versus 
6.4

12.4 
versus 5.7

68 versus 
49

ESCORT-first16 First III 596 596 Regardless 
of PD-L1 
status

Camrelizumab +  
chemotherapy versus 
chemotherapy

Overall 
population

15.3 versus 
12.0

6.9 versus 
5.6

7.0 versus 
4.6

72.1 
versus 
62.1

CPS, combined positive score; DCR, disease control rate; DOR, duration of response; ESCC, oesophageal squamous cell carcinoma; ICI, immune checkpoint inhibitor; 
mOS: median overall survival; mPFS: median progression-free survival; ORR: objective response rate; PD-L1, programmed death-ligand 1.

Table 2.  (Continued)

ICIs combined with chemotherapy have shown 
favourable clinical benefits for pre-treated patients 
with unresectable ESCC in multiple phase III trials, 
such as the KEYNOTE-181, ATTRACTION-3 
and ESCORT trials.21–23 Hence, ICIs have been 
approved for second-line therapy and beyond for 
advanced ESCC and have changed the therapeutic 
mode of ESCC. The key data are summarised in 
Table 3.

ICIs are expected to lead to further break-
throughs and improve the survival of patients 
with ESCC. However, not all patients with 
ESCC can benefit from ICI therapy; rare adverse 
events (AEs) caused by ICIs are dangerous and 
even fatal. Therefore, it is necessary to achieve 
an accurate ICI therapy. In this review, we high-
lighted biomarkers to predict the prognosis of 
patients with ESCC who received ICI therapy 
and pointed out existing problems and future 
research directions.

Predictive biomarkers for ICIs-based 
treatment of ESCC
ICIs have been recommended for the treatment 
of ESCC because of their excellent effects and 
improved prognosis. However, ICIs remain una-
ble to achieve satisfactory clinical benefits in all 
patients with ESCC. It is important to select 
patients who can benefit from ICI therapy through 
precise and accurate predictive biomarkers. In 
recent decades, our interest in identifying reliable 
biomarkers for predicting the prognosis of ICI 
therapy has rapidly improved. Several valuable 
data sets on predictive biomarkers have emerged 
in recent years (Figures 1 and 2).

Clinical biomarkers
Clinical characteristics

Sex.  Sex is a variable closely related to the 
immune response and has been reported in 
other tumours as an indicator related to the 
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effectiveness of immunotherapy.29–31 Women 
generally harbour stronger innate and adaptive 
immune responses than men, which contrib-
utes to stronger pathogen removal capacity and 
greater vaccine efficacy.32 Tumours in women 
have a greater capacity to evade immune sur-
veillance; thus, they are less immunogenic and 
more immunotherapy-resistant.33 Also, women 
are more likely to develop ICI-related AEs owing 
to their increased susceptibility to autoimmune 
disorders. The subgroup analysis of ESCC in 
the KEYNOTE-181 trial21 indicated that female 
patients who received pembrolizumab were at 
a higher risk of mortality than male patients. 
However, the reverse result was reported in the 
ESCORT trial,23 where the female patients had a 
more favourable response to camrelizumab treat-
ment than the male patients. This difference may 
be attributed to the different effects of camreli-

zumab and pembrolizumab on sex. In summary, 
male patients with cancer may have the advan-
tage of enhanced efficacy in ICI treatment com-
pared to female patients.

However, the potential sex-based differential 
responses to ICIs in ESCC remain controversial, 
as only a few studies, investigating the efficacy of 
ICIs for ESCC take sex into account as an influ-
ential factor. Furthermore, most of the patients 
with ESCC are male; thus, current results about 
the efficacy of ICIs are obtained mainly in male 
patients. More trials exploring the difference in 
the effectiveness of ICI treatment among male 
and female patients with ESCC need to be 
urgently carried out. It seems improper to extend 
the results from male patients to female patients if 
the potential sex-based differential responses to 
ICIs in ESCC are not verified.

Figure 1.  The predictive biomarkers for therapeutic effectiveness of ICIs in ESCC can be classified by clinical 
biomarkers, genomic characterisation and tumour microenvironment related biomarkers. Clinical biomarkers 
mainly include clinical characteristics (age, sex), biomarkers of nutrition (BMI, ALB) and biomarkers in 
peripheral blood (peripheral blood parameters, such as NLR, MLR, etc.). Genomic characterisation mainly 
includes TMB, MSI, ctDNA and immune-related genes. Tumour microenvironment-related biomarkers mainly 
include PD-L1, TILs.
ALB, serum albumin; BMI, body mass index; ctDNA, circulating tumour DNA; ESCC, oesophageal squamous cell carcinoma; 
MLR, monocyte-to-lymphocyte ratio; ICI, immune checkpoint inhibitor; MSI, microsatellite instability; NLR, neutrophil-to-
lymphocyte ratio; TMB, tumour mutational burden; PD-L1, programmed death-ligand 1; TIL, tumour-infiltrating lymphocyte.
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Age. The immune function decreases with 
age. The immune system experiences major 
changes with ageing when substantial immune 
cells become altered and adaptive immunity 
becomes less functional. Older patients usually 
have a low prognostic nutritional index, attrib-
uted to poor nutritional status and immune func-
tion, which results in enhanced tumour invasion 
and an increase in the number of lymph node 
metastases. In a retrospective study of ESCC,34 
favourable outcomes in progression-free sur-
vival (PFS) from ICI treatment were obtained in 

older patients (⩾65 years) compared to that with 
younger patients (<65 years) (4.1 month versus 
1.6 month, p = 0.025). However, in the subgroup 
analysis of several prospective trials on ESCC,18,22 
participants aged <65 years showed better sur-
vival outcomes. Thus, more studies are warranted 
to confirm the association between age and prog-
nosis in patients with ESCC treated with ICIs.

Biomarkers of nourishment.  Patients with EC 
usually have a higher risk of malnutrition, possi-
bly caused by eating disorders and tumour 

Figure 2.  Biomarkers that affect tumour development and ICIs therapeutic effectiveness. Predictive 
biomarkers from host, peripheral blood and TME can influence anti-tumour immune response and tumour 
develop process in various ways. PD-L1 can inhibit immune response by binding to programmed cell death 
1 (PD-1) on the surface of T cells, finally causes immune escape. PD-1 inhibitors, such as serplulimab and 
tislelizumab, can combine with PD-1 to relive the immune system depression. PD-L1 inhibitors, such as 
pembrolizumab and camrelizumab, which can inhibit the PD-1/PD-L1 signal pathway by binding to PD-L1. 
TILs, including CD8 + T cells, CD4 + T cells, DC cells, natural killer (NK) cells, can affect the development 
of tumours and anti-tumour effects. The inflammatory of the body contributed to the increased CRP and 
NLR in the peripheral blood, which affects the tumour immune effect. Serum albumin (ALB) level reflects 
the nutritional status of the body and is further related to the efficacy of anti-immunotherapy. LDH affects 
the growth of tumour cells by promoting the glycolysis process of tumour cells, which is related to adverse 
anti-tumour immune response. TMB is usually positively correlated with new antigens produced by tumours. 
MSI-H is mostly related to good anti-tumour immune response. Tumour cells can induce immunosuppression 
by overexpressing IRGs.
CRP, C-reactive protein; ICI, immune checkpoint inhibitor; IRG, immune-related gene; LDH, lactate dehydrogenase; MSI-H, 
microsatellite instability-high; NLR, neutrophil-to-lymphocyte ratio; PD-L1, programmed death-ligand 1; TMB, tumour 
mutational burden; TIL, tumour-infiltrating lymphocyte. 
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cachexia. Impaired nutritional status affects the 
tumour microenvironment (TME) or upsets the 
intestinal microbiome35 and is thus closely related 
to a reduced anti-tumour immune response.

Body mass index.  Body mass index (BMI) is an 
acknowledged indicator to evaluate the nutritional 
status of the body. It is generally assumed that 
patients with a high BMI have sufficient energy 
reserves to resist nutrient consumption and main-
tain an immunomodulatory response.36 BMI has 
been confirmed to be related to the outcomes of 
checkpoint blockade immunotherapy in various 
tumours.37 BMI < 18.5 kg/m2 was regarded as a 
diagnostic criterion of cancer cachexia in the past. 
Cancer cachexia is a complex multifactorial syn-
drome with ongoing skeletal muscle loss. As our 
understanding of cachexia improves, the diagnosis 
of cancer cachexia is becoming more complicated, 
including physical function, energy expenditure, 
body composition and quality of life.38 However, 
BMI remains crucial for the diagnosis of cachexia. 
Cancer cachexia is an important negative pre-
dictor of the efficacy of programmed cell death 
1 (PD-1)/programmed death-ligand 1 (PD-L1) 
inhibitors because of its desensitising effect on 
PD-1/PD-L1 inhibitors.39 Unfortunately, the pre-
dictive effect of BMI in EC is still unverified.

Serum albumin.  Serum albumin (ALB) is the 
primary indicator of the nutritional status and 
inflammatory pressure in patients with cancer. 
Hypoalbuminaemia (ALB < 30) is associated 
with impaired immune responses and a poor 
prognosis in patients with malignancy.40,41 Low 
levels of ALB aid in the development of cancer 
cachexia.42 Yoo et  al.43 reported the benefits of 
high ALB levels in patients with cancer receiving 
ICI therapy. In the EC subgroup, patients with 
high ALB levels who received ICI treatment had 
better OS [hazard ratio (HR), 0.35, p < 0.01] and 
PFS (HR, 0.38, p < 0.01) than patients with low 
ALB levels. A real-world study41 demonstrated 
that low baseline ALB levels may predict the 
poor prognosis of patients with ESCC treated 
with anti-PD-1 inhibitors. Other indicators com-
monly used to evaluate nutritional statuses, such 
as haemoglobin and globulin, may be associated 
with the therapeutic effectiveness of ICIs, thus 
deserving further study as predictive biomarkers. 
Furthermore, new prognostic biomarkers, such as 
the Haemoglobin, Albumin, Lymphocyte, Plate-
let Score (HALP) and the Glasgow Prognostic 
Score, which indicate ALB levels, also deserve 
further investigation.

Biomarkers in peripheral blood
Peripheral blood parameters.  Peripheral blood 

parameters reflect the immune state and response 
to immunotherapy in the host. In various malig-
nancies, the neutrophil-to-lymphocyte ratio 
(NLR) has become a potential predictor of the 
therapeutic effectiveness of ICIs.44 A retrospec-
tive analysis45 conducted on 119 patients with 
ESCC demonstrated that patients with a high 
NLR at 6 weeks after PD-1 inhibitor treatment 
obtained observable benefits in PFS compared 
with that of the low NLR group (12.80 months 
versus 9.23 months), thus indicating that a low 
NLR is positively related to the prognosis of 
ESCC patients treated with PD-1 inhibitors. 
However, the relevance of NLR to the outcomes 
of ESCC patients treated with ICIs requires 
further research. In addition, the monocyte-to-
lymphocyte ratio (MLR), platelet-to-lymphocyte 
ratio (PLR) and systemic immune-inflammation 
index (SII) also play a predictive role in ICI treat-
ment.46,47 Compared with those in tumour-free 
patients, increased NLR, PLR, MLR and SII at 
baseline were observed in patients with ESCC, 
thus confirming the correlation between PLR, 
MLR, SII and MLR and the prognosis of ICI 
therapy in patients with ESCC.

Lactate dehydrogenase.  Lactate dehydrogenase 
(LDH) is a key enzyme in glycolysis. The LDH 
level in tumour tissues is reported to be higher than 
that in normal tissues because tumour cells are 
dominated by anaerobic glycolysis.48 Therefore, 
LDH may act as an indicator of tumour burden 
and aggressiveness. A multivariate trial in China 
first verified that a normal LDH level at baseline 
was associated with longer OS in patients treated 
with PD-1 inhibitors.49 However, the sample size 
was too small to provide solid evidence support-
ing the predictive role of LDH in ESCC and thus 
requires further study in a large-sample trial.

Other potential predictive markers.  Subgroup 
analysis of several trials of ESCC demonstrated 
that the Eastern Cooperative Oncology Group 
performance status, smoking history, region, sites 
of metastases and tumour-node-metastasis stage 
are related to the therapeutic outcomes of patients 
with ESCC treated with ICIs. However, there is 
an inconsistency between the specific relevance of 
different trials.

A previous study confirmed that microbial diversity 
was associated with improved effectiveness of ICIs50 
and reduced risk of immune-related AEs.51 
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Decreased microbial diversity is observed in patients 
with ESCC,52 which may lead to the poor efficacy of 
ICI-based treatment. Furthermore, in patients with 
malignancy, antibiotic exposure is associated with 
resistance and worse effectiveness of ICIs, by 
decreasing the microbiome’s diversity.53–55

Other biomarkers in peripheral blood, such as 
C-reactive protein (CRP),56 cytokines, interleu-
kins57 and metabolites of metabolomics,58 which 
are related to the prognosis of patients treated 
with ICIs, also have the potential to be predictors 
of ESCC.

TME-related biomarkers
TME refers to the internal and external environ-
ments in which the tumour occurs and develops. 
Various immune cells, endothelial cells and fibro-
blasts are present in the TME.59 An imbalance in 
the TME is associated with tumour progression 
and prognosis.60

Programmed death-ligand 1.  PD-L1 is a trans-
membrane protein expressed on the surface of 
tumour cells. PD-L1 can inhibit immune response 
by binding to PD-1 on the surface of T cells, thus 
resulting in immune evasion. About 45.5% of 
patients with ESCC have a positive expression of 
PD-L1 [combined positive score (CPS) ⩾10].61 
The reactivity of tumours to PD-1/PD-L1 inhibi-
tors can be reflected in the expression level of 
PD-L1 in tumour tissues. The expression level of 
PD-L1 is the most commonly used biomarker for 
predicting the efficacy of ICI therapy in multiple 
malignancies, including ESCC. The phase II trial 
KEY-NOTE-05962 was conducted among 749 
patients with EC, of whom 73.2% were patho-
logically diagnosed with ESCC. The results 
showed that patients who were PD-L1-positive 
(CPS ⩾ 10) had better effectiveness from pem-
brolizumab therapy compared to patients who 
were PD-L1 negative [objective response rate 
(ORR), 22.7% versus 16.4%]. PD-L1 was the first 
proposed and most commonly used predictive 
biomarker for the therapeutic effectiveness of 
ICIs in ESCC.

Tumour-infiltrating lymphocytes.  Tumour-infil-
trating lymphocytes (TILs) can influence tumour 
development and the effectiveness of anti-tumour 
therapy.63 The density of TILs at the invasive 
tumour margin has been proposed as a predictor 
for the prognosis of ICIs treatment.64 It is found 
that tumours that are PD-L1-positive with the 

presence of TILs are most likely to benefit from 
ICIs treatment.65 A large cohort study66 con-
ducted on 305 patients with EC, of whom 91.5% 
were pathologically diagnosed with ESCC, 
revealed that the TIL-positive group presented 
better OS and DFS from ICIs treatment than did 
the TIL-negative group (p < 0.0001). Therefore, 
the baseline TIL status could serve as a predictive 
biomarker for ICI therapy.

Other potential markers.  Transforming growth 
factor-β (TRF-β) is a cytokine involved in 
immune evasion and resistance to ICIs.67 An in 
vitro experiment showed that blocking the TGF-
β signalling pathway could improve susceptibility 
to ICIs and contribute to overcoming resis-
tance.68 A high TGF-β level may be associated 
with the efficacy of ICI therapy. The potentiating 
effect of TGF-β inhibition on ICIs treatment has 
been confirmed in several tumours.69

Tumour-associated macrophages70 and myeloid-
derived suppressor cells71–73 have been found to 
participate in anti-tumour immunity and are 
related to the prognosis of ICI therapy. However, 
their correction with the ESCC prognosis remains 
unproven.

In recent years, there have been numerous new 
attempts to develop other co-inhibitory receptors 
like lymphocyte activation gene-3 (LAG-3), 
T-cell immunoglobulin and mucin-domain-con-
taining-3 (TIM-3) and T-cell immunoglobulin 
and immunoreceptor tyrosine-based inhibitory 
motif domain (TIGIT) as emerging ICI targets. 
TIM-3 and TIGIT were found to be upregulated 
in TILs in patients with ESCC74; thus, further 
studies to develop them as new targets for ICI 
therapy are required.

Genomic characterisation
Tumour mutational burden.  Tumour mutational 
burden (TMB) refers to the total number of 
somatic genes mutated per million bases detected 
in the genome of a single tumour. TMB is a bur-
geoning biomarker for the prediction of ICI effi-
cacy. Theoretically, more TMB usually leads to 
more tumour-specific antigens called neoanti-
gens, which are largely correlated with sensitivity 
to ICIs.75 Tumours with high TMB usually show 
positive responses to ICI treatment. EC tumour 
cells have been found to harbour high TMB.76,77 
A phase I trial78 assessing the activity and phar-
macokinetics of camrelizumab treatment in 
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advanced EC demonstrated that the high TMB 
group showed better survival benefit than the low 
TMB group (p = 0.0123). Nevertheless, results 
will be different due to different detection meth-
ods; moreover, the TMB threshold varies greatly 
among studies, thereby challenging the accuracy 
of TMB as a predictive biomarker.

Microsatellite instability.  Microsatellite instability 
(MSI) is a hypermutator phenotype caused by 
mismatch-repair deficiency (dMMR). MSI is 
characterised by the deletion or amplification of 
short and repetitive DNA sequences, leading to 
frameshift mutations.79 Tumours with MSI-high 
(MSI-H) status have a high TMB count and 
increased neoantigens.77 Reportedly, patients 
with dMMR cancers are sensitive to ICI treat-
ment.80 Hence, pembrolizumab has been recom-
mended by the FDA for the treatment of 
unresectable or metastatic MSI-H/dMMR 
tumours. However, the frequency of MSI-H in 
EC was less than 2%. Therefore, its widespread 
application in clinical practise is limited.

Circulating tumour DNA.  Circulating tumour 
DNA (ctDNA), a fragment of DNA in the blood 
released by tumour cells, carries the original 
tumour mutation characteristics and reflects the 
burden of tumours. In addition, ctDNA can 
assess the presence of minimal residual disease, 
which is associated with tumour recurrence.81 A 
meta-analysis82 has demonstrated that elevated 
ctDNA levels were related to worse OS (HR, 
3.35, p < 0.00001) and poorer PFS (HR, 3.28, 
p < 0.00001) in ICI-based therapy. However, 
there is little evidence to support its predictive 
value in ESCC. Moreover, the standardisation 
and sensitivity of ctDNA detection are still lack-
ing. Therefore, more studies are urgently needed 
to explore the predictive value of ctDNA in ICI 
therapy for ESCC, especially in postoperative 
adjuvant immunotherapy.

Immune-related gene signatures.  Tumour cells 
can induce immunosuppression by overexpress-
ing immune-related gene (IRG) signatures, 
thereby promoting tumour progression. Accumu-
lating evidence has demonstrated that the expres-
sion of IRGs may reflect immune response, thus 
being a promising predictor of immunotherapy.64 
Multiple trials have confirmed the predictive role 
of IRG expression levels in predicting the effec-
tiveness of ICIs in various solid tumours.83 Ji 

et al.84 suggested that high-immune-related gene 
prognostic index is related to a stronger response 
to ICI therapy but poorer clinical survival out-
comes in ESCC.84 IRGs, such as COL9A3, 
GFRA2, VSIG4 and METTL3, have been 
reported in ESCC. However, the predictive value 
of these genes for ICI therapy in patients with 
ESCC remains ambiguous.

Potential predictive markers.  DNA methylation is 
the main epigenetic mechanism. Changes in 
DNA methylation levels are related to the degree 
of immune infiltration in the tumour. A multicen-
tre retrospective analysis confirmed the predictive 
role of DNA methylation in the anti-PD-1 treat-
ment of non-small-cell lung cancer.85 Addition-
ally, mutations in DNA demethylase ten-eleven 
translocation 1 (TET1) are associated with better 
survival outcomes in ICI treatment of multiple 
cancers, including EC.86 Furthermore, alterations 
in T-cell-inflamed gene expression profiles and 
epithelial–mesenchymal transition-related genes 
have the potential to play a role in anti-tumour 
immunotherapy.

Challenges and future prospects
Immunotherapy, especially ICIs, has undergone 
phenomenal development over the last few dec-
ades and has been recommended as a therapeutic 
method for advanced ESCC. However, they 
come with some problems that require prompt 
solutions (Figure 3).

What is the optimal neoadjuvant therapeutic 
regimen for resectable ESCC?
Neoadjuvant therapy can improve survival and 
decrease disease recurrence in patients with 
resectable ESCC.9 nCRT and neoadjuvant chem-
otherapy (nCT) have been recommended as 
standard therapeutic modalities for locally 
advanced ESCC. In recent years, several phase 
early trials11 have investigated the effectiveness of 
nCRT plus ICIs as neoadjuvant therapy and 
shown promising results. However, larger studies 
need to be carried out to validate these findings.

Compared with adjuvant immunotherapy, neo-
adjuvant immunotherapy makes primary treat-
ment less extensive, downstages cancer by 
destroying disseminated cancer cells and enhances 
the effectiveness of nCRT/nCT. Theoretically, 
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patients may have a higher TMB when receiving 
neoadjuvant therapy, resulting in a stronger anti-
tumour response. Beyond that, neoadjuvant 
immunotherapy may induce immunosuppression 
caused by surgery. Also, patients benefitting from 
immunotherapy before surgery may be sensitive 
to immunotherapy after surgery, which can offer 
some elicitation for subsequent immunotherapy.

Accumulating evidence suggests that there are 
synergistic effects of immunotherapy, chemother-
apy and radiotherapy. Preconditioning with a low 
dose of chemotherapeutic agents can induce 
inflammation in the TME, thereby favouring 
immunotherapy.87 Immunotherapy could inter-
fere with the ability of tumour cells to grow and 
spread and lead to the proliferation of anti-tumour 
immune cells. Besides, ICIs may increase the sen-
sitivity of tumours to radiation, whereas radio-
therapy could enhance the effectiveness of 
immunotherapy. In the future, the combination 
of nCRT with ICIs may become the new thera-
peutic standard for resectable ESCC. However, 
the optimal therapeutic sequence between immu-
notherapy, chemotherapy and radiotherapy 
remains controversial to date.

The National Comprehensive Cancer Network 
guidelines recommend 4–6 cycles of nCT, but 
the optimal course of the neoadjuvant immuno-
therapy cycle remains uncertain. On the one 

hand, the efficacy of immunotherapy cannot be 
fully exploited because there are only a few thera-
peutic cycles. On the other hand, delayed surgery 
may result in disease progression and decreased 
patient tolerance to surgery. Additionally, AEs 
caused by neoadjuvant therapy are also concern-
ing. Severe therapeutic toxicity may lead to 
delayed surgery or even missed surgical opportu-
nities. Several trials have attempted to determine 
the optimal number of therapeutic cycles.88–90 
Unfortunately, they failed to conclude. More pro-
spective studies are required to verify the optimal 
number of treatment cycles.

The OS is usually used as the standard primary 
endpoint in oncology clinical trials; however, its 
use as the primary endpoint in neoadjuvant trials 
is unpractical, so optimal surrogate endpoints are 
still being investigated for neoadjuvant trials. 
Major pathological response (MPR) and pCR are 
widely used in practise as surrogate endpoints 
nowadays; however, they are not perfect to replace 
OS as standard primary endpoints. One of the 
reasons for that is that the association between 
MPR or pCR and improved survival is not com-
pletely determined. Moreover, in neoadjuvant 
immunotherapy trials, accurately determining 
whether the therapeutic response is from immu-
notherapy or not is not possible. Furthermore, 
MPR or pCR cannot timely capture the impact of 
treatment-related AEs. Thus, the association 

Figure 3.  Challenges and future prospects of treatment of ESCC.
ESCC, oesophageal squamous cell carcinoma.
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between MPR or pCR and improved survival and 
between treatment-related AEs needs to be vali-
dated in prospective studies.

In addition, patients with resectable ESCC who 
received concurrent nCRT plus ICIs showed a 
higher incidence of AEs.10 The neoadjuvant ther-
apeutic regimen containing immunotherapy 
needs to be further optimised. Furthermore, the 
combination of nCT and ICIs, or dual immuno-
therapy combinations, has attracted the interest 
of researchers as a burgeoning combination strat-
egy.91 The data of the ongoing phase II/III 
EA2174 trial,92 which investigates the effective-
ness of treatment with nivolumab and ipilimumab 
plus nCRT in patients with EC and gastroesoph-
ageal junction cancer, are anticipated. Further 
studies are required to explore more emerging 
neoadjuvant therapeutic modalities for locally 
advanced ESCC.

What is the optimal combination therapy 
strategy for advanced EC?
A combination of chemotherapy and immuno-
therapy has been recommended as the first-line 
treatment for patients with advanced EC. To 
date, the combination regimens of pembroli-
zumab plus 5-FU and cisplatin, nivolumab plus 
5-FU and cisplatin, and camrelizumab plus pacli-
taxel and cisplatin have shown encouraging 
results.15 Chemotherapy combined with immu-
notherapy may replace chemotherapy alone as the 
future treatment for advanced EC. Nevertheless, 
which chemotherapy regimen is optimal as a 
combination therapy remains inconclusive. For 
patients with ESCC, platinum/paclitaxel is the 
most common combination chemotherapy 
scheme. For patients with EAC, investigators 
usually choose platinum/fluoropyrimidine-based 
combinations or capecitabine plus oxaliplatin 
(CAPOX) as the chemotherapy backbone. In 
addition, other chemotherapy like docetaxel plus 
nedaplatin are also combined with ICI in clinical 
trials.21,28 However, few trials93 have directly 
compared the efficacy of different chemotherapy 
regimens when combined with ICI.

The different immune checkpoints and pathways 
may result in differences in the effectiveness of dif-
ferent inhibitors. For instance, PD-L1 is mainly 
expressed on the surface of cancer cells, whereas 
PD-1 is mainly expressed on the T cells of the 
immune system. Other immune checkpoints, such 

as CTLA4,15 TIM-3,94 LAG-395 and TIGIT,96 
are also under investigation in various clinical tri-
als. CheckMate-64815 has reported that patients 
with metastatic ESCC receiving nivolumab plus 
ipilimumab as the first-line treatment showed a 
significantly longer mOS than did the chemother-
apy-alone group (12.8 months versus 10.7 months; 
HR, 0.78; p < 0.011). However, the trial did not 
allow for a direct comparison of survival benefits 
between nivolumab plus ipilimumab and 
nivolumab plus chemotherapy or ipilimumab plus 
chemotherapy. Besides, TIM-3 can result in the 
death of Th1 cells by engaging with galectin-9 and 
triggering intracellular calcium flux.94 I In an in 
vitro experiment, dual blockade of PD-1/PD-L1 
and TIM-3 strengthened the anti-tumour immune 
response and postponed the growth of tumour 
cells.97 More prospective research is warranted to 
verify the efficacy and improve the safety of dual 
immunotherapy combinations.

Angiogenesis inhibitors enhance the effective-
ness of immunotherapy by blocking some proan-
giogenic pathways and promoting T-cell 
infiltration and dendritic cell maturation.98 The 
combination of immunotherapy with angiogen-
esis inhibitors has exhibited promising efficacy 
in various solid tumours99–101; this combination 
deserves further investigation in the future as a 
burgeoning combination regimen for advanced 
ESCC. Besides, dual inhibition of the epidermal 
growth factor receptor/human epidermal growth 
factor receptor 2 and insulin-like growth factor 1 
receptor signalling pathways showed superior 
anti-tumour efficacy in vitro experiments of 
ESCC102 and is expected to be confirmed in 
clinical trials.

Moreover, the differences in clinical characteris-
tics between patients may result in different 
responses to anti-tumour agents. Assigning 
patients correctly to the therapeutic regimen best 
suited for them deserves further consideration.

Which is the ideal biomarker?
Precisely predictive biomarkers are conducive to 
increase101 the percentage of patients that could 
benefit from ICIs and avoid the AEs, thus achiev-
ing individualised and accurate therapy.

Among the biomarkers mentioned above, the 
PD-L1 expression level is the most widely accepted 
biomarker to predict the effect of PD-1/PD-L1 
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inhibitors. It is usually thought that patients with 
high levels of PD-L1 expression are more likely to 
benefit from ICIs. But patients with low levels or 
even negative expression of PD-L1 were also 
observed to benefit from ICIs. Several standard-
ised immunohistochemistry PD-L1 antibody 
assays, such as Dako 22C3, Dako 28–8 and 
Ventana SP-142, are used to predict treatment 
response to different ICIs in various tumours103; 
however, the concordance between each assay is 
uncertain. Different detection methods, antibod-
ies and cut-offs may result in different frequencies 
of PD-L1 positivity. Several methodologies for 
PD-L1 immunostaining scoring have been devel-
oped, such as the ratio of PD-L1-positive tumour 
cells – the tumour proportion score (TPS) – and 
the ratio of PD-L1-stained tumour and immune 
cells – the CPS. The KEYNOTE-224 phase II 
trial104 evaluated PD-L1 using both scoring meth-
ods, with the CPS turning out to be a more appli-
cable biomarker. However, some trials choose 
TPS as the evaluation method for PD-L1 expres-
sion. Which methodology is better for evaluating 
PD-L1 expression is still uncertain. Kulangara 
et  al.105 report that CPS has a closer link with 
immunotherapy because it comprehensively 
assesses the expression of PD-L1 in both tumour 
cells and immune cells and is more applicable for 
digested tumours. In addition, sample acquisition 
for detecting the expression level of PD-L1 is 
inconvenient. Moreover, the expression of PD-L1 
can be easily affected by many factors, for 
instance, the infiltrating density of Tregs, 
interferon-γ secreted by TILs, the time of biopsy 
and the therapeutic method.106–108 Collectively, 
PD-L1 is a splendid, but not perfect, predictive 
biomarker.

In recent years, interest in the potential of bio-
markers in peripheral blood to predict the prog-
nosis of ICIs in anti-tumour therapy has gradually 
increased owing to their broad availability and 
relatively low cost. As mentioned in the previous 
section, epigenetic biomarkers, such as DNA 
methylation, have a close association with TME 
and can be measured in liquid biopsies and body 
fluids. However, the accuracy of DNA methyla-
tion to predict the therapeutic response for 
patients treated with ICIs is uncertain. Further 
research is needed to confirm the reliability of 
DNA methylation as a predictive biomarker and 
explore other prospective epigenetic biomarkers. 
Moreover, it is necessary to develop detection 
methods to improve the sensibility and precision 
of the biomarkers.

Serum metabolomics has been applied to the study 
of ESCC for early diagnosis, staging, prognostic pre-
diction and improving understanding of its underly-
ing mechanisms. ESCC is metabolically characterised 
by upregulation of the tryptophan pathway, includ-
ing the accumulation of tryptophan, formylkynure-
nine and kynurenine, as well as increased expression 
of indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 
plays a key role in the formation of the tumour immu-
nosuppressive microenvironment by suppressing 
natural killer (NK) and T-cell responses and promot-
ing tumour immune tolerance.51 IDO1 may influ-
ence the prognosis of ICIs by inhibiting the Trp–Kyn 
pathway. The relationship between IDO1 and the 
effect of ICIs in ESCC warrants further studies for 
validation.

Biomarkers in peripheral blood are susceptible to 
various factors that need to be considered. Further 
research is needed to confirm specific detection 
indicators, determine the best time for detection 
and determine the threshold of each index. 
Additionally, it is not sufficient to use one bio-
marker to rule in or out the use of ICI therapy. 
For this reason, it is necessary to set up a scoring 
system including various biomarkers to accurately 
assess the effect of ICI treatment at multiple lev-
els. Accumulating evidence has indicated that 
tumour immune microenvironment subtypes, 
classified by PD-L1 expression and the presence 
of TILs, are closely associated with survival out-
comes. Patients with high PD-L1 expression and 
high immune infiltration are more likely to bene-
fit from chemotherapy plus immunotherapy.109 
Furthermore, the EGIC scheme proposed by 
Chen et al.,110 which integrates ccTMB, specific 
HLA genotypes and four risk oncogenic altera-
tions, has shown a promising ability to select 
ESCC patients who can benefit from chemother-
apy plus PD-1 inhibitor treatment.110

In the future, large sample trials are warranted to 
provide strong evidence for potential predictive 
markers. Moreover, novel antibodies directed 
towards alternative immune checkpoints need to 
be further researched and developed. New tech-
nologies, such as single-cell sequencing, digital 
pathology and spatial transcriptomics, are expected 
to be used for exploring predictive biomarkers.

Conclusion
ESCC is a severe healthcare challenge, especially 
in East Asia, with high prevalence and mortality. 
Numerous trials have reported that ICIs 
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contribute to better survival outcomes in patients 
with ESCC.

Immunotherapy in advanced EC has been rec-
ommended as a standard treatment and even as 
an effective treatment in early EC. Precisely pre-
dictive biomarkers may make immunotherapy 
more effective and safer. However, only a few bio-
markers have been proven to predict the progno-
sis of ICI therapy. More valuable predictive 
biomarkers need to be identified in the future to 
achieve individualised and accurate ICI therapy.
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