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Abstract

Retinoic acid receptor responder 1 (RARRES1) is silenced in many cancers and is

differentially expressed in metabolism associated diseases, such as hepatic steatosis, hy-

perinsulinemia and obesity. Here we report a novel function of RARRES1 in metabolic re-

programming of epithelial cells. Using non-targeted LC-MS, we discovered that RARRES1

depletion in epithelial cells caused a global increase in lipid synthesis. RARRES1-depleted

cells rewire glucose metabolism by switching from aerobic glycolysis to glucose-dependent

de novo lipogenesis (DNL). Treatment with fatty acid synthase (FASN) inhibitor, C75,

reversed the effects of RARRES1 depletion. The increased DNL in RARRES1-depleted nor-

mal breast and prostate epithelial cells proved advantageous to the cells during starvation,

as the increase in fatty acid availability lead to more oxidized fatty acids (FAO), which were

used for mitochondrial respiration. Expression of RARRES1 in several common solid tumors

is also contextually correlated with expression of fatty acid metabolism genes and fatty acid-

regulated transcription factors. Pathway enrichment analysis led us to determine that

RARRES1 is regulated by peroxisome proliferating activated receptor (PPAR) signaling.

These findings open up a new avenue for metabolic reprogramming and identify RARRES1

as a potential target for cancers and other diseases with impaired fatty acid metabolism.

Introduction

Retinoic acid receptor responder element 1 (RARRES1), also known as tazarotene induced

gene 1 (TIG1), was initially identified as a novel retinoic acid receptor-regulated gene in the

skin [1]. We showed in prostate cancer cells that RARRES1 is able to induce autophagy,

decrease mechanistic target of rapamycin (mTOR) and increase Sirtuin 1 (SIRT1), two impor-

tant regulators of energy homeostasis [2]. RARRES1 also induces autophagy in cervical cancer

cells [3]. The ability of RARRES1 to regulate the expression of metabolic master regulators and

induce autophagy suggests that it might function to reprogram metabolism in cells.
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RARRES1 is differentially expressed in metabolic diseases and is associated with biological

hallmarks that require metabolic reprogramming. For example, RARRES1 is among the most

up-regulated genes in subcutaneous fat from obese human subjects on a diet-induced weight

loss and among the most downregulated genes during weight maintenance [4]. In adipocyte

differentiation, in which metabolic reprogramming is crucial, RARRES1 is increased during

dedifferentiation and decreased during differentiation [5]. RARRES1 is also differentially

expressed in mouse models of hepatic steatosis and cholestatic liver disease [6,7].

Although RARRES1 is among the most commonly methylated genes in multiple cancers, it

is actually increased in basal-like hormone receptor negative breast cancer and in liver cirrho-

sis, a risk factor for hepatocellular cancer [8–10]. Metabolic reprogramming is now considered

a hallmark of cancer etiology [11]. For decades, aerobic glycolysis (Warburg Effect) was con-

sidered to be the most important energetic pathway that cancer cells use to survive and prolif-

erate[12]. However, it is now clear that oxidative phosphorylation and fatty acid metabolism

play a major role in cancer progression and drug resistance [13].

Here we demonstrate that RARRES1 is regulated by starvation and that its depletion in epi-

thelial cells reprograms metabolism by modulating a switch from aerobic glycolysis to glucose

dependent de novo lipogenesis (DNL). RARRES1 depletion modulated DNL and increased

substrates (endogenous fatty acids) for fatty acid oxidation during serum starvation and phar-

macological inhibition of fatty acid synthase. We also show that RARRES1 expression corre-

lates with that of fatty acid metabolism genes in breast, colorectal and prostate cancers. Two of

these genes, peroxisome proliferating activated receptor alpha and gamma (PPARα and

PPARγ) were found to regulate RARRES1 expression in epithelial cells. These findings identify

RARRES1 as a novel modulator of lipid metabolism.

Materials and methods

Cell-culture

HEK293T was cultured in DMEM (Gibco-Invitrogen, Grand Island, NY) supplemented with

5% fetal bovine serum. The cells were maintained in a humidified modular incubator at 37˚ C

and 5% CO2. MCF 10A cells were maintained in DMEM/F12 (50:50 mix) supplemented with

5% horse serum, 10 mM HEPES, 10 ug/ml insulin, 20 ng/ml epidermal growth factor, 0.5 ug/

ml hydrocortisone, 100 ng/ml cholera toxin. Immortalized human prostate epithelial PWR-1E

cells (a gift from Dr. S.C. Chauhan, University of South Dakota) were maintained according to

ATCC’s recommendation. The passage numbers of all cell lines were below 30 between thaw-

ing and use in the experiments. All cell lines were authenticated and tested for mycoplasma by

the Lombardi Comprehensive Cancer Center Tissue Culture Shared Resources.

Antibodies and reagents

Primary antibodies targeting the following antigens were used: rabbit anti-human RARRES1

(TIG1) (Sigma-Aldrich, St. Louis, MO), GAPDH (Fitzgerald Industries International, Acton,

MA) and alpha-tubulin (Sigma-Aldrich, St. Louis, MO). C75 compound was obtained from

Cayman Chemicals. Oleic acid was purchased from Cayman Chemicals.

Cell extracts

Cells were washed with PBS and lysed in RIPA lysis buffer (1% sodium deoxycholate, 0.1%

SDS, 1% Triton X-100, 10mM Tris-HCL pH8, 150 mM NaCl) for 15 minutes at 4˚C. Protein

concentration was determined using a protein microplate assay (Biorad Laboratories).
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RNA extraction and real-time quantitative PCR Analysis

Total RNA was isolated from cells by using Trizol reagent (Invitrogen) according to the

instructions of the manufacturer. RNA was isolated using the RNeasy kit (Qiagen) according

to the instructions of the manufacturer. Reverse transcription was done using Invitrogen

Reverse Transcription Kit. The cDNA samples were used to quantify RARRES1 expression

using the fast real-time PCR kit (Thermo Fisher) with the appropriate TaqMan probes

(Thermo Fisher: RARRES1 Hs00894859_m1 and 18s Hs03003631_g1) in a StepOne (Applied

Biosystems) compact qPCR machine. Transcript levels were normalized to the level of 18S.

Plasmid and siRNA constructs

RARRES1 were directionally cloned into the BglII and HindIII sites in the pEYFP-N1 vector

(Clontech). Full-length RARRES1 (+1 - +897) were cloned into the pGlue vector as codon

optimized versions by Genscript (Piscataway, NJ). RARRES1 (cat#M-012937-00) and non-tar-

geting control siRNAs (cat#D-001210-01-20) were from Dharmacon (Lafayette, CO). Plasmid

DNA was introduced by lipofectamine 3000 and siRNA constructs were transfected using

RNAi Max. Constructs for stable depletion of RARRES1 were obtained from the RNAi Con-

sortium (Moffat et al., 2006) via SIGMA-Aldrich (NM_002888). For the RARRES1 gene, five

pre-made constructs were obtained and individually tested to identify those able to achieve

efficient knockdown at the protein level. Negative control constructs in the same vector system

(vector alone, pLKO.1 puro) were obtained from SIGMA-Aldrich (NM_003177). Next,

MCF10A cells were infected with shRNA lentiviruses. To do this, the cells were plated at sub

confluent densities. The next day, the cells were infected with a cocktail of 100 ul virus-con-

taining medium, 1 ml regular medium, and 8 μg/ml Polybrene. The medium was changed

1-day post-infection, and selection medium was added 2 days post-infection (5 μg/ml puromy-

cin for MCF10A). After 3 days of puromycin selection, the mock-infected cells had all died.

Stably infected pooled clones were studied.

Oleic acid treatment and nutrient deprivation

Oleic acid treatment was used as recommended by Cayman Chemicals; MCF 10A and HEK

293 T cells were treated at a 1:5000 dilution for 4 hours or overnight respectively. MCF 10A

cells were plated and grown in serum rich DMEM media that was depleted of serum for 18, 24

or 40 hours. Cells were then harvested for qPCR or western blot analysis.

Western blot analysis

To confirm RARRES1-YFP expression and RARRES1 knockdown in MCF 10A or HEK293 T

cells and RARRES1 overexpression in serum starved cells, samples were subjected to western

blot analysis (S4D and S8 Figs). 50 μg of cell lysate was separated on 4–12% SDS/PAGE, trans-

ferred to nitrocellulose membrane (Amersham Pharmacia Biotech), blocked with 5% milk-

PBS, and incubated in primary antibody in 5% milk-PBS overnight at 4˚C. Blots were washed

3 times for 5 minutes each in PBS-0.5% tween, followed by incubation in HRP-conjugated

secondary antibody (KPL, Gaithersberg, MD) for 1 hour at room temperature on an orbital.

Blots were washed 2 times in PBS-0.5% tween, followed by 1 wash in PBS. Detection of immu-

noreactive bands was carried out using chemiluminescence with ECL Western Blotting Detec-

tion Reagents (Amersham, Piscataway, NJ). Band intensities were quantified using ImageJ

[14].
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Docosahexaenoic acid treatment

761 mM DHA stock was diluted to 1 mg/mL in 1XPBS. The DHA working solution was incu-

bated for 1 hour at 37˚C. The solution was then diluted in the cells’ media to the desired con-

centration. The cells were incubated for 30 min, 1 hour, 2 hours or overnight (17 hours) at a

concentration of 50 μM or 200 μM. DHA was purchased from Cayman Chemicals (Item

#90310) or vehicle (95% ethanol (EtOH)). After incubation time, the cells were then harvested

in TRIzol, purchased from Thermo Fisher Scientific (Cat# 15596026).

Nile Red lipophilic staining and Oil Red O staining

Following RARRES1 or scrambled siRNA transfection, MCF 10A cells were fixed with 10%

formaldehyde (Protocols) for 15 minutes at room temperature and washed 3 times with 1X

PBS. To stain with Nile Red (Sigma, St. Louis, MO, USA), 1 μL of a 1 mg/mL stock solution

was added to 10 mL of 150 mM NaCl in PBS to make a Nile Red solution. The Nile Red solu-

tion was added to the cells and incubated for 10 minutes in the dark. Cells were counterstained

with DAPI. Cells were imaged with the Keyence BZ-X microscope (Keyence Corporation,

Osaka, Japan).

MCF 10A cells transfected with siRNA were grown for 48 hours. HEK 293 T cells and MCF

10A cells transfected with YFP or RARRES1-YFP plasmids were grown for 24 hours then

treated with oleic acid for 4 hours or overnight before fixation. Cells were fixed in 10% forma-

lin (Electron Microscopy Science, Hatfield, PA), for 10 min. at room temperature. Cells were

stained for neutral lipids using the oil red O staining kit (American Master Tech Scientific,

Lodi, CA). Nile Red was not used in this case because the most accurate way to detect the lipids

via Nile Red staining is through the green channel, the same channel is used to detect YFP

[15,16]. Briefly, cells were washed four times with ddH20 (EMD Chemicals Inc., San Diego,

CA), incubated for 10 min RT with oil red O, and counterstained with DAPI (Thermo-Scien-

tific). Cells were imaged with the Keyence BZ-X microscope. For both staining methods, oleic

acid treatment was used as a positive control. Intensity of lipid staining was quantified through

ImageJ [14].

Metabolic analysis using extracellular flux assays

Bioenergetics profile of transient RARRES1 knockdown in MCF10A and PWR-1E cells and

stable RARRES1 knockdown MCF10A cells were measured using the XFe96 Extracellular Flux

Analyzer. Oxygen consumption rates and response to mitochondrial stress factors were ana-

lyzed by using the XF Cell Mito Stress Kit. 48 hours prior to analysis, MCF10A and PWR-1E

cells were transfected with RARRES1 siRNA or scramble siRNA in duplicates. The night

before the assay, the cells were seeded at an optimized cell density (MCF10A cells: 10,000 and

PWR-1E cells: 20,000) in the 96-well XFe plate and incubated at 37˚C with 5% CO2 overnight.

The day of analysis, the cells were incubated at 37˚C in a CO2-free atmosphere incubator for 1

hour. Basal oxygen consumption rate and extracellular acidification rate were measured. Sub-

sequently, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR)

responses were observed after separate injections of oligomycin (1 μM), carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone FCCP (0.5 μM for MCF10A cells or 0.25 μM for PWR-1E

cells), and a combination of rotenone and antimycin A (0.5 μM) were respectively prompted

in the assay. For each injection, there was a total of 3 cycles, each one lasted 3 minutes and a

measurement was taken at the beginning of each cycle. Glycolysis was also analyzed, using the

XF Glycolysis Stress Test kit, in the XFe96 Extracellular Flux Analyzer. Cells were transiently

knocked down with RARRES1 siRNA or scramble negative control siRNA and plated at the

same optimal density as the XF Cell Mito Stress Test protocol. ECAR was measured at baseline
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and after adding glucose (10 mM), oligomycin (1 μM) and 2-deoxy-d-glucose (100 mM)

respectively. Fatty Acid Oxidation measurements were done as recommended by Agilent Sea-

horse. Cells in nutrient-rich media, were treated with BPTES (a glutaminolysis inhibitor), UK-

5099 (a glycolysis inhibitor) and etomoxir (a fatty acid oxidation inhibitor). The cells were

assessed for their dependency on each pathway and their plasticity when each pathway is

inhibited. To measure fatty acid oxidation in a starved state, cells were starved with minimal

substrate DMEM for 24 hours. The minimal substrate media included 1% serum, 1 mM gluta-

mine, 0.5 mM carnitine, and 0.5 mM of glucose. Insulin, EGF and hydrocortisone were

excluded from the media. The day of the assay, starved cells were washed and incubated with

1X KHB (111 mM NaCl, 4.7 mM KCl, 1.25 mM CaCl2, 2 mM MgSO4, 1.2 mM NaH2PO4 and

supplemented with 2.5 mM glucose, 0.5 mM carnitine, and 5 mM) in a non-CO2 37˚C incuba-

tor. 15 minutes prior to the assay, 40 μM etomoxir was added to the cells to measure endoge-

nous fatty acid uptake for FAO. To measure exogenous fatty acid uptake for FAO, Palmitate-

BSA and BSA (vehicle) were added to cells right before treating with etomoxir and adding the

cells to the Flux Analyzer. All experiments were analyzed in duplicates for at least two indepen-

dent experiments for each cell line and the results were normalized to their protein concentra-

tion or cell number.

ATP Detection

Cells were transfected with RARRES1 siRNA or scrambled siRNA by RNAiMax in a 6-well

plate. These cells were left to grow for 24 hours and subsequently replated in a 96-well plate.

The cells were then treated with 150 μM of C75 for 2, 3 and 5 hours. The cells were then har-

vested, and ATP was quantified by luminescence according to the manufacturer’s instructions

(Cayman Chemicals, Ann Arbor, MI, USA). ATP standards were included (0.01 μM to

10 μM).

LC-MS and GC-MS metabolite extraction

Cell samples were processed using 150 μL 100% water. Samples were plunged in to dry ice for

30 seconds and heat shocked in a water bath for 90 sec. at 37 ˚C. Protein quantification was

done using the Bradford Assay. The remainder of the sample was processed using 600 μL of

methanol containing internal standard. Chloroform was added to each sample (600 μL) and

centrifuged (13,000 rpm) at 4˚C for 20 min. Chilled Acetonitrile (600 μL) was added to each

phase and allowed to incubate at -20 ˚C to further precipitate cellular debris and proteins.

Incubated samples were centrifuged (13,000 rpm) at 4˚C for 20 min. Supernatants from the

incubated samples were transferred to another Eppendorf tube, dried under vacuum, and

stored at -80˚C until analysis. For analysis, the dried samples were reconstituted in 100 μL of

50% Methanol in water, and both phases combined in a Mass Spec Sample tube for LCMS or

GCMS analysis.

Ultra-performance liquid chromatography-time of flight mass

spectrometry (UPLC TOF MS) mm based metabolomic analyses

Each sample (2 L) was injected onto a reverse-phase 50 × 2.1 BEH 1.7 m C18 column using an

Acquity UPLC system (Waters Corporation, USA). The gradient mobile phase comprised of:

solvent A- 100% water + 0.1% formic acid; solvent B- 100% acetonitrile + 0.1% formic acid;

solvent D- 90% isopropanol and 10% acetonitrile + 0.1% formic acid (all containing 0.1% For-

mic Acid). Each sample was resolved for 13 min at a flow rate of 0.4 mL/min. The gradient

consisted of 95% A and 5% B for .50 minutes, then a ramp of curve 6 to 2% A and 98% B from

0.5 min. to 8.0 min., then a ramp of curve 6 to 2% B and 98% D to 9.0 min., a hold of 2% B and
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98% D up to 10.5 min., then a ramp of curve 6 to 50% A and 50% B to 11.5 min., then a ramp

of curve 6 to 95% A and 5% B to 12.5 min., and a hold of 95% A and 5% B to 13.0 min. The col-

umn eluent was introduced directly into the mass spectrometer by electrospray. Mass spec-

trometry was performed on a quadrupole-time-of-flight mass spectrometer operating in either

negative or positive electrospray ionization mode. Positive mode has a capillary voltage of 3.0

kV, a sampling cone voltage of 30 V, and a source offset of 80 V. Negative mode has a capillary

voltage of 2.75 kV, a sampling cone voltage of 20 V, and a source offset of 80 V. The de-solva-

tion gas flow was 600 L/hr. and the temperature was set to 500˚C. The cone gas flow was 25 L/

h, and the source temperature was 100˚C. The data were acquired in the Sensitivity and MS

Mode with a scan time of 0.1 seconds, and inter-scan delay at 0.08 seconds. Accurate mass was

maintained by infusing Leucine Enkephalin (556.2771 m/z) in 50% aqueous acetonitrile (1.0

ng/mL) at a rate of 10 μL/min via the lock-spray interface every 10 seconds. Data were

acquired in centroid mode from 50–1200 m/z mass range for TOF-MS scanning.

Data pre-processing and metabolite identification and validation

Centroided and integrated UPLC-TOFMS data were pre-processed using the XCMS software

normalized to the ion intensity of respective internal standards as well as to the total protein

concentration. The data were log transformed and multivariate data analyses were performed

to delineate significantly altered metabolites in the two groups. These metabolites were puta-

tively identified via accurate mass-based search using the Madison Metabolomics Consortium

Database (MMCD), SimLipid (Premier Biosoft), the Human Metabolome Database (HMDB)

and LIPID MAPS [17–19]. Selected metabolites in transient RARRES1 KD and scrambled

siRNA cells were validated using tandem mass spectrometry. The daughter and parent ions for

the metabolites were matched with the MS/MS spectra available in HMDB, SimLipid and

LIPID MAPS (S2A Fig). MSE results were also subjected to additional lipid validations

through SimLipid software V6.01 (Premier Biosoft, Palo Alto, CA, USA) (S2B Fig). This vali-

dation method has been reported by others[20,21]. It is important to note that our non-tar-

geted LC-MS method and validation approach did not allow for the identification of the

specific lipid that corresponds to each ion, but we were able to identify the lipid classes. Citrate

was confirmed by comparing the retention time under the same chromatographic conditions

and by matching the fragmentation pattern of the parent ion from the biological sample to

that of the standard metabolite using tandem mass spectrometry (UPLC-TOFMS/MS) (S5

Fig).

LC-mass spectrometry statistical analyses

Raw metabolomics data was analyzed using analysis functionalities of Metaboanalyst 4.0 [22].

Data were log transformed before performing t- statistics to identify significant metabolites.

Metabolites with an adjusted p-value of less than 0.05 and a fold change either less than or

equal to 0.5 or greater than 1.5 were used to create volcano and Partial Least Squares–Discrim-

inant Analysis (PLS-DA) plots (S1 Fig).

GC-TOF single injections

Processed samples were transferred (100 L) to a GC vial with a salinized insert, dried in by

speed-vac, caped and kept at 20 degrees for derivatization. The dry residue was dissolved in 15

L of 20.0 mg/mL O-Methoxyamine-Hydrochloride in pyridine. N-Methyl-N-(trimethylsilyl)

trifluoroacetamide: MSTFA/BSTFA WITH 1% TMCS (50:50) was added (60 L) and the sample

heated 40˚C with constant agitation for 30 min. The sample was then allowed to cool to 20˚C

and incubated for 4 hrs. Before injection for GC-TOF analysis After TMS derivatization, A 5.0
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L aliquot of the derivatized solution was injected in (1:5) split mode into an Agilent 7890B GC

system (Santa Clara, CA, USA) that was coupled with a Pegasus HT TOF-MS (LECO Corpora-

tion, St. Joseph, MI, USA). Separation was achieved on an Rtx-5 w/Integra-Guard capillary

column (30 m x 0.25 mm ID, 0.25 m film thickness; Restek Corporation, Bellefonte, PA, USA),

with helium as the carrier gas at a constant flow rate of 1.0 mL/min. The temperature of injec-

tion, transfer interface, and ion source was set to 150, 270, and 230˚C, respectively. Electron

impact ionization (70 eV) at full scan mode (m/z 40–600) was used, with an acquisition rate of

30 spectra per second in the TOF/MS setting.

GC-MS analysis and metabolite validation

Raw data files were pre-processed through Leco Statistical Compare software to generate an

excel output. Output data was normalized by internal standard (4- Nitrobenzoic acid). In

Metaboanalyst 4.0 [22], the data was further normalized by log transformation. For data analy-

sis, a T-Test and fold change was performed to generate a volcano plot. Peak detection with

background subtraction and subsequent matching of the resulting mass spectra to the Agilent

Fiehn GC/MS Metabolomics RTL Library using NIST MS searches was done (S3 Fig). The

LC-MS and GC-MS raw data are accessible in Dryad: doi:10.5061/dryad.6t1m4k4.

Bioinformatics analysis

OncomineTM (Compendia Bioscience, Ann Arbor, MI, USA) was used to identify cancers

where RARRES1 gene expression was significantly upregulated or downregulated. These can-

cers included breast, cervical, colorectal, esophageal, gastric, head and neck, kidney, liver,

lung, lymphoma, pancreatic and prostate (S1 Table from Oncomine). Of the identified can-

cers, three (breast, colorectal and prostate) were selected for further analysis given the number

of datasets found to have significant RARRES1 gene expression changes as well as the literature

known about RARRES1 and its molecular biology within these cancers. Within the cancers

selected, individual datasets were chosen given their large sample sizes and subtype analyses.

Thus, the The Cancer Genome Atlas (TCGA) Breast Cancer, TCGA Colorectal Cancer, and

Grasso Prostate datasets were selected. The Grasso Prostate dataset was also uniquely selected

for its metastatic vs. primary analysis[23]. For the TCGA Breast Cancer dataset, subtype analy-

sis was stratified into ER+ vs. ER- status; PR+ vs. PR- status and Triple Negative (PR-, HER2-

& ER-) vs. non-Triple Negative [24]. Metastatic vs. primary site analysis was performed in

the Grasso Prostate dataset. All colorectal cancer types (rectal mucinous adenocarcinoma,

colonadenocarcinoma, rectal adenocarcinoma, colon mucinous adenocarcinoma and cecum

adenocarcinoma) identified in the TCGA dataset were also analyzed in comparison to their

respective normal samples (S1 File) [25]

Genes positively or negatively co-expressed with RARRES1 were further identified using

Oncomine with respect to each dataset of tumor vs. normal. The sets of co-expressed genes

with respect to each dataset were pipelined into DAVID to identify enriched pathways

(adjusted P<0.05) found in the Reactome and Kyoto Encyclopedia of Genes and Genomes

(KEGG) databases[26,27]. Significantly enriched pathways common across all datasets were

then identified. In addition, genes important in fatty acid metabolism pathway were further

assessed for co-expression with RARRES1 with respect to cancer subtypes (e.g. ER+ vs ER-)

via correlation coefficients (S1 File). Selected genes included the following: PPARG, PPARA,

PPARGC1A, SREBF1, FASN, SCD1 and CPT1A.

Transcription factor prediction. Promoter and non-coding regions of RARRES1 gene

were obtained from Ensembl and UCSC genome browser [28,29]. For each non-coding

region, the sequences (from both sources) were loaded as the query sequence to search for
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potential binding sites. The query was pipelined into Alggen PROMO to predict transcription

factors that can bind to the non-coding regions [30] (S2 Table). The prediction was carried

out considering only human transcription factors and transcription factors with a maximum

of 15% matrix dissimilarity rate were chosen. The Software PROMO v3.0.2, (which utilizes

TRANSFAC v6.4) was used. We then utilized Harmonizome database and examined publicly

available data on ChIP sequencing and ChIP-ChIP to identify whether the predicted transcrip-

tion factors were found physically bound to the promoter region of RARRES1 gene in cells or

organisms [31,32].

In vitro data analysis

Results are shown as the mean ± SD. Statistical significance was calculated by using GraphPad

Prism (La Jolla, California). Student’s t-test and P< 0.05 was accepted as significant value (���,

p< 0.001; ��, p< 0.01; �, p< 0.05). At least three biological replicates were done to confirm

the results.

Results

RARRES1 regulates lipogenesis and lipid droplet accumulation

Since RARRES1 expression is associated with metabolism-associated diseases and its exoge-

nous expression regulates the expression of two important players in metabolic reprogram-

ming (mTOR and SIRT1) [2], we examined whether RARRES1 has any functional significance

in metabolic reprogramming. As RARRES1 is highly expressed in differentiated epithelial cells

and is silenced in cancer cells [2,33–35], we used selected epithelial cells as our model. We sub-

jected transient RARRES1-depleted mammary epithelial cells to non-targeted LC-MS (Fig 1A

and S1 Fig) to get an overview of the metabolic changes that occur after decreasing the expres-

sion of the gene. We noticed a significant increase in neutral lipids, triacylglycerols and the

cholesterol derivative 24,25-epoxy-cholesterol. Phospholipids, such as phosphatidylinositol

(PI), phosphatidylethanolamine (PE), phosphatidylserines and phosphatidylcholines and the

eicosanoid substrate, eicosatrienoic acid were also increased, as were three metabolites impor-

tant in the synthesis of sphingolipids, sphinganine, niacinamide and sphingosine (Fig 1A and

S2 Fig). These data indicate a global increase in lipid synthesis. We next used GC-MS to mea-

sure free monounsaturated and saturated fatty acids, since they are a good indicator of an

increase in fatty acid synthesis [36]. We found an increase in oleic acid, the principle product

of stearoyl CoA desaturase 1 (SCD1) (SCD gene), but no change in palmitate (Fig 1B) (S3B

and S3C Fig) [37]. However palmitate, a saturated fatty acid, is highly toxic to the cell and is

usually converted to palmitoleate or oleic acid [38]. We also examined lipid changes after

RARRES1depletion in normal prostate epithelial cells and primary hepatocytes to ensure that

this change in lipid content is not cell line specific, by GC-MS. In both cell lines there was

increase in cholesterol and saturated fatty acids (stearic acid and myristic acid) (S3D Fig).

Taken together these data demonstrate that manipulation of RARRES1 alters global fatty acid

metabolism.

Since RARRES1 depletion increased several classes of lipids, including neutral lipids, we

validated the findings by staining lipid droplets in cells. Scrambled siRNA transfected MCF

10A cells do not have visible lipid droplets but consistent with the LC/GC-MS data, transient

RARRES1 depletion in normal breast epithelial MCF 10A cells, lead to significant accumula-

tion of lipid droplets, verified by Oil Red O and Nile Red staining (Fig 1C and S4A Fig). We

then transiently overexpressed RARRES1 tagged with YFP in MCF 10A and HEK-293T cells

to visualize the transfected cells through fluorescence microscopy. We treated the cells with

oleic acid for 4 hours or overnight (12 hours), respectively, to induce lipid droplets since these
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Fig 1. RARRES1 regulates lipid accumulation. (A) Classes of metabolites measured by non-targeted LC-MS analysis of transient RARRES1

knockdown MCF 10A cells and scrambled control cells. (B) GC-MS was run in transient RARRES1 knockdown MCF 10A cells and

monounsaturated fatty acids were analyzed. Oleic acid is represented in the bar graph. (C) RARRES1 was transiently knocked down in MCF10A

cells and Oil Red O staining was used to stain for lipid accumulation. The bar graph represents the intensity of lipid droplet staining. Three

biological replicates are represented in the bar graph. (D) RARRES1-YFP was exogenously expressed and the transfected cells were treated with oleic

acid and stained with Oil Red O to localize lipid droplets. The numbers of cells with YFP or RARRES1-YFP transfection displaying lipid droplets or
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cells do not readily form visible lipid droplets in normal conditions. Cells that exogenously

expressed RARRES1 had a striking decrease in lipid droplet accumulation compared to YFP

expressing cells and the surrounding cells that did not take up the RARRES1-YFP plasmid

(Fig 1D and S4B and S4C Fig). This indicates that higher levels of RARRES1 leads to the deg-

radation or oxidation of exogenous fatty acids rather than their storage in lipid droplets. Con-

versely, depletion of RARRES1 leads to the accumulation of lipids. Consistent with this

observation, RARRES1 expression in prostate and cervical cancer cells induces autophagy, a

cellular response that sequesters and degrades lipid droplets during starvation, a mechanism

called lipophagy [39].

Nutrient deprivation is also a major regulator of lipid metabolism [40]. If RARRES1 is an

important regulator of lipid metabolism we considered if its expression (or activity) might

change with nutrient deprivation. To test this, we starved MCF10A cells of serum for 18 and

40 hours and measured RARRES1 levels by qPCR. 24 hours after starvation, RARRES1 tran-

script levels were increased 10-fold over nutrient replete cells and over 100 fold at 48h hours

(Fig 1E). We also assessed RARRES1 protein after 24-hour of serum starvation, and the results

were consistent with the qPCR results (S4D Fig). It is important to note that the increase in

RARRES-1 expression is only seen in normal epithelial cells. Cancer cells, in which RARRES1
is silenced, cannot increase RARRES1 protein level after starvation. Taken together these data

show that RARRES1 depletion in epithelial cells increases lipid content while RARRES1 over-

expression decreases lipid accumulation, most likely through the upregulation of autophagy.

We also show that RARRES1 expression is altered after serum starvation, an environment that

triggers changes in lipid metabolism.

RARRES1 depletion regulates de novo lipogenesis in epithelial cells

De novo fatty acid synthesis (lipogenesis) occurs when sugars, such as glucose, get converted to

citrate and subsequently acetyl-CoA to produce cholesterol and the fatty acid metabolites that

were enriched in RARRES1-depleted MCF 10A cells (Fig 1A and 1B) (S3D Fig) [41,42]. We

thus assessed de novo lipogenesis (DNL) activity in RARRES1-depleted epithelial cells. Steady

state citrate levels were decreased in stable RARRES1-depleted MCF 10A cells, thus indicating

an increased rate of citrate conversion to acetyl-CoA or fatty acid metabolites (increased DNL)

(Fig 2A and S5 Fig).

Since glucose is a major source for DNL, we assessed if RARRES1-depleted PWR-1E and

MCF 10A cells undergo glycolytic reprograming to redirect glucose usage for de novo fatty

acid synthesis [43]. Aerobic glycolysis was examined in RARRES1-depleted epithelial cells

using the extracellular flux assay- Glycolysis Stress Test kit (Seahorse, Agilent Technologies,

Santa Clara, CA, USA). Glycolytic usage was determined by measuring the extracellular acidi-

fication rate reached by a given cell after the addition of saturating amounts of glucose. Oligo-

mycin was then injected to inhibit mitochondrial respiration and force the cell to use its

glucose for glycolysis, which is observed by an increased extracellular acidification rate [44].

This shift in ECAR is called the glycolytic capacity. Changes in glycolytic capacity were there-

fore assessed in RARRES1-depleted MCF 10A and PWR-1E cells. RARRES1 -depleted MCF

10A cells had a marked decrease in glucose usage but their capacity to induce glycolysis was

higher than the control cells, which indicates that there is no glycolytic dysfunction (S6A Fig).

no lipid droplets were counted in both HEK 293T cells and MCF 10A cells. The y-axis represents the % total of cells with lipid droplet formation

(blue) and % cells with no lipid droplet formation (red). (E) MCF10A cells were serum starved for 18 hours or 40 hours. qPCR analysis was

subsequently done. 18S was used as the endogenous control. (F) A schematic representation of metabolites that were upregulated in

RARRES1-depleted cells.

https://doi.org/10.1371/journal.pone.0208756.g001
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Fig 2. RARRES1 regulates DNL. (A) Citrate levels in stable RARRES1 knockdown MCF10A cells were calculated using MS/MS method

and compared to empty vector MCF10A cells. (B) Glycolytic activity was assessed in MCF 10A and PWR-1E cells. The glycolytic reserve was
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The same glycolytic capacity phenomenon was also observed in PWR-1E cells (S6B Fig). We

next measured the glycolytic reserve which is the difference between basal glycolysis and the

glycolytic capacity. This determines the glucose that is not used in the basal state. The glyco-

lytic reserve can provide insight on whether glucose is stored or shuttled to other pathways

besides aerobic glycolysis. In both cell lines their glycolytic reserve increased, which shows that

there is an increase in glucose being redirected to pathways other than glycolysis (Fig 2B). Glu-

cose can also be utilized for oxidative phosphorylation (mitochondrial respiration). We thus

used the extracellular flux assay to measure oxygen consumption rate, which determines the

mitochondrial respiration activity. We first treated cells with glucose and after 12 minutes of

incubation, cells were treated with oligomycin, the mitochondrial ATP synthase inhibitor, to

measure glucose-mediated OCR (S6C Fig). There was no difference between scrambled

siRNA and RARRES1 siRNA transfected cells. This indicates that RARRES1-depleted cells do

not redirect their glucose for oxidative phosphorylation or aerobic glycolysis. Instead, glucose

is being reprogrammed for other pathways.

The decrease in citrate levels, increase in lipid synthesis and glycolytic reprogramming in

RARRES1- depleted epithelial cells suggest that glucose is mostly likely used for glucose-

dependent DNL (Figs 1 and 2A) (S6 Fig). To test this, we used the fatty acid synthase inhibitor

C75, which has been noted to markedly decrease lipid content by inhibiting fatty acid synthesis

and increase citrate levels at a concentration of 40 μM [45,46]. We next examined whether C75

treatment can reverse the glycolytic reprogramming seen in RARRES1-depleted cells. We

treated RARRES1-depleted MCF 10A cells with C75 for 1 hour or 2 hours at a concentration

of 40 μM. In C75 treated MCF 10A cells, both control and RARRES1-depleted cells increased

glycolytic usage and decreased their glycolytic reserve compared to the vehicle treated groups

(Fig 2C). These observations indicate that MCF 10A cells have a significant basal level of DNL.

Importantly, treatment of RARRES1-depleted cells with C75 completely reversed the decrease

in glucose usage seen in the vehicle-treated cells and they had higher aerobic glycolytic activity

(Fig 2C). C75 also reversed the changes in glycolytic reserve seen in the transient knockdown,

as the glycolytic reserve is indistinguishable from the control group treated with 40 μM C75

(Fig 2C). We also assessed lipid droplet accumulation in RARRES1-depleted cells after treat-

ment with 40 μM C75. C75 treatment reversed lipid droplet accumulation after 4 hours of

treatment (Fig 2D and S6D Fig). This indicates that RARRES1-depleted cells use glucose for

fatty acid synthesis instead of aerobic glycolysis and that inhibition of FAS by C75 reverses this

phenotype (Fig 2E) and the accumulation of lipid droplets in RARRES1-depleted cells.

RARRES1 depletion enhances substrate availability for fatty acid oxidation

during starvation

Several studies have shown that treatment with C75, at a concentration of 30 to 60 μg/mL, for

1 to 2 hours, decreases fatty acid oxidation (FAO), which is the incorporation of acetate into

fat and increase in ATP production through palmitate oxidation [46–48]. We next examined

whether C75 has any effect on ATP content of RARRES1-depleted cells compared to RARRE-

S1-expressing cells. After 2 hours of treatment with 40 μg/mL C75, ATP content was signifi-

cantly increased in RARRES1-depleted cells compared to C75-treated control cells (Fig 3A).

calculated for both cell lines. (C) Transient RARRES1 KD and scramble control were treated with C75 inhibitor and glycolytic activity was

assessed. Glycolytic usage and reserve were assessed in vehicle and C75 treated groups. (D) Scrambled siRNA or RARRES1 siRNA

transfected cells were treated with vehicle or 40 μM C75 for 2 hours or 4 hours. Cells were then stained with Oil Red O and DAPI. (E) A

schematic diagram of glycolysis and glucose dependent de novo lipogenesis pathway in RARES1 depleted epithelial cells and the effect of

C75 on these cells is depicted. G: Glucose; O: Oligomycin; 2-DG: 2-Deoxy-D-glucose.

https://doi.org/10.1371/journal.pone.0208756.g002
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Fig 3. RARRES1 depletion regulates fatty acid oxidation. (A) ATP content was quantified in transient RARRES1 KD MCF 10A cells and scrambled

siRNA MCF 10A cells after 2 and 3 hours of 40 μg/mL C75 treatment. (B) All detected Acylcarnitines, AC-4:0 and AC-16:0, were quantified and validated

in the non-targeted LC-MS results of RARRES1 siRNA transfected MCF 10A cells (S2A Fig). The fold change was normalized to scrambled siRNA

transfected MCF 10A cells. Fatty acid oxidation rate in RARRES1-depleted cells was measured in nutrient rich media. FAO dependency and flexibility of

the cells were calculated. Initial inhibition of FAO by etomoxir measures how dependent the cells are on that particular fuel source to meet the energy

demand. Using a combination of glycolytic, glutaminolytic and FAO inhibitors, the cells’ capacity and flexibility in meeting energy demand were

calculated in terms of oxygen consumption rate. (C) Fatty acid oxidation dependent mitochondrial respiration was quantified and the effects of exogenous

fatty acids (palmitate treatment) on FAO-dependent OCR in RARRES1-depleted and scrambled siRNA MCF 10A cells in glucose and serum starved

media. (D) MCF 10A were starved and treated with etomoxir to measure fatty acid oxidation rate dependent on endogenous fatty acids. Scrambled siRNA

and transient RARRES1 siRNA were measured and compared. Basal respiration and ATP production were quantified.

https://doi.org/10.1371/journal.pone.0208756.g003
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The RARRES1-depleted cells were also capable of increasing ATP content after 3 hours of

treatment unlike the control cells, in which a significant decrease in ATP concentration

occurred at this time. This indicates that even though the RARRES1-depleted cells have more

fatty acids available to oxidize for FAO, the cells in nutrient-rich conditions instead store the

fatty acids until FAO is triggered by C75.

Next, FAO was directly measured to confirm that fatty acids were preferentially stored

rather than oxidized in normal conditions as indicated in our ATP data (Fig 3A). Acylcarni-

tines are involved in the first committed step of FAO. Long chain fatty acids are catabolized to

acetyl- coenzyme A, a major fuel for mitochondrial respiration (especially during starvation),

acyl-CoAs must then be converted to acylcarnitine to cross the outer mitochondrial mem-

brane [49]. Disorders of fatty acid metabolism are typically associated with primary and sec-

ondary forms of carnitine deficiency [50]. Thus monitoring carnitine levels is an accurate way

to assess transportation of long chain fatty acids into mitochondria. Acylcarnitines were

detected and identified in our non-targeted LC-MS analysis of MCF 10A cells in which

RARRES1 was transiently depleted. Isobutyryl-L-carnitine (AC-4:0) and L-palmitoylcarnitine

(AC-6:0) were increased in the transient knockdowns (Fig 3B). The data suggests that

RARRES1 depletion increases the uptake of fatty acids into the mitochondria, either for beta

oxidation or their diversion to the cytoplasm for fatty acid elongation. To address this, we

examined fatty acid oxidation activity. FAO is a pathway that breaks down fatty acids into ace-

tyl-CoA and subsequently feeds into the tricarboxylic acid (TCA) cycle for oxidative phos-

phorylation (mitochondrial respiration) [12]. The dependency on fatty acid oxidation was

assessed by measuring OCR and treating cells with the fatty acid oxidation inhibitor (eto-

moxir) through the extracellular flux assay. There was no notable change in fatty acid oxida-

tion dependency between control and RARRES1-depleted cells (Fig 2B). As suggested in Fig

2A, RARRES1 does not affect fatty acid oxidation activity in normal conditions. This suggests

that during normal conditions (high glucose (10 mM) and serum (5%)), fatty acyl-carnitines

are most likely utilized in the mitochondria for complex fatty acid synthesis.

As was the case with C75 treatment, during glucose and serum starvation, cells redirect

their glucose dependent mitochondrial respiration to fatty acid oxidation. Because changes in

ATP content were seen in RARRES1 depleted cells after C75 treatment, we monitored fatty

acid dependent mitochondrial respiration in transient RARRES1 depleted MCF 10A and

PWR-1E epithelial cells in starved conditions (0.5 mM glucose and 1% horse serum) (Fig 3A).

MCF 10A and PWR-1E cells were used to ensure that the changes in fatty acid oxidation are

due to epithelial specific effects rather than MCF10A specific changes. We first monitored the

utilization of exogenous fatty acids for FAO by treating the cells with exogenous palmitate or

BSA (as a control). This experiment ensures that RARRES1-depleted cells do not influence

uptake of fatty acids for FAO. As expected, the OCR of RARRES1-depleted cells was indistin-

guishable from control cells after treatment with exogenous fatty acids (Fig 3C). We next

examined the utilization of endogenous fatty acids for FAO during starvation. We depleted

RARRES1 in PWR-1E and MCF 10A cells in normal conditions (10 mM glucose and 5%

serum). 24 hour after transfection, fatty acid oxidation was triggered by depleting media of glu-

cose and serum (1% serum and 0.5 mM glucose). RARRES1-depleted cells had a distinct oxy-

gen consumption pattern compared to control cells. RARRES1 depleted MCF 10A cells had an

increase in mitochondrial respiration that was reversed by treatment with the FAO inhibitor

etomoxir (Fig 3D). The normal metabolic needs of prostate epithelial cells are different than

mammary epithelial cells. For example, prostate tissue produces and secretes a significant

amount of citrate instead of diverting it towards production of endogenous fatty acids through

DNL [51]. In turn, they rely on exogenous fatty acids to induce fatty acid oxidation. Specifi-

cally during glucose starvation, they rely solely on exogenous fatty acids to produce ATP
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through mitochondrial respiration [52]. However, even in these cells, RARRES1 depletion sig-

nificantly reversed the phenotype in glucose and serum starved conditions (S7A Fig).

These data demonstrate that cells in which RARRES1 expression is reduced, a phenomenon

that occurs in (cancer cells, where the gene is silenced or suppressed, exposure to nutrient

replete conditions (or treatment with palmitate) does not trigger fatty acid oxidation. Instead,

RARRES1 depletion renders cancer cells more energetic when starved or treated with C75,

mechanisms that trigger fatty acid oxidation, due to the increase in lipid substrates available

for fatty acid oxidation. As transient starvation is a common phenomenon that occurs during

nutrient deprivation and in the center of large tumors, our data suggest that cells may adapt to

these harsh environments by reducing RARRES1 levels.

RARRES1 gene expression in common solid tumors correlates with fatty

acid metabolism genes

In addition to its role in hepatosteatosis and other metabolic disorders, RARRES1 is among

the most commonly methylated genes in multiple human tumors [53]. As our data indicate

that RARRES1 has a role in fatty acid metabolism, we wondered if the extensive transcriptomic

data available for multiple cancers also points to a relationship with fatty acid metabolism

pathways. We used publicly available cancer datasets to assess whether RARRES1 is co-

expressed with fatty acid metabolism genes. OncomineTM (Compendia Bioscience, Ann

Arbor, MI, USA) was used to identify cancers in which RARRES1 is significantly increased or

decreased (S1 Table from Oncomine). Of the identified cancers, three (breast, colorectal and

prostate) were selected for further analysis given the number of datasets found to have signifi-

cant RARRES1 gene expression changes. Interestingly, subtype analysis revealed differential

RARRES1 expression for more aggressive tumor phenotypes. For example, hormone-negative

breast cancers (e.g. TNBC vs. non-TNBC, ER+ vs. ER-, PR+ vs. PR-) and metastatic prostate

cancer have differential RARRES1 gene expression (Fig 4A).

We then sought to determine important pathways associated with RARRES1 expression.

Genes co-expressed with RARRES1 were identified via Oncomine (Compendia Bioscience,

Ann Arbor, MI) with respect to each cancer dataset (original data file available upon request).

The sets of co-expressed genes were pipelined into DAVID [54,55] for pathway enrichment

analysis (adjusted P<0.05). Enriched pathways common across all three cancer datasets were

identified (Table 1). As expected, the retinol metabolism and protein digestion pathways were

enriched across all datasets indicating a role of RARRES1 in retinoic acid biochemistry [1] and

cellular autophagy [2,3]. Importantly, pathways involved in lipid metabolism, synthesis and

signaling were identified (Table 1). These include PPAR signaling, steroid hormone biosyn-

thesis and regulation of lipolysis/fat digestion.

We next sought to assess the correlation of RARRES1 with important genes implicated in

PPAR signaling and fatty acid metabolism. These genes include PPARG, PPARGC1A, PPARA,

SCD, FASN and SREBF1. SREBF1 or Sterol regulatory element-binding transcription factor 1

(SREBP-1) protein is a transcription factor activated by mTOR which subsequently upregu-

lates genes including SCD or stearoyl-CoA desaturase 1 (SCD1) enzyme and FASN or fatty

acid synthase (FAS) that are essential in lipogenesis [56]. The interaction of peroxisome prolif-

erator-activated receptor alpha (PPARα) protein or PPARA gene with peroxisome prolifera-

tor-activated receptor gamma coactivator 1-alpha (PGC1α) protein or PPARGC1A gene

induces the transcription of genes that are important in fatty acid oxidation [57]. These genes

correlate with RARRES1 gene expression changes when all cancers are considered (Fig 4A).

For example, PPARGC1A and PPARA positively correlated with RARRES1 whereas FASN and

SCD negatively correlated with RARRES1 gene expression. This correlation pattern was further
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Fig 4. Differential expression of RARRES1 in cancers correlates with expression of fatty acid metabolism genes. Cancers where RARRES1
gene was differentially expressed were chosen and correlative analysis was done. FASN, SCD, PPARG, SREBF1, PPARGC1A and PPARA, were

chosen as candidate genes important in fatty acid oxidation and lipogenesis. (A) Three subtypes of breast cancer, 5 types of colorectal cancer

and metastatic versus primary sites of prostate cancer were analyzed and fold change difference (with p-value<0.01) was plotted for each

gene. (B) The correlative score (calculated using Pearson correlation formula) was calculated between two genes in all cancers analyzed. (C)

Alggen PROMO software predicted PPAR alpha and gamma in complex with RXR to bind to non-coding regions of RARRES1 gene (S2

Table). (D) Endogenous PPAR agonist, DHA, regulates RARRES1 expression in MCF 10A cells. (E) Synthetic agonists of PPAR alpha

(Fenofibrate) and gamma (Rosiglitazone and Pioglitazone) were used to treat MCF10A cells or primary hepatocytes for 48 hours.

https://doi.org/10.1371/journal.pone.0208756.g004
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recapitulated in all individual subtype analyses (e.g. TNBC vs. non-TNBC) (Fig 4B). RARRES1
expression therefore is positively correlated with fatty acid oxidation genes (PPARGC1A, PPARA)

and negatively correlated with lipogenesis genes (FASN, SCD). Taken together these data demon-

strate the association of RARRES1 and fatty acid metabolism in the context of cancer.

The peroxisome proliferating activated receptors correlated with RARRES1 expression are

important in lipid accumulation, storage, transportation and oxidation of fatty acids. As

PPARs are important transcriptional regulators (both negative and positive) of metabolism

genes we wondered if they might be important RARRES1 regulators. ALGEN PROMO was

used to predict whether PPAR transcription factors can bind on the non-coding regions of

RARRES1 gene [30]. This includes the promoter region and the introns of the gene. PPAR

gamma or PPAR alpha form heterodimers with retinoid x receptor (RXR) and regulate tran-

scription of genes involved in insulin action, adipocyte differentiation, lipid metabolism and

inflammation [58,59]. Peroxisome proliferating activated receptor alpha and gamma (PPARα
and PPARγ) in complex with RXR were predicted to bind to the non-coding regions of

RARRES1 gene (Fig 4C & S2 Table). In addition, examination of the publicly available

ChIP-X database, a web-based curated and interactive application that includes ChIP-chip,

ChIP-seq, ChIP-PET and DamID studies in order to identify genome binding sites and target

genes of transcription factors, for RARRES1 binding transcription factors clearly shows that

PPARs are found in association with the RARRES1 promoter [31,32,60,61].

We thus evaluated whether PPAR signaling and treatment with their fatty acid ligands can

regulate the expression of RARRES1. As noted earlier, RARRES1 is silenced in cancer cells;

therefore normal epithelial cells, where RARRES1 is endogenously expressed, are the best

models to use to assess whether PPARs can regulate the expression of RARRES1. We first

treated in MCF 10A and PWR-1E cells with an omega-3 fatty acid, docosahexaenoic acid

(DHA), an endogenous agonist of PPAR α and PPAR γ [62]. There was a rapid decrease in

RARRES1 transcription after 30 minutes of treatment and a further decrease in its transcrip-

tion at later times in MCF 10A cells (Fig 4D). RARRES1 expression in PWR-1E cells also

responded to DHA (S7B Fig). We then treated cells with synthetic PPARγ and PPARα ago-

nists to identify, which PPAR isotype regulates RARRES1 expression. We observed induction

of RARRES1 transcription by PPARγ agonists, rosiglitazone and pioglitazone, and reduction

in RARRES1 expression with fenofibrate, a PPARα agonist, after 48 hours of treatment (Fig

4E). Primary hepatocytes did not respond to rosiglitazone and pioglitazone because they do

Table 1. Common pathways identified in the analysis of genes co-expressed with RARRES1 in breast, prostate, and colorectal cancers. Pathways that were signifi-

cantly enriched and shared among the three cancer datasets (TCGA breast, TCGA Colorectal and Grasso Prostate Cancers) of genes co-expressed with RARRES1 were

listed in the table. The number of genes identified in the pathways out of the total genes identified in the pathway was listed. Statistical analysis was applied for all datasets

and the P-value and Benjamini-Hochberg value determined for each cancer dataset are included in the table. DAVID platform was used to identify the pathways relevant

in the cancer datasets.

Pathways Enriched in all

Datasets

Number of Genes (Breast; Colorectal; Prostate)/ (Total

Genes in Pathway)

P-Value (Breast; Colorectal;

Prostate)

Benjamini (Breast; Colorectal;

Prostate)

ECM-receptor interaction (40; 28; 48)/ 87 9.32E-09; 0.0035; 1.10E-08 8.85E-07; 0.032; 5.38E-07

Retinol metabolism (27; 29; 30)/65 0.000034; 4.35E-06; 6.09E-04 0.00064; 9.05E-05; 0.0043

Salivary secretion (31; 28; 40)/86 0.000175; 0.0029; 4.80E-05 0.0022; 0.022; 4.85E-04

PPAR signaling pathway (25; 21; 32)/67 4.88E-04; 0.017; 1.79E-04 0.004; 0.091; 0.00164

Steroid hormone biosynthesis (24; 25; 24)/58 0.00011; 4.66E-05; 0.012 0.0016; 6.17E-04; 0.054

Regulation of lipolysis/ Fat

Digestion

(24; 15; 24)/56 0.0000581; 0.0081; 0.0076 0.00092; 0.052; 0.38

PI3K-Akt signaling pathway (98; 83; 124)/345 0.000003; 0.0085; 1.17E-05 0.000078; 0.054; 1.71E-04

Protein digestion and

absorption

(40; 41; 41)/80 0.00000001381; 6.14E-09; 3.61E-

05

0.00000363; 4.47E-07; 4.06E-04

https://doi.org/10.1371/journal.pone.0208756.t001
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not express PPARγ (Fig 4E). This also suggests that PPARγ agonists regulate expression

through PPARγ and not by a non-specific effect. Rosiglitazone and pioglitazone are known to

induce lipid droplets whereas fenofibrate increases fatty acid oxidation and decreases lipid

droplet content [63]. RARRES1 could be regulated to attenuate the metabolic effects that are

induced by these agonists. Taken together, we show that RARRES1 is contextually correlated

with fatty acid metabolism genes in common solid tumors and we subsequently show that two

of these RARRES1 correlated genes (PPARs) modulate the expression of RARRES1.

Discussion

In this study, we have shown that RARRES1 depletion in normal epithelial cells increases lipid

content while RARRES1 overexpression decreases lipid accumulation. Second, we demon-

strate that the increase seen in RARRES1-depleted cells is through glucose-dependent de novo
lipogenesis. The phenotype is reversed when RARRES1-depleted cells are treated with C75, a

lipogenesis inhibitor. Third, we find that RARRES1-depleted cells do not trigger fatty acid oxi-

dation in nutrient replete or palmitate supplemented media. Instead, RARRES1 depletion

primes the cells to have a more energetic phenotype during starvation due to the increase in

endogenous fatty acid substrates available for FAO (Fig 5). This phenotype is reversed when

cells are treated with the FAO inhibitor, etomoxir. RARRES1 expression was also contextually

correlated to fatty acid metabolism genes in multiple cancer types. We demonstrated that two

of these genes, peroxisome proliferating activated receptor alpha and gamma (PPARα and

PPARγ) regulate RARRES1 expression in epithelial cells. These findings identify RARRES1 as

a novel regulator of lipid metabolism.

Our data is supported by examination of publicly available databases that have listed

RARRES1 as one of many genes regulated in metabolic diseases. For example RARRES1 is the

most up-regulated gene in subcutaneous fat from obese human subjects on a diet-induced

weight loss regimen, and is among the most downregulated genes in adipose tissue during

weight maintenance in the obese human subjects [4]. Examination of deposited microarray

data from a study focusing on hyperinsulinemia indicated that RARRES1 was also markedly

decreased after insulin treatment in human skeletal muscles [64]. RARRES1 increased during

dedifferentiation of adipocytes and decreased during differentiation and is differentially

expressed in mouse models of hepatic steatosis and cholestatic liver disease [6,7,65]. Our study

is the first to demonstrate a direct role for RARRES1 in the changes of lipid metabolism associ-

ated with these metabolic diseases.

RARRES1 is silenced in colorectal cancer, prostate cancer, nasopharyngeal cancer, Wilms

tumor and leukemia [8,35]. Colorectal cancer and prostate cancer cell lines transfected with

RARRES1 were less invasive and more apoptotic [66]. These findings support the idea of

RARRES1 as a tumor suppressor, although this has not been formally demonstrated in ani-

mals. However, RARRES1 is increased in some mesenchymal-like cancers such as triple nega-

tive breast cancer [10,53] (Fig 4A). The present study demonstrates an important role for

RARRES1 in fatty acid metabolism and may explain the duality of RARRES1 in cancer etiol-

ogy. The role of fatty metabolism on cancer progression is also contextual. During nutrient

deprivation, fatty acid degradation is necessary and fatty acid synthesis, specifically DNL, is

increased in metastasis and certain cancers like prostate cancer, consistent with the decrease of

RARRES1 expression in prostate cancer [51,67,68]. There is also evidence of changes in fatty

acid metabolism preference in different subtypes of breast cancer, in which RARRES1 is differ-

entially expressed. For example, fatty acid oxidation is disproportionately dysregulated in triple

negative breast cancers compared to other subtypes of breast cancer [69]. Hormone receptor

status in breast cancer also correlates with changes in lipid metabolism [70].
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Fig 5. Effects of RARRES1 depleted vs. RARRES1-expressing epithelial cells on lipid metabolism. Unlike RARRES1 expressing

cells, RARRES1 depleted cells increase de novo lipogenesis. This effect enables cells to improve mitochondrial respiration during

starvation due to an increase in endogenous fatty acid availability. In RARRES1 expressing epithelial cells, glucose is mostly

directed to lactate production in normal conditions. During serum starvation expression of RARRES1 increases and exasperates the

lipid availability for fatty acid oxidation. ETC: Electron transport chain; TCA: tricarboxylic acid cycle; DHA: docosahexaenoic Acid.

https://doi.org/10.1371/journal.pone.0208756.g005
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In summary, this study demonstrates that RARRES1 is a novel regulator of fatty acid

metabolism in epithelial cells and points to an important role in diseases in which lipid metab-

olism is a hallmark of disease progression. Treatments that regulate RARRES1 expression or

activity could have utility in obesity, cholestatic liver disease, heart disease (in which RARRES1

expression is markedly decreased in hypertrophic and dilated cardiomyopathy) and cancers

where lipogenesis is crucial for the progression of certain tumors [71].

Supporting information

S1 Fig. Non-targeted LC-MS analysis of transient RARRES1 KD in MCF 10A cells. (A)

Heat map of all metabolites significantly altered were depicted. (B) Important features in tran-

sient RARRES1 KD MCF 10A cells were selected by volcano plot with fold change threshold

(x) 2 and t-tests threshold (y) 0.05. The red circles represent features above the threshold. Not

the fold changes are log transformed. The further its position away from (0,0), the more signif-

icant the feature is.

(TIFF)

S2 Fig. Metabolites detected in positive and negative mode LC-MS that were significantly

altered in transient RARRES1 knockdown were validated through peak matching. Above

each graph, the lipid classification (name), mass/charge (m/z), retention time (RT), and type of

adduct (M±ion), depicted as name; m/z_RT; M±ion; are included. Only metabolites with sig-

nificant changes, in terms of scramble vs. RARRES1 knockdown, were validated. (A) The iden-

tity of the metabolite was validated using tandem mass spectrometry. The daughter and parent

ions for the metabolites were matched with the MS/MS spectra available in HMDB, SimLipid

software V6.01 (Premier Biosoft, Palo Alto, CA, USA) and LIPID MAPS [17–19]. (B) Addi-

tional validations for lipids were done through SimLipid software using MSE data.

(PDF)

S3 Fig. GC-MS analysis. (A) Important features in transient RARRES1 KD MCF 10A cells

were selected by volcano plot with fold change threshold (x) 2 and t-tests threshold (y) 0.05.

The red circles represent features above the threshold. Not the fold changes are log trans-

formed. The further its position is away from (0,0), the more significant the feature is. (B)

Oleic acid GC-MS fragmentation pattern peaks in transient RARRES1 KD and scramble MCF

10A cells were aligned against the fragmentation pattern peaks available in NIST database. (C)

Detected palmitic acid was quantified and normalized against the peak intensity of the scram-

ble control. (D) Stearic acid, myristic acid and cholesterol were detected in GC-MS and quan-

tified in transient RARRES1 KD PWR-1E and primary human hepatocytes. The fold change is

in terms of the peak intensity of the corresponding metabolites in the appropriate scrambled

siRNA transfected control cells.

(TIFF)

S4 Fig. RARRES1 regulates lipid content. (A) Transient RARRES1 KD MCF 10A cells were

stained with Nile Red to validate the Oil Red O staining results in Fig 1C. Oleic acid treatment

was used as a positive control. (B) RARRES1-YFP was overexpressed or YFP (negative control)

in oleic acid treated MCF 10A cells and droplets were stained with Oil Red O. (C) DAPI stain-

ing of RARRES1-YFP and YFP overexpression in HEK 293T cells (Fig 2B). Arrows point at

RARRES1-transfected or YFP-transfected cells in Fig 2B. (D) MCF 10A cells were either

grown in nutrient rich media (labeled as control) or starved for 24 hours. Starved cells were

also transfected with RARRES1 siRNA to ensure RARRES1 KD is efficient to perform experi-

ments when cells are starved. Western blot was run to analyze the expression of RARRES1.

Alpha-tubulin was used as the loading control. The band intensities of each sample was
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quantified using ImageJ and normalized to alpha-tubulin. The final fold change was based

upon RARRES1 expression in control cells. Refer to S9 Fig for full-length blots.

(TIFF)

S5 Fig. LC-MS of stable RARRES1 knockdown MCF 10A cells. Citrate was confirmed by

comparing the retention time under the same chromatographic conditions and by matching

the fragmentation pattern of the parent ion from the biological sample to that of the standard

metabolite using tandem mass spectrometry (UPLC-TOFMS/MS). Citrate (or citric acid)

peaks are displayed below the peaks of the predicted citrate metabolite in the cell extract.

(TIFF)

S6 Fig. Glycolytic activity in RARRES1-depleted epithelial cells. (A) Glycolytic usage and

capacity was quantified in transient RARRES1 knockdown in MCF 10A cells by using the Gly-

colysis Stress Test. (B) Oxygen consumption rate measurement was assessed after glucose

injection in the Seahorse XF Flux machine. (C) Transient glycolytic activity was assessed in

PWR-1E cells with transient RARRES1 knockdown by using the Seahorse Glycolysis Stress

Test. Glycolytic usage and capacity was quantified.(D) RARRES1-siRNA or scrambled siRNA

transfected cells were treated with vehicle (EtOH), or 40 μM C75 for 2 hours or 4 hours. Cells

were stained with Oil Red O and DAPI.

(TIFF)

S7 Fig. Fatty acid oxidation activity in RARRES1-depleted epithelial cells. (A) PWR-1E

cells were starved (1% serum and 0.5 mM glucose) and treated with etomoxir to measure fatty

acid oxidation rate dependent on endogenous fatty acids. Scrambled siRNA and transient

RARRES1 siRNA were measured and compared. Basal respiration and ATP production were

quantified. (B) PWR-1E cells were treated with DHA for 5 hours and 17 hours. qPCR was run

to assess RARRES1 expression. 18S gene was used as the endogenous control.

(TIFF)

S8 Fig. RARRES1-YFP and RARRES1 siRNA transfection efficiency. (a) RARRES1-YFP

(expected band ~ 60 kDa) expression was validated in HEK 293 T cells. Tubulin or GAPDH

was used as a loading control. The image was cropped, and lanes were juxtaposed; black line is

drawn to describe the boundary. The full-length blot is presented in S9A Fig. RARRES1-YFP

overexpression was also confirmed in MCF 10A cells. The full-length blot is presented in S9B

Fig. (b) Western blot was done to confirm the transient RARRES1 knockdown efficiency in

MCF 10A cells. The full-length blot is presented in S9E Fig. (C) qPCR was run to validate

RARRES1 knockdown in PWR-1E cells. Transcript levels were normalized to the level of 18S.

RARRES1 protein expression was confirmed in our previous study[33]. (D) Stable RARRES1

knockdown in MCF 10A cells were validated through RT-PCR. Beta-actin was used as a load-

ing control. Full-length gel is presented in S9C Fig. (E) Stable RARRES1 knockdown was also

confirmed through western blot. Alpha-tubulin was used as a loading control. Full-length

blots are presented in S9D Fig.

(PDF)

S9 Fig. Full-length gels. (A) RARRES1-YFP overexpression confirmation. We included trans-

fection of truncated RARRES1-YFP and RARRES1 overexpression with no tag in order to

assess the efficiency of transfection and validate that the full-length RARRES1 is being

expressed. (B) Full-length blot of RARES1-YFP overexpression in MCF 10A cells is repre-

sented. NA (not applicable) was labeled on lanes that were irrelevant to the study. (C)

RARRES1 knockdown efficiency was assessed. The full-length film with four different blots

(examining different proteins (not relevant to this study)) is included. And the relevant blot
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was highlighted with black boundaries. Control cells with no transfection and scrambled

siRNA and RARRES1 siRNA transfected MCF 10A cells were assessed. GAPDH was selected

as a loading control. (D) Full-length blots of RARRES1 stable knockdown western blots are

pictured. The left blot is probed for RARRES1 while the blot on the right is probed for alpha

tubulin. The lanes that are relevant to this study are highlighted in black borders. (E) Full

length gel of the stable RARRES1 knockdown MCF 10A cells. Empty vector was also trans-

fected with RARRES1 siRNA to ensure the band is RARRES1-specific. Beta-actin was used as a

loading control. Note: The third sample had to be loaded to a new lane (4th band) due to tech-

nical issues that occurred while loading sample the first time (3rd band). (F) Full length blot of

the effects of serum starvation on RARRES1 western blots are pictured. The top blot is probed

for RARRES1 while the blot on the bottom is probed for alpha tubulin.

(PDF)

S1 Table. Oncomine Analysis: Cancer Summary for RARRES1 Expression. The Oncomine

database was queried for RARRES1 expression in the available datasets based on the follow-

ing criteria: cancer type, cancer versus normal, cancer versus cancer, cancer subtype, cancer

versus baseline, pathway and drug and outlier analyses. The ’red’ cells represent RARRES1

overexpression and the ’blue’ cells represent RARRES1 underexpression. The levels of ex-

pression are based on the gene rank percentile. This disease summary was performed using a

criterion of a 2-fold change for RARRES1 expression and a p-value of 1E-4. (Oncomine plat-

form (C).

(TIFF)

S2 Table. Prediction of PPAR-gamma:RXR-alpha and PPAR-alpha:RXR-alpha binding to

Non-coding Regions of RARRES1 gene using Algen PROMO. In silico identification of

PPAR-alpha and PPAR-gamma binding sites and within human RARRES1 gene promoter and

intron 1 (non-coding regions). Raw data are shown for PPAR-alpha and PPAR-gamma bind-

ing sites in RARRES1 non-coding regions. Numbering is based on the transcription start site

at position 1000. PROMO displays RARRES1 and PPAR-gamma and -alpha as indicated,

along with calculated start and end positions of transcription factor (TF) binding sites. Dissim-

ilarity values give the percent difference in sequence similarity between the RARRES1

sequence and the calculated transcription factor (TF) consensus matrix. RE, or random expec-

tation, yields the probability that the TF consensus binding sequence would happen by chance,

where 0.1 signifies 1 incidence in every 104 bases. Sequences for potential binding sites pre-

dicted by the software are included in the table.

(TIFF)

S1 File. Expression Level of RARRES1 and fatty acid metabolism genes in common solid

tumors. Genes important in fatty acid metabolism pathway were further assessed for co-

expression with RARRES1 with respect to cancer subtypes (e.g. ER+ vs ER-) via correlation

coefficients. Within the cancers selected, individual datasets were chosen given their large sam-

ple sizes and subtype analyses. Thus, the The Cancer Genome Atlas (TCGA) Breast Cancer,

TCGA Colorectal Cancer, and Grasso Prostate datasets were selected. The Grasso Prostate

dataset was also uniquely selected for its metastatic vs. primary analysis [23]. For the TCGA

Breast Cancer dataset, subtype analysis was stratified into ER+ vs. ER- status; PR+ vs. PR- sta-

tus and Triple Negative (PR-, HER2- & ER-) vs. non-Triple Negative [24]. Metastatic vs. pri-

mary site analysis was performed in the Grasso Prostate dataset. All colorectal cancer types

(rectal mucinous adenocarcinoma, colonadenocarcinoma, rectal adenocarcinoma, colon

mucinous adenocarcinoma and cecum adenocarcinoma) identified in the TCGA dataset were

also analyzed in comparison to their respective normal samples. Selected genes included the
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following: PPARG, PPARA, PPARGC1A, SREBF1, FASN, SCD1 and CPT1A. Gene rank, p-

value, t-test, q-test and fold change are included in the analysis.

(XLSX)
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