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Muscle tissue is a fundamentally eumetazoan attribute. The oldest evidence for

fossilized muscular tissue before the Early Cambrian has hitherto remai-

ned moot, being reliant upon indirect evidence in the form of Late Ediacaran

ichnofossils. We here report a candidate muscle-bearing organism, Haootia
quadriformis n. gen., n. sp., from approximately 560 Ma strata in Newfound-

land, Canada. This taxon exhibits sediment moulds of twisted, superimposed

fibrous bundles arranged quadrilaterally, extending into four prominent bifur-

cating corner branches. Haootia is distinct from all previously published

contemporaneous Ediacaran macrofossils in its symmetrically fibrous, rather

than frondose, architecture. Its bundled fibres, morphology, and taphonomy

compare well with the muscle fibres of fossil and extant Cnidaria, particularly

the benthic Staurozoa. Haootia quadriformis thus potentially provides the earliest

body fossil evidence for both metazoan musculature, and for Eumetazoa, in the

geological record.
1. Introduction
Sediments of Late Ediacaran age (approx. 580–541 Ma) record the fossilized

remains of a diverse global assemblage of soft-bodied macro-organisms. The

biological affinities of these Late Ediacaran macrofossils remain the subject of con-

siderable debate (summarized in [1]). Following their initial discovery, Ediacaran

soft-bodied organisms were commonly assigned to metazoan groups (e.g. [2], or

the classification tables in [3], pp. 240–242). However, the revolution in Ediacaran

thinking brought about by the Vendobiont hypothesis of Seilacher [4] led to recon-

sideration of many of those assignments. Recent years have witnessed a trend

towards interpreting individual taxa as candidate stem- and crown-group meta-

zoans. Described with varying degrees of confidence, these currently include

potential sponges [5–8], anthozoan, hydrozoan and scyphozoan cnidarians

[9–11], ctenophores [12], placozoans [13], early molluscs ([14]; though see [15])

and even ascidian chordates [16]. These fossils are largely found in successions

of approximately 555–541 Ma, in South China, Brazil, the White Sea region

of Russia, Namibia and the Flinders Ranges of South Australia [17,18]. Further

evidence for the presence of metazoans in the Late Ediacaran period, and indirec-

tly for muscular tissue, comes from simple, putatively bilaterian, surface trace

fossils from the previously mentioned localities [19–21], horizontal surface

traces with crescentic internal divisions made by motile, muscular organisms

[22,23] approximately 565 Ma [24], and vertical equilibration traces from

Newfoundland [23]. Prior to 565 Ma, the potential fossil record of animals is

restricted to claims for biomarkers (e.g. demosponge steranes of more than
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635 Ma [25]; though see [26]); various specimens interpreted as

possible sponges from the Early and Middle Neoproterozoic

([27–29]; though see [8]); and traces of contested age and

origin [30–32]. The absence of clear metazoan body fossils

until the latest Ediacaran Period renders these earliest reports

open to debate. Independent estimates for the first appearance

of animals in the Neoproterozoic vary widely, but recent mol-

ecular phylogenetic studies predict that most stem-group

divergences between extant metazoan phyla occurred within

the Cryogenian and Ediacaran Periods [33].

Newfoundland, in eastern Canada, contains some of the

oldest non-algal Ediacaran macrofossil assemblages, dated to

approximately 579–560 Ma [34]. Although ichnological evi-

dence for the presence of metazoans in assemblages of this

age has been reported [22,23,35], metazoan body plans have

yet to be convincingly demonstrated. We here report Haootia
quadriformis n. gen., n. sp. (figure 1) from the lower Fermeuse

Formation of the Bonavista Peninsula of Newfoundland

(approx. 560 Ma; electronic supplementary material, figure S1

and text S1). This organism exhibits structures wholly consist-

ent with collagenous musculature, in the form of twisted and

superimposed fibrous bundles arranged in a quadrilaterally

symmetrical pattern.
2. Systematic Palaeontology
Phylum CNIDARIA Hatschek, 1888 [36]

Genus HAOOTIA gen. nov.

Derivation of name. From the Beothuk (language of the

indigenous population of Newfoundland) term Haoot, mean-

ing demon, describing the striking appearance of the holotype.

Type species. Haootia quadriformis n. gen., n. sp.

Diagnosis (of genus). Soft-bodied, quadrilaterally sym-

metrical organism possessing a smooth discoidal structure

connected by a relatively short stem to a quadrate body com-

prising numerous regularly aligned linear fibres. The fibres

extend laterally across the body, linking adjacent corners.

Converging fibres extend beyond each corner to form an

elongate branch, which divides dichotomously to form smal-

ler, distally tapering sub-branches. Smaller branches also

emanate from the lateral margins of the quadrate body, and

these too branch dichotomously.

Haootia quadriformis sp. nov.

Derivation of name. From the Latin quadri (fourfold), and

formis (form), relating to the quadrilateral symmetry of the

organism’s body.

Holotype. The original specimen, discovered by M.D.B. in

2008, remains uncollected in the field according to provincial

law in Newfoundland. A plastotype is held within the collec-

tions of the Oxford University Museum of Natural History,

specimen OUM ÁT.424/p.

Horizon and locality. From the lower part of the Late

Ediacaran Fermeuse Formation, St John’s Group [37]. The

specimen resides within a turbiditic marine succession (elec-

tronic supplementary material, text S1 and figure S2) on the

north shore of Back Cove, roughly 1.8 km NNW of the

town of Melrose, Bonavista Peninsula, Newfoundland,

Canada (electronic supplementary material, figure S1).

Diagnosis. As per the genus.

Remarks. Haootia quadriformis n. gen., n. sp. is known from the

holotype specimen, and one additional incomplete specimen

from the Trepassey Formation of Burnt Point, Bonavista
Peninsula (figure 1f; electronic supplementary material, figures

S1 and S5; designated the paratype). The smaller paratype speci-

men has been preserved in lateral view and displays an

anchoring support structure, lineated stem and a furrowed

body with apparent branches (figure 1f; electronic supplemen-

tary material, figure S5).

Description. The non-retrodeformed holotype bears a

discoidal structure 56 � 37 mm in diameter, preserved in nega-

tive epirelief. The disc interior is smooth, apart from faint

concentric ridges at its outer margin (figure 1a), and a small

slightly raised central structure of 9 mm diameter with several

tight concentric rings (figure 1e). This central structure appears

to form the attachment point for a short 7-mm wide, lineated

stalk-like structure, 32 mm in length, which extends to the

centre of the quadrate body (figure 1a). The body is preserved

as a rectangular sheet 49 � 72 mm in dimension, characterized

by well-defined positive epirelief linear ridges (fibres) that are

100–600 mm wide and have peaks spaced 200 mm–1 mm

apart. Individual fibres are finely lineated, exhibiting a struc-

ture composed of bundles of parallel strands (figure 1a,b). In

places, these strands split and then re-join (figure 1b). At the

four corners of the body, the fibres converge to form bundles

that progress distally into elongate extensions, here termed

branches (figure 1c). Each of the four corner branches bifurcates

up to three times, and taper towards their distal end, with those

fibres that persist distally decreasing in number after each suc-

cessive branching point (figure 1a,c). Branches were originally

flexible, as demonstrated by 1808 changes in direction of some

examples to face the predominant flow direction (as inferred

from alignment of nearby unipolar rangeomorphs and Char-
niodiscus specimens; figure 1a), and by their apparent ability

to become twisted and rotated (figure 1c). Location of the

bulk of the organism down-current of the circular disc

in both known specimens is consistent with entrainment by

a flow on the seafloor prior to burial (figure 1a,f; electronic

supplementary material, figure S5).

Along the margins of the body sheet, between the four

corners, further smaller bundles of linear fibres converge to

form small branches that divide dichotomously. Addition-

ally, along the two shorter edges of the compacted body,

linear fibres running from the adjacent corners combine to

form bundles that bulge in the middle (figure 1a). By contrast,

along the two longer edges, the fibres are less obviously clus-

tered into discrete structures, and continue broadly parallel to

one another.

A prominent linear structure preserved in positive epirelief

runs up the centre-right of the impression, and the fibres of the

surface of the body appear to drape over it (figure 1a). The

narrow morphology of this structure and its similar topo-

graphic relief to the branches leads us to suggest that it

reflects a primary branch from the lower right corner (as seen

in figure 1a), folded beneath the body at the time of burial.

Discussion. Haootia quadriformis displays several unique

morphological traits, the most striking of which is an apparently

symmetrical, fibrous body with regularly arranged branches

(figure 2b). The superficial impression of bilateral symmetry in

the holotype (figure 2c) was arguably brought about by oblique

collapse and differential contraction of the body. Biostratinomic

distortion is further enhanced by tectonic stretching. We thus

infer that the original body was quadrilaterally symmetrical in

life (figures 2d and 3b), and we suggest that the bedding plane

relationships of the holotype specimen indicate composite pres-

ervation of a mould of the base of the anchoring adhesive disc,
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Figure 1. Haootia quadriformis n. gen., n. sp., lower Fermeuse Formation of Back Cove, Bonavista Peninsula, Newfoundland. (a) Haootia quadriformis holotype
specimen. Note the negative-relief central disc, interpreted as a holdfast, and the broadly bilaterally symmetrical bundles of linear ridges, extending into discrete
bifurcating branches. Inferred current direction indicated by the arrow. (b) Fibres running along the right-hand margin of Haootia; each fibre is composed of finer,
thinner fibres. (c) Bottom left corner of Haootia, detailing the connection between a primary bifurcating branch and the main body. Note the twisted fibres along
the branch. (d ) Pinching, bundling and superposition of fibres at the base of a subsidiary branch. (e) The small circular depression at the centre of the disc, showing
mantling parallel fibres forming the base of a short stalk that connects the disc to the body. ( f ) Incomplete paratype specimen of H. quadriformis, from the
Trepassey Formation of Burnt Point, Bonavista Peninsula. This specimen is preserved on its side, but clearly displays fibres extending up its stem and around
the body. A small partially buried holdfast disc is arrowed. Scales bars (a,c,f ), 10 mm; (b,d,e), 5 mm.
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and the upper surface and internal structure of the body. The

apparent draping of the quadrate body over the disc edge

implies that the body lay above both the disc and stem on the

seafloor at the time of burial (figure 1a). On the basis of
the position of the disc upstream of the quadrate body, we

infer that the disc was a tethering structure similar to those of

associated frondose taxa (e.g. electronic supplementary

material, figure S3a–c), and that Haootia was epibenthic.
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Figure 2. Digitized images of H. quadriformis n. gen., n. sp., emphasizing the convergence of fibrous linear features at the corners of the body, and the symmetry of
the fossil. (a) Photograph of the holotype as it appears in situ. (b) Interpretive sketch of the non-retrodeformed specimen. Labels indicate: (a) muscle bundles,
(b) expanded bundles, (c) ‘contracted’ bundles, (d ) twisting fibres, (e) superimposed fibres and ( f ) disc. (c) Digitized overlay of the fossil. Symmetrical regions of
the organism are colour coded. Note the thick bulging of fibres (indicating muscle contraction?) along short axes of the sheet (light green). (d ) As in (b), but the
image has been corrected to account for tectonic deformation on the surface by compressing the disc into a perfectly circular structure (cf. [38], though see [39]).
Scale bar, 10 mm.
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The complex structure of H. quadriformis, with prominent

bundles of fibres showing consistent directional changes

within a discrete sheet-like structure, is not readily explained

by tectonic or sedimentological processes. Unusual environ-

mental taphonomic conditions can also be ruled out, because

neighbouring specimens of recognizable macrofossil taxa on

the bedding planes (e.g. figure 1a) do not differ in preservation

or appearance from those found abundantly throughout the

region. All other fossil impressions on these surfaces (electronic

supplementary material, figure S3) lack fibrous structures of

the kind described here.
3. Is this a known Ediacaran macrofossil taxon?
Whereas typical frondose Ediacaran taxa possess either leaf-like

morphologies or some evidence for alternating rangeomorph
branching elements [41,42], such features are lacking in Haootia.
Primocandelabrum sp. [37] (electronic supplementary material,

figure S6d), a superficially similar contemporaneous rangeo-

morph bearing multiple branches attached by a stem to a disc,

can be distinguished by its lack of quadrilateral symmetry,

and its rangeomorph branching. Furthermore, in rare specimens

where longitudinal ridges are preserved along the length of a

Primocandelabrum [43], such ridges are wider, more broadly

spaced and less regular in arrangement than those seen in

Haootia. The disc in the holotype Haootia specimen also differs

distinctly from others found on the same surface, being

smoother, with lower topographic relief (figure 1a) and fewer

concentric rings (electronic supplementary material, figure S3).

Examples of putative tissue differentiation in Ediacaran

macrofossils have typically proved controversial. Structures

interpreted as external sheaths and membranes have been

described in Pteridinium and Rangea from Namibia [44,45],



(b)

(a)

Figure 3. (a) The extant staurozoan Lucernaria quadricornis, exhibiting a
body plan similar to that hypothesized for H. quadriformis n. gen., n. sp.
The Staurozoa are known from a range of marine depositional environments
and water depths [40]. (b) Artistic reconstruction of H. quadriformis. Scale
bars, 10 mm.
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and in rare rangeomorphs from Newfoundland [46], although

the latter examples likely have a sedimentological origin [47].

Such claimed sheaths are typically smooth and lack the fibrous

character of Haootia. The internal anatomy of other Ediacaran

macrofossils is largely inferred from composite impressions

explained by biostratinomic collapse of tissues (e.g. [48],

fig. 2), or from three-dimensional specimens in-filled by sedi-

ment (e.g. [49,50]). However, such typically lobate structures

do not exhibit the wavy fibrous symmetry of H. quadriformis.
Whereas the linear fibrous construction of the alga Flabellophy-
ton from South China and Australia [51] shows some similarity

with fibres of Haootia, those fossils lack a large holdfast, a stem-

mounted body or quadrilateral symmetry. It could be argued

that the linear fibres in Haootia result from the deformation or

twisting of a non-muscular integument, but that cannot explain

their presence across the whole body, their multi-directionality

or their symmetry. Rough comparison may be made with the
‘crumpled’ margins of Karakhtia from the White Sea [52], but

the folds in Karakhtia are irregular in shape and direction, radi-

ate from the centre of the organism to the outer margin, and

become more finely spaced towards the specimen edges.

Differences are also apparent when considering linear features

associated with ‘mop’ structures in Australia. ‘Mop’ plausibly

results when a disc, embedded in a microbial mat, has been

dragged by unidirectional currents [53] to produce uni-

directional or evenly radiating marks. By contrast, Haootia
fibres form bands that are multidirectional, often running paral-

lel to the margins of the impression and appearing to converge

with neighbouring fibres (figure 1a). Longitudinal furrows are

known within ribbon-like Harlaniella [54]. Such linear features

demonstrate how individual Ediacaran taxa can exhibit a

variety of putative internal morphologies as a result of differen-

tial taphonomic processes. Such features will also require

explanation, but on the available evidence, we do not consider

Haootia to represent a taphonomic variant of any currently

known Ediacaran taxon. Contemporaneous microbial fabrics

can exhibit linear striated morphologies (e.g. Arumberia [55]),

but are not typically localized in their occurrence, do not pos-

sess a sharp boundary to the impression, and are not known

to form symmetrically arranged bifurcating structures.
4. Metazoan affinities?
Haootia’s size and complex, regular morphology demand con-

sideration of metazoan affinities. Its symmetry and the lack of

evidence for pores or spicules argue against Porifera (following

[8]). The presence of numerous branches, absence of comb rows

and inferred benthic mode of life likewise make comparison

with Ctenophora problematic. Possession of quadrilateral

structure, a central radial disc and fibrous soft tissues, clearly

invite comparison with living and fossil Cnidaria.

Although the extant phylum Cnidaria includes morphologi-

cally and genetically disparate taxa [56,57], their molecular

phylogeny confirms a basal position within the Eumetazoa

[58]. Cnidarians are classically united by the possession of

cnidocytes, diploblastic construction and radial symmetry, but

suggestions of a wider variety of symmetry states (e.g. [59–

61]) are supported by genetic arguments for the presence of

bilateral symmetry in the eumetazoan common ancestor [62],

and the presence of a mesoderm-like layer has been recognized

in some cnidarian taxa (cf. [63]; electronic supplementary

material, text S2).

The bundles of fibrous ridges within the body of Haootia
compare favourably in size, order and arrangement to the

preserved muscular tissue of modern cnidarians. Cnidarians

can possess smooth and/or striated muscular tissue [63,64]

(electronic supplementary material, text S2), both of which

can form fibrous bundles arranged in a similar manner to

those in Haootia [65] (figure 3a; electronic supplementary

material, figure S6). Rare fossil examples of cnidarian muscu-

lar tissue (e.g. [66–68]) typically comprise impressions of

regularly arranged ridges (e.g. [67], p. 63, fig. 55). These are

best known in fossil scyphozoan medusae, where coronal

and radial muscles of the sub-umbrella are often grouped

into bundles (e.g. [69]) and are preserved as casts and

moulds in a taphonomic style similar to that seen in the

Ediacaran siliciclastic settings of Newfoundland [70]. The mor-

phology of soft-bodied fossil cnidarians is typically influenced

by muscle contraction at the time of burial [67]. Twisting and
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overlapping of fossil medusa tentacles [71] also compare clo-

sely with Haootia’s flexible branches. Phalloidin fluorescence

reveals that the 1–2.5 mm-width smooth muscle fibres in the

extant parasitic hydrozoan Polypodium hydriforme run longitud-

inally up the length of the tentacles [65] in an arrangement

strikingly similar to individual fibres in H. quadriformis. Fur-

thermore, the junction between muscles in the tentacles and

those in the body of P. hydriforme produces a similar ‘truncated’

surface to the ridges observed in Haootia (figure 1d; [65], fig. 4a),

and individual fibres can also split and/or join one another.

These morphological and structural similarities lead us to the

conclusion that the fibrous structures preserved within Haootia
may well represent the soft tissue impressions of cnidarian

musculature. If so, this specimen significantly pre-dates pre-

viously documented preserved muscular tissues, the oldest

of which are Early Cambrian in age [72,73].

Striated muscle fibres have been demonstrated to be pre-

sent in the cubozoan Tripedalia cystophora ([74], fig. 5), and

although individual fibres are of smaller magnitude than

those seen in H. quadriformis, they are nevertheless very simi-

lar in gross morphology. Smooth muscle has also been

observed to form macroscopic fibrous bundles within the ten-

tacles of several scyphozoans [63] and cubozoans [74,75].

Distinguishing between bundles of smooth and striated

muscle cells in the fossil record is not likely to be possible

when only soft tissue impressions are available for study.

In the living actinian Metridium, the better-developed

(smooth) longitudinal muscles are notably found in the ecto-

derm of the tentacles, with circular muscles located in the

endoderm ([76], p. 79; contra [77]). This differentiation of

muscle groups within different tissues may explain why we

only see longitudinal ridges along the branches of Haootia,

with no clear evidence for circular bands.

The preservation of muscular tissue in the Phanerozoic

is uncommon and is typically restricted to Konservat

Lagerstätten [78]. In many cases, particularly involving arthro-

pod and vertebrate muscle, preservation takes place via

authigenic replacement of muscular tissues by calcium phos-

phate or clay minerals [79], or via sulfurization of organic

matter [68]. In the Ediacaran, taphonomic processes were

significantly different, and soft tissue preservation was com-

monly facilitated by the early diagenetic, microbially induced

casting of fossil exteriors in framboidal pyrite [47,80] or by

rapid burial beneath volcanic ash [81]. Such mouldic preserva-

tion is unusual in the Phanerozoic, but has been documented to

preserve cnidarians (and significantly impressions of their

muscular tissue) at several localities [71].

An important consideration is explaining how internal

muscle tissues are preserved in this manner, when in other

Ediacaran macrofossils we typically only see external mor-

phology. In taphonomic experiments involving modern

hydrozoans and scyphozoans, impressions of muscular tissues

were not preserved [82,83]. However, the absence of microbial

mats on the experimental surfaces [82], and the desiccation of

specimens [83], precludes direct comparison between those

studies and Ediacaran taphonomic conditions. We suggest

that rapid degradation of an external integument in Haootia
(such as the epidermis, less than 50 mm thick in some modern

cnidarians [84]) upon death and burial exposed the relatively

more robust muscular tissues and permitted them to be cast in

the same manner as contemporaneous Ediacaran macrofossils.

We infer that the muscle-like fibres seen in Haootia likely

facilitated extension and retraction of branches for gathering
food, as with the tentacles of modern cnidarian polyps.

We see neither a distinct mouth-like structure nor a gastro-

vascular cavity, so their presence must be inferred at the

centre of the quadrilateral body. Similarly, structures similar

to canals or mesenteries are not clearly distinguishable.

Interpretation of the disc as a benthic holdfast then implies a

polyp-like organism, with a gross body-plan most similar to

that of living staurozoans (e.g. figure 3). The fibres within

Haootia are consistent with the positioning of muscular fibres

in the calyx of modern Staurozoa [85] (figure 3a), being longi-

tudinal within the stalk and branches of the specimen but

mainly positioned laterally (i.e. parallel to the margins in a

manner analogous to coronal musculature in modern forms

[84]) in the body. However, the additional marginal branches

in Haootia are unlike anything seen in staurozoans, which typi-

cally possess only eight arms. Haootia also lacks fossilized

evidence for morphological features such as anchors, gonads,

nematocyst clusters or characteristic tissue structures observed

in histological sections through modern Staurozoa (e.g. ref.

[84]). As Haootia is also considerably larger than most extant

Staurozoa and possesses an unusually large holdfast disc, we

are not in a position to assign it to the class Staurozoa on the

basis of available evidence. Cubozoans can also possess bifur-

cating tentacles and fourfold symmetry, but extant forms are

pelagic, not benthic as inferred for Haootia.

Interestingly, symplesiomorphies within the Medusozoa

have been proposed to include the presence of four intra-

mesogleal muscles [40]. The Medusozoa are usually

considered to have a long evolutionary history, with divergence

from the Octocorallia conservatively estimated to have taken

place at least approximately 571 Ma [86]. If correct, medu-

sozoan ancestors, and indeed diverse cnidarian ancestors,

would be expected within Late Ediacaran marine environ-

ments. The suggestion that Staurozoa is the sister group to all

other medusozoan classes ([40,87], though see [58]) potentially

indicates a similarly ancient evolutionary history for that clade.

Further comparisons with the body plans of extant cnidarians

are limited by our poor understanding of deep sea forms [88],

and the absence of many extinct forms (cf. [59]). Until further

morphological evidence is obtained, we therefore suggest

that the muscular H. quadriformis n. gen., n. sp. occupied

a position within the Cnidaria, and potentially within the

stem-group Medusozoa.
5. The significance of a cnidarian at
approximately 560 Ma

Interpretation of H. quadriformis as a muscular cnidarian leads

us to examine the early fossil record of the phylum Cnidaria.

Cnidarians appear to have diversified into several major

clades by the Middle Cambrian, as evidenced by the presence

of probable anthozoan actinians [89–92] and corals [93–96],

scyphozoans [97], possible hydrozoans and cubozoans [66,98]

and cnidarians of unknown affinity [99] in Lower and Middle

Cambrian strata, with conulariids [100] and mass strandings

of medusae [101,102] additionally reported in the Upper

Cambrian (see also [71]). Some of the earliest interpretations

of the original Ediacara biota of Australia proposed cnidarian

medusoid affinities for discoidal specimens [103–105], but

many of these have since been disputed (e.g. [71,106]).

Similarly, interpretation of Inaria as an actinian-grade, muscle-

bearing polyp [107] has been questioned following taphonomic
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and morphodynamic analysis [77]. Other reports of cnidarians

in latest Ediacaran rocks include Pambikalbae as a ?hydrozoan

[108]; interpretation of the tubular fossils Corumbella and

Vendoconularia as scyphozoans similar to the conulariids

[9,11,109]; discussion of the biomineralized genera Cloudina
and Namacalathus as ‘cnidariomorphs’ [110]; and the possible

calcified cnidarian Namapoikia [111]. Fossils from the Late

Ediacaran Doushantuo Formation have been tentatively com-

pared to tabulates [112,113] and hydrozoans [10]. Elsewhere,

the recent reinterpretation of certain Middle Ediacaran carbon-

aceous fossils from the Lantian Biota as potential conulariids

[114] is of interest. Traces of actinian-like locomotion in deep

marine sediments approximately 565–560 Ma are also germane

here [22,23]. All claims for Neoproterozoic metazoans should

be critically assessed on a case-by-case basis, much as with

the early sponge fossil record [8]. At the time of writing, how-

ever, the studies cited above clearly indicate morphological

diversity of fossil cnidarian candidates in the Late Ediacaran/

Early Cambrian. Such fossils have also been used to help

calibrate recent molecular estimates of bilaterian–cnidarian

divergence during the Ediacaran Period [33].

Cnidarian-like body fossils from Newfoundland at

approximately 560 Ma also raise important questions about
tissue differentiation, feeding strategy, food sources and the

complexity of Late Ediacaran ecosystems. Our interpretation

of H. quadriformis as a muscular metazoan of cnidarian grade

arguably represents the earliest known evidence for preser-

vation of muscular tissue in the geological record, and one of

the earliest claims for a eumetazoan (see also [10,114]). Haootia
therefore delivers a key calibration point for studies of early

Eumetazoan evolution and body symmetry.
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the Oxford University Museum of Natural History, UK.

Funding statement. This work was supported by the NSERC (to D.M.);
Natural Environment Research Council (grant no. NE/F008406/1 to
A.G.L., and NE/J5000045/1 to J.J.M.); a Burdett Coutts grant to
J.J.M.; the Cambridge Philosophical Society (a Junior Research Fellow-
ship to A.G.L.) and the National Geographic Global Exploration Fund
(grant no. GEFNE22–11 to A.G.L.).
References
1. Laflamme M, Darroch SAF, Tweedt SM, Peterson KJ,
Erwin DH. 2013 The end of the Ediacara biota:
extinction, biotic replacement, or Cheshire Cat?
Gondwana Res. 23, 558 – 573. (doi:10.1016/j.gr.
2012.11.004)

2. Glaessner MF. 1984 The dawn of animal life: a
biohistorical study, p. 244. Cambridge, UK:
Cambridge University Press.

3. Fedonkin MA, Gehling JG, Grey K, Narbonne GM,
Vickers-Rich P. 2007 The rise of animals: evolution and
diversification of the kingdom Animalia, 1st edn,
p. 326. Baltimore, MD: John Hopkins University Press.

4. Seilacher A. 1992 Vendobionta and Psammocorallia: lost
constructions of Precambrian evolution. J. Geol. Soc.
Lond. 149, 607 – 613. (doi:10.1144/gsjgs.149.4.0607)

5. Gehling JG, Rigby JK. 1996 Long expected sponges
from the Neoproterozoic Ediacara fauna of South
Australia. J. Paleontol. 70, 185 – 195.

6. Sperling EA, Peterson KJ, Laflamme M. 2011
Rangeomorphs, Thectardis (Porifera?) and dissolved
organic carbon in the Ediacaran oceans. Geobiology
9, 24 – 33. (doi:10.1111/j.1472-4669.2010.00259.x)

7. Serezhnikova EA, Ivantsov AY. 2007 Fedomia
mikhaili: a new spicule-bearing organism of sponge
grade from the Vendian (Ediacaran) of the White
Sea, Russia. Palaeoworld 16, 319 – 324. (doi:10.
1016/j.palwor.2007.07.004)

8. Antcliffe JB, Callow RHT, Brasier MD. In press.
Giving the early fossil record of sponges a squeeze.
Biol. Rev. (doi:10.1111/brv.12090)

9. Babcock LE, Grunow AM, Sadowski GR, Leslie SA.
2005 Corumbella, an Ediacaran-grade organism from
the Late Neoproterozoic of Brazil. Palaeogeogr.
Palaeoclimatol. Palaeoecol. 220, 7 – 18. (doi:10.
1016/j.palaeo.2003.01.001)
10. Chen J-Y, Oliveri P, Gao F, Dornbos SQ, Li C-W,
Bottjer DJ, Davidson EH. 2002 Precambrian animal
life: probable developmental and adult cnidarian
forms from southwest China. Dev. Biol. 248,
182 – 196. (doi:10.1006/dbio.2002.0714)

11. Ivantsov AY, Fedonkin MA. 2002 Conulariid-like
fossil from the Vendian of Russia: a metazoan
clade across the Proterozoic/Palaeozoic boundary.
Palaeontology 45, 1219 – 1229. (doi:10.1111/1475-
4983.00283)

12. Tang F, Bengtson S, Wang Y, Wang X, Yin C. 2011
Eoandromeda and the origin of Ctenophora. Evol. Dev.
13, 408 – 414. (doi:10.1111/j.1525-142X.2011.00499.x)

13. Sperling EA, Vinther J. 2010 A placozoan affinity for
Dickinsonia and the evolution of Late Proterozoic
metazoan feeding modes. Evol. Dev. 12, 201 – 209.
(doi:10.1111/j.1525-142X.2010.00404.x)

14. Fedonkin MA, Simonetta A, Ivantsov AY. 2007 New
data on Kimberella, the Vendian mollusc-like
organism (White Sea region, Russia):
palaeoecological and evolutionary implications. In
The rise and fall of the Ediacaran biota (eds
P Vickers-Rich, P Komarower), pp. 157 – 179.
London, UK: Geological Society, Special Publications.

15. Ivantsov AY. 2010 Paleontological evidence for the
supposed Precambrian occurrence of mollusks.
Paleontol. J. 44, 1552 – 1559. (doi:10.1134/
S0031030110120105)

16. Fedonkin MA, Vickers-Rich P, Swalla BJ, Trusler P,
Hall M. 2012 A new metazoan from the Vendian of
the White Sea, Russia, with possible affinities to the
Ascidians. Paleontol. J. 46, 1 – 11. (doi:10.1134/
S0031030112010042)

17. Condon DJ, Zhu M-Y, Bowring SA, Wang W, Yang A,
Jin Y. 2005 U-Pb ages from the Neoproterozoic
Doushantuo Formation, China. Science 308, 95 – 98.
(doi:10.1126/science.1107765)

18. Martin MW, Grazhdankin DV, Bowring SA, Evans
DAD, Fedonkin MA, Kirschvink JL. 2000 Age of
neoproterozoic bilaterian body and trace fossils,
White Sea, Russia: implications for metazoan
evolution. Science 288, 841 – 845. (doi:10.1126/
science.288.5467.841)

19. Chen Z, Zhou C, Meyer M, Xiang K, Schiffbauer JD,
Yuan X, Xiao S. 2013 Trace fossil evidence for
Ediacaran bilaterian animals with complex
behaviours. Precambrian Res. 224, 690 – 701.
(doi:10.1016/j.precamres.2012.11.004)

20. Seilacher A. 1999 Biomat-related lifestyles in the
precambrian. Palaios 14, 86 – 93. (doi:10.2307/
3515363)

21. Seilacher A, Grazhdankin D, Legouta A. 2003
Ediacaran biota: the dawn of animal life in the
shadow of giant protists. Paleontol. Res. 7, 43 – 54.
(doi:10.2517/prpsj.7.43)

22. Liu AG, McIlroy D, Brasier MD. 2010 First evidence
for locomotion in the Ediacara biota from the
565Ma Mistaken Point Formation, Newfoundland.
Geology 38, 123 – 126. (doi:10.1130/G30368.1)

23. Menon LR, McIlroy D, Brasier MD. 2013 Evidence for
Cnidaria-like behavior in ca. 560 Ma Ediacaran
Aspidella. Geology 41, 895 – 898. (doi:10.1130/
G34424.1)

24. Benus AP. 1988 Sedimentological context of a deep-
water Ediacaran fauna (Mistaken Point, Avalon Zone,
eastern Newfoundland). In Trace fossils, small shelly
fossils and the Precambrian – Cambrian boundary
(eds E Landing, GM Narbonne, PM Myrow),
pp. 8 – 9. New York, NY: State Museum and
Geological Survey Bulletin.

http://dx.doi.org/10.1016/j.gr.2012.11.004
http://dx.doi.org/10.1016/j.gr.2012.11.004
http://dx.doi.org/10.1144/gsjgs.149.4.0607
http://dx.doi.org/10.1111/j.1472-4669.2010.00259.x
http://dx.doi.org/10.1016/j.palwor.2007.07.004
http://dx.doi.org/10.1016/j.palwor.2007.07.004
http://dx.doi.org/10.1111/brv.12090
http://dx.doi.org/10.1016/j.palaeo.2003.01.001
http://dx.doi.org/10.1016/j.palaeo.2003.01.001
http://dx.doi.org/10.1006/dbio.2002.0714
http://dx.doi.org/10.1111/1475-4983.00283
http://dx.doi.org/10.1111/1475-4983.00283
http://dx.doi.org/10.1111/j.1525-142X.2011.00499.x
http://dx.doi.org/10.1111/j.1525-142X.2010.00404.x
http://dx.doi.org/10.1134/S0031030110120105
http://dx.doi.org/10.1134/S0031030110120105
http://dx.doi.org/10.1134/S0031030112010042
http://dx.doi.org/10.1134/S0031030112010042
http://dx.doi.org/10.1126/science.1107765
http://dx.doi.org/10.1126/science.288.5467.841
http://dx.doi.org/10.1126/science.288.5467.841
http://dx.doi.org/10.1016/j.precamres.2012.11.004
http://dx.doi.org/10.2307/3515363
http://dx.doi.org/10.2307/3515363
http://dx.doi.org/10.2517/prpsj.7.43
http://dx.doi.org/10.1130/G30368.1
http://dx.doi.org/10.1130/G34424.1
http://dx.doi.org/10.1130/G34424.1


rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20141202

8
25. Love GD et al. 2009 Fossil steroids record the
appearance of Demospongiae during the Cryogenian
period. Nature 457, 718 – 721. (doi:10.1038/
nature07673)

26. Antcliffe JB. 2013 Questioning the evidence of
organic compounds called sponge biomarkers.
Palaeontology 56, 917 – 925.

27. Brain CK et al. 2012 The first animals: ca. 760-
million-year-old sponge-like fossils from Namibia.
South Afr. J. Sci. 108, Art. no. 658, 658 pages.
(doi:10.4102/sajs.v108i1/2.658)

28. Butterfield NJ. 2009 Modes of pre-Ediacaran
multicellularity. Precambrian Res. 173, 201 – 211.
(doi:10.1016/j.precamres.2009.01.008)

29. Maloof AC, Rose CV, Beach R, Samuels BM, Calmet
CC, Erwin DH, Poirier GR, Yao N, Simons FJ. 2010
Possible animal-body fossils in pre-Marinoan
limestones from South Australia. Nat. Geosci. 3,
653 – 659. (doi:10.1038/ngeo934)

30. Gaucher C, Poire DG, Bossi J, Bettucci LS, Beri A.
2013 Comment on ‘Bilaterian burrows and grazing
behaviour at .585 million years ago’. Science 339,
906. (doi:10.1126/science.1230339)

31. Pecoits E, Konhauser KO, Aubet NR, Heaman LM,
Veroslavsky G, Stern RA, Gingras M. 2012 Bilaterian
burrows and grazing behavior at .585 million
years ago. Science 336, 1693 – 1696. (doi:10.1126/
science.1216295)

32. Pecoits E, Konhauser KO, Aubet NR, Heaman LM,
Veroslavsky G, Stern RA, Gingras M. 2013 Response
to Comment on ‘Bilaterian burrows and grazing
behaviour at .585 million years ago’. Science 339,
906. (doi:10.1126/science.1230677)

33. Erwin DH, Laflamme M, Tweedt SM, Sperling EA,
Pisani D, Peterson KJ. 2011 The Cambrian
conundrum: early divergence and later ecological
success in the early history of animals. Science 334,
1091 – 1097. (doi:10.1126/science.1206375)

34. Van Kranendonk MJ, Gehling JG, Shields GA. 2008
Precambrian. In The concise geologic time scale (eds
JG Ogg, G Ogg, FM Gradstein), pp. 23 – 36.
Cambridge, UK: Cambridge University Press.

35. Clapham ME, Narbonne GM, Gehling JG. 2003
Paleoecology of the oldest known animal
communities: Ediacaran assemblages at Mistaken
Point, Newfoundland. Paleobiology 29, 527 – 544.
(doi:10.1666/0094-8373(2003)029,0527:
POTOKA.2.0.CO;2)

36. Hatschek B. 1888 Lehrbuch der Zoologie: eine
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