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Background: Multiple testing procedures (MTP) are gaining increasing

popularity in various fields of biostatistics, especially in statistical genetics.

However, in injury surveillance research utilizing the growing amount

and complexity of health-administrative data encoded in the International

Statistical Classification of Diseases and Related Health Problems 10th

Revision (ICD-10), few studies involve MTP and discuss their applications

and challenges.

Objective: We aimed to apply MTP in the population-wide context of

comorbidity preceding traumatic brain injury (TBI), one of the most disabling

injuries, to find a subset of comorbidity that can be targeted in primary

injury prevention.

Methods: In total, 2,600 ICD-10 codes were used to assess the associations

between TBI and comorbidity, with 235,003 TBI patients, on a matched data

set of patients without TBI. McNemar tests were conducted on each 2,600

ICD-10 code, and appropriate multiple testing adjustments were applied using

the Benjamini-Yekutieli procedure. To study the magnitude and direction of

associations, odds ratios with 95% confidence intervals were constructed.

Results: Benjamini-Yekutieli procedure captured 684 ICD-10 codes, out

of 2,600, as codes positively associated with a TBI event, reducing the

e�ective number of codes for subsequent analysis and comprehension.
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Conclusion: Our results illustrate the utility of MTP for data mining and

dimension reduction in TBI research utilizing big health-administrative data to

support injury surveillance research and generate ideas for injury prevention.

KEYWORDS

Benjamini-Hochberg, Benjamini-Yekutieli, McNemar test, ICD-10 codes, health-

administrative data

Introduction

Biological functions are interrelated since they co-occur

in the human body. This gives rise to complex relationships

between different body functions and the effects of multiple

diseases on the human body; therefore, it is essential to

consider multiple coexisting medical disorders referred to

as comorbidities (Feinstein, 1970) in this article and their

implications in injury surveillance. Of all injuries known to

date, traumatic brain injury (TBI) is among the most disabling

injuries affecting many individuals in the prime of their life

(Feigin et al., 2021). Concern about TBI related to the expansion

of industrialization and armed conflict has led to increased

interest in the epidemiology of TBI in civilians and among

service members. Published estimates of TBI vary worldwide;

although when estimates from studies with comprehensive

data collection methods are extrapolated internationally, reports

suggest that 50–60 million people are affected annually, and

the pooled international incidence rate of TBI (excluding

TBI with no overt pathologic features) is reported to be a

staggering 349 (95% confidence interval (CI) 96–1,266) per

100,000 person-years. To develop prevention initiatives and

guide injury surveillance research, it is necessary to consider the

multiple comorbidities occurring in the time preceding injury in

the population of interest.

Population-based health-administrative data housing

information across multiple diagnostic conditions frommillions

of patients have become a popular data source for evaluating

relationships between comorbidities with a specific condition

of interest. Due to rapid advancement in technology and the

evolution of computation and storage facilities over the last few

decades, recording and accessing information across millions of

study units in large electronic databases have become feasible,

giving rise to “high-dimensional” or “big” data. There is a need

to develop appropriate data mining and dimension reduction

Abbreviations: MTP, multiple testing procedure; MT, multiple testing; FDR,

false discovery rate; FWER, family-wise error rate; ICD-10, International

Statistical Classification of Diseases and Related Health Problems (10th

revision); TBI, traumatic brain injury; ICES, Institute for Clinical Evaluative

Sciences.

methods for managing big data efficiently. This change in

thinking mirrors the change in the analyses of genetic data.

Initially, researchers encountered only a small group of

genes in laboratory studies. However, it is now common for

genetic studies to simultaneously analyse millions or trillions of

genes (Thomas et al., 2005) in multiple testing (MT) procedure

(MTP) that involves the simultaneous testing of more than one

hypothesis. One strategy used by genetic researchers has been

to look at the false discovery rate (FDR) (Tsai et al., 2003),

which looks at a set of variables that have a high probability of

having a “signal”. Instead of seeing if one gene is, say, statistically

significant, the goal is to find a set of genes where there is a high

probability that most of the genes are significant. This promising

approach has yet to be widely used in analyzing healthcare data

from large administrative databases of injury data of patients

with TBI.

To control for family-wise error rate (FWER) in MTPs,

the most common method was Bonferroni correction (Dunn,

1961). This is an adjustment so that the possibility of falsely

rejecting the null hypothesis for each of the multiple tests is

held at α. For example, for the usual α of 0.05, the chance of

falsely rejecting the null hypothesis for all tests combined is

0.05, not for each individual test. For Bonferroni, one would

require the probability of falsely rejecting each individual test

to be fixed at α/m, where m is the total number of tests.

However, in most genetic experiments and biomedical and

epidemiological studies, scientists are generally interested in

detecting true signals rather than just guarding against a large

number of false positives by controlling FWER. In their seminal

paper in 1995, Benjamini and Hochberg suggested an alternative

approach for dealing with multiple tests, which has increased

power, and is less conservative (Reiner et al., 2003; Tsai et al.,

2003; Benjamini et al., 2006; Narum, 2006; Sun et al., 2006; Jones

et al., 2008; Verhoeven et al., 2017). The authors (Benajmini

and Hochberg, 1995) suggested controlling FDR, which is the

expected proportion of false discoveries, a discovery being a

rejected hypothesis or in other words a “signal”.

In this study, we provided an explanation and an illustration

of how to utilize these FDR control methods to support

injury surveillance research in TBI. Determining the significant

association of multiple comorbidities with the TBI event

requires us to test multiple hypotheses, which increases
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the chances of inferring false-positive results, and this rate

accelerates with the number of hypotheses. This brings us to

the domain of MT theory, which provides a mechanism to

protect against false positive conclusions by controlling for error

rate (Bender and Lange, 2001; Reiner et al., 2003). Although

MTPs are gaining popularity in genetics literature (Tsai et al.,

2003; Sun et al., 2006) and clinical trials (Marshall et al., 2004;

Mehrotra and Heyse, 2004; Burkom et al., 2005; Mehrotra and

Adewale, 2012), it is, however, underutilized in biomedical and

epidemiologic research until recently by a few (Jones et al., 2008;

Anderson et al., 2016; Sollmann et al., 2018, 2019), even though

it is a common problem in this field (Bender and Lange, 2001).

Before further discussion, it is essential to point out to readers

that we will not be looking at complex interactions between

comorbidities; we will simply be looking at distinct associations

of comorbidities with the condition of interest, TBI.

The objective of this study is to demonstrate the use of

contemporary methodologies of MTPs for accurate statistical

analysis in big health-administrative data to capture distinct

comorbidities associated with TBI. This article outlines the

procedures, using a case study, so that researchers could

potentially use while working with multiple comorbidities

in health-administrative data of other complex injuries and

conditions. In other words, this article demonstrates the use

of modern data mining methods for handling big data from

healthcare settings. The intent of this article is pedagogical, and

we used knowledge translations and draw inspirations from

other fields of big data such as statistical genetics (Tsai et al.,

2003; Sun et al., 2006). Table 1 presents the applications of

different MTPs across various domains.

Methods

The methods mentioned below are guided by the scientific

question to perform an MTP on a matched sample of TBI and

non-TBI patients, enriched with complementary information of

previous TBI research. We first discussed the development of

required steps that can be easily translated for any similar big

administrative healthcare data and then discussed the results in

the light of previous TBI research. We would like to emphasize

again that our objective in this article is simply pedagogical.

Similar approaches already exist in statistical genetics literature,

and we intended to translate that knowledge to the healthcare

field. Details of the underlying MTPs have been provided

in Appendix.

Identification of data analytics methods
and steps

In large health-administrative data sets, one way of

classifying health conditions and their circumstances is to

use the International Statistical Classification of Diseases and

Related Health Problems, Tenth Revision (ICD-10) codes

(Walker et al., 2012). Before using MTPs, we found that the

complete set of ICD-10 codes was too granular, so we first

grouped the codes by the first three characters – the first

character being a letter and the next two being digits. Individual

codes are nested into these groups, reducing the problem to only

looking at a possible 2,600 codes.

Therefore, with techniques to fully exploit the potential

wealth of information in health-administrative data and data

reduction tools, we considered 2,600 ICD-10 codes for an

aggregative association study of different comorbidities on a

particular condition of interest, thus leading to 2,600 multiple

tests. We elaborated on the application of MT theory for health-

administrative data in the context of associations between 2,600

ICD-10 codes and TBI. Below are the basic steps of the analysis

(Figure 1). The objective is to identify a subset of variables with

a high probability of being related to the outcome of interest.

Step 1: Define the set of variables one wishes to test. In

the example below, the purpose is to look at which ICD-10

codes appear to be related to a future TBI event.

Step 2: Decide the basic analytical model for each of the

2,600 variables being tested. The investigator can use almost

anymodel in this study and obtain a p-value as ameasure of

the significance of the variable in the model. In this study, a

matched case-control study was used; hence, McNemar test

statistics were calculated.

Step 3: Repeat the test for each variable using the basic

analytical model from step 2. In each analysis, the p-value

is obtained. MTP is then used to identify a small set of p-

values, controlling for FDR. In the example that follows,

Benjamini and Yekutieli (2001) approach is used to account

for possible dependence among the 2,600 tests to determine

significant comorbidities.

Proof-of-concept and internal validation

We used health-administrative data on emergency

departments extracted from National Ambulatory Care

Reporting System (NACRS) database and acute care data

extracted from Discharge Abstract Database (DAD). Both

data sets were obtained from ICES, which collects and stores

health administrative data on publicly funded services provided

to residents of Ontario, Canada. Information on the study

subjects’ income quintile was extracted from the Registered

Persons Database.

We constructed a histogram for the days from the index

date of hospital visits for all the TBI patients included in the

study. We observed a peak around the index date, with the

frequency dropping to a stationary point at 30 days before, and

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2022.793606
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Jana et al. 10.3389/fdata.2022.793606

TABLE 1 Applications of MTPs in di�erent domains of applications.

Reference Domain Objective MTP used

Bartenschlager and Brunner (2021) Business applications Develop methodology for

FDR control

Bonferroni, Benjamini and Hochberg,

Holm’s, Benjamini and Yekutieli

Alberton et al. (2020) Brain imaging studies Multiple testing correction on

multiple contrasts of

parameter estimates

Bonferroni, Dunn-Sidak,

Westfall-Young, Scheffe

Carvajal-Rodríguez (2018) Genomics Develop tool for multiple

testing corrections

Holm’s, Benjamini and Hochberg,

Bon-EV,

after, the index date. Therefore, we used this 60-day window as

a TBI-related window, where we considered, all ED and acute

care visits within 5 years, between the fiscal years 2007/08 and

2015/16, up to 30 days prior to a TBI event as the pre-injury

phase. For further details on these and the histogram, we refer

the readers to the follow-up study (Mollayeva et al., 2019).

We split the data into three groups, namely, training sample,

validation sample, and test sample when doing this analysis.

The advice on percentages of the data to put into each group

varies. In this study, the master data were split into 50–25–

25% of the data for train/validate/test data sets (Friedman et al.,

2008). The analysis was first done on the training sample to

obtain relevant codes, then retested using the validation data

set. Relevant codes were reconfirmed using the validation data

set. The testing data set was used for reporting the final output.

This approach provided independent data sets to replicate the

findings and to further guard against overfitting.

A 1:1 match was performed among the two groups being

compared in this study, namely, TBI patients and non-TBI

patients, or in other words, patients who were also discharged

from ED or acute care during the same time period for a

reason other than TBI. They were matched based on four

demographic variables, namely, age, sex, income, and rural or

urban neighborhood, using exact matching for sex, income

quintile, neighborhood, and caliper matching for age with a

caliper of 2 years. For additional details, the readers are referred

to Mollayeva et al. (2019).

Results

In total, 2,600 McNemar tests were conducted on the

training data set. The conservative Bonferroni procedure

captured 630 out of 2,600 as significant codes while controlling

FWER at 5%, whereas the BY procedure captured 775 significant

ICD-10 codes when controlling FDR. Note that, all 630 codes

captured by the Bonferroni procedure were also captured by

BY procedure. The p-values for the BY procedure, with FDR

controlled at 5%, were plotted (Figure 2). We can get a visual

impression of the proportion of significant ICD-10 codes. The

solid black line represents the cut-off value, indicating that all

p-values below the cut-off value are significant. Odds ratios

(ORs) and their respective 95% confidence intervals (CIs) were

calculated for the 775 codes, of which 684 had OR>1.

The 684 codes identified from the training data set were

retested using the validation data set, and the BY procedure

captured 584 of them as significant. Finally, ORs for these

584 codes were calculated using the testing data set. Top six

significant ICD-10 codes with the highest ORs are listed in

Table 2. These codes were found to be associated with TBI in the

existing epidemiologic literature. The remaining ICD-10 codes

relevant to TBI are reported in a follow-up work (Mollayeva

et al., 2019).

As this is a pedagogical article, we have provided a

sample data set (Supplementary material) and a sample R code

(Supplementary material), which readers may use to become

more acquainted with the steps employed in this study. The data

set and R code that have been provided, however, are solely for

illustration purposes. The sample dataset contains 1,239 ICD-10

codes, corresponding McNemar test statistic values, unadjusted

p-values, ORs, and 95% CIs of the ORs. Once the R code is run

using this data set, one will obtain 781 significant ICD-10 codes

out of 1,239 codes provided in the data set and 686 relevant

codes out of 781. This sample code illustrates the use of the BY

method, which is the prime focus of this study. The dataset can

be regarded as a training data set, and the same steps can be

repeated on these 686 codes using the validation data set. Finally,

the testing data set can be used for the final reporting of ORs

and 95% CIs. Please note that this is only a sample data and not

the complete data set used to obtain the results in this or the

follow-up works (Mollayeva et al., 2019, 2022).

Statistical analyses in this article were done using the

statistical software R 3.3.0 (R Foundation for Statistical

Computing; www.r-project.org) and SAS 9.3 (SAS software:

version 9.3, SAS Inc., Cary, NC).

Discussion

We implemented two MTPs to assess associations between

2,600 ICD-10 codes and TBI in this research. A total
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FIGURE 1

A diagrammatic flowchart for the steps.

of 684 relevant codes captured in this study have been

reported and used for further analysis in the follow-up studies

(Mollayeva et al., 2019, 2022). We have successfully shown

that the developed proof-of-concept worked with data and

that supportive evidence on the association of TBI with

the top six codes was found in contemporary literature.

Although the proof-of-concept implementation only shows one

case example, TBI, the methods can be reused for different

population data.

The BY procedure implemented in this study initially

captured 775 ICD-10 codes as significant codes. However, we

would like to highlight that, of these 775 codes, we considered

only codes with OR>1 as codes relevant to TBI, which led

to only 684 relevant codes. This is because our reference

group, unlike any control group, does not consist of healthy

individuals. Therefore, comorbid conditions, such as female

infertility, were observed to be highly correlated with TBI with

a p-value of 3.3 × 10−16 and an OR of 0.072, appearing to

be protective of a TBI event. This interpretation is, however,

misleading. Such a strong negative correlation between female

infertility and TBI is because there were many patients in

our data set diagnosed with female infertility who did not

have TBI, and this has no link with the association between

female infertility and TBI. TBI severity or concussions were

unspecified in the data set. The observed association might

be owing to care-seeking behaviors in concussive injury, few

females sought care after mild TBI/concussion as compared to

females without TBI.

This phenomenon of strong negative correlation was

observed for a few other ICD-10 codes as well. This is also

termed as collider effect or sampling bias and has been illustrated

in detail in Carvajal-Rodríguez (2018). Hence, we removed

significant codes with OR<1. As is evident, the top 2 codes with

the highest ORs captured in this study are alcohol involvement

and neurological disorders. These comorbidities were observed

to be present in TBI and acquired brain injury (ABI) patients in

other studies as well (Colantonio et al., 2011; Thompson et al.,

2012). Interesting findings about contrasting profiles of TBI vs.

non-TBI patients have been presented in this study (Colantonio

et al., 2011).

Some limitations are related to the use of health-

administrative data in our research. Typically, acute care data

provided by ICES are reported to be accurate and undergo

quality assurance on a regular basis1 (Cole et al., 2010).

While we used validated algorithms to define TBI, each

comorbidity captured within the emergency department and

acute care visits is also characterized by certain sensitivity and

specificity, resulting in possible misclassification, although the

misclassification, if present, would refer to both TBI cohort and

1 Available online at: https://www.cihi.ca/en/topics/emergency-and-

ambulatory-care#_Databases_and_Data.
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FIGURE 2

FDR plot using Benjamini-Yekutieli procedure for adjusting p-values in multiple testing with FDR controlled at 5%.

TABLE 2 Top 6 significant ICD-10 codes, with highest OR, associated with TBI.

ICD-10 Code Description OR (LCL, UCL) Comments Supporting citations

Y91 Evidence of alcohol

involvement determined

by level of intoxication

60 (14.83, 242.69) Associated with severity and

occurrence of TBI, prevalent

among trauma and brain injury

patients

(Kraus et al., 1989; Rivara et al., 1993; S

Tate et al., 1999; Cunningham et al.,

2002; Colantonio et al., 2011; Thompson

et al., 2012)

F07 Personality and

behavioral disorders due

to known physiological

condition

56.67 (18.09, 177.45) PCS (F07.2) have been found to be

associated with TBI post injury

(Boake et al., 2005; Kashluba et al., 2006;

Yang et al., 2007; Halbauer et al., 2009;

Williams et al., 2010; Colantonio et al.,

2011; Thompson et al., 2012)

Y00 Assault by blunt object 22 (9.71, 49.86) Prevalent as a prior event among

TBI patients across several

countries

(Nell and Brown, 1991; Stiell et al., 2001;

Langlois et al., 2003; Hyder et al., 2007;

Fernandes and Silva, 2013)

Y09 Assault by unspecified

means

18.57 (8.69, 39.73) Cause of head injury and head

trauma across different countries

(Kleiven et al., 2003; Jamieson et al.,

2008; Parks et al., 2012)

S27 Injury of other and

unspecified intrathoracic

organs

17.6 (7.15, 43.34) Blast-induced thoracic mechanism

results in TBI

(Courtney and Courtney, 2009, 2011)

Y04 Assault by bodily force 12.04 (10.06, 14.41) Identified as an external cause of

TBI in different countries

(Colantonio et al., 2010; Fernandes and

Silva, 2013; Hamill et al., 2015; Cheng

et al., 2017)

OR, odds ratio; LCL, lower control limit; UCL, upper control limit.

the reference cohort. Methods for adjusting for misclassification

exist; however, it was not within the scope of this study to

perform the adjustments. Further studies are required to address

this limitation.

What this study adds

The purpose of using MTPs in a study such as this

is dimension reduction. Big health-administrative data sets
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contain information on multiple correlated comorbidities. To

study associations of these comorbidities with the condition

of interest, thousands of tests need to be performed for each

comorbidity simultaneously, which would lead to a multiplicity

problem, leading to a huge number of false rejections. However,

a screening approach using MT adjustments to capture relevant

codes for correlated tests considerably reduces the dimension

of the data set to a smaller space, consequently reducing the

multiplicity. This is an essential step before any subsequent

analysis is done, as it improves the predictive power of

the analysis.

Conclusion and future directions

In this study, using knowledge translations from other

fields of high-dimensional data, such as statistical genetics, we

developed a statistical approach and applied it for analyzing

decade-long health-administrative data of patients with TBI

and individually matched on sex, age, socio-economic status

and neighborhood, with non-TBI patients. We illustrated the

utility of classical and modern statistical tools for assessing

comorbidity in big health-administrative data sets, which can

be applied to any extensive health-administrative data set to

study associations between comorbidities represented by ICD-

10 codes and any condition of interest.

Future directions

Assuming a general dependence structure among

comorbidities, we used the Benjamini-Yekutieli method to

adjust multiplicity in correlated tests. Other more powerful

methods for FDR control based on resampling can be used

as well; however, implementing such methods on high-

dimensional data sets will require huge computational time,

system memory allocation and state-of-the-art computational

facilities.

We would like to highlight that, in this study, we have

done the analysis only on 2,600 ICD-10 codes, due to time and

system memory constraints; however, the analysis can be easily

extended to more specific 26,000 ICD-10 codes. One can be as

granular as one wishes for ICD-10 codes, subject to system and

time constraints.

Future work can also consider assimilating data from

different populations/strata and implementing more modern

FDR controlling procedures such as stratified FDR to

give us an overall picture. Please note that the regular

FDR is a weighted average of the stratified FDR, and

hence, the latter is computationally intensive (Sun et al.,

2006).

Considerable work is required for the automation of the

process outlined in this article using autonomic computing,

which is the future of the next-generation computing (Gill

et al., 2022). The benefit of having such AI-based automated

computing system is the low cost incurred in implementing

andmaintaining them. Anomaly detection, record-keeping, data

organization, and cleaning can bemade up to date with real-time

inputs and computation (Gill et al., 2022). Such methods can

be easily implemented across several domains of applications

including mining of health-administrative data and would be

an interesting future research that can benefit the field of

public health.
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