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Abstract

Motivation: Time-series observations from reporter gene experiments are commonly used for

inferring and analyzing dynamical models of regulatory networks. The robust estimation of pro-

moter activities and protein concentrations from primary data is a difficult problem due to meas-

urement noise and the indirect relation between the measurements and quantities of biological

interest.

Results: We propose a general approach based on regularized linear inversion to solve a range of

estimation problems in the analysis of reporter gene data, notably the inference of growth rate,

promoter activity, and protein concentration profiles. We evaluate the validity of the approach

using in silico simulation studies, and observe that the methods are more robust and less biased

than indirect approaches usually encountered in the experimental literature based on smoothing

and subsequent processing of the primary data. We apply the methods to the analysis of fluores-

cent reporter gene data acquired in kinetic experiments with Escherichia coli. The methods are cap-

able of reliably reconstructing time-course profiles of growth rate, promoter activity and protein

concentration from weak and noisy signals at low population volumes. Moreover, they capture crit-

ical features of those profiles, notably rapid changes in gene expression during growth transitions.

Availability and implementation: The methods described in this article are made available as a

Python package (LGPL license) and also accessible through a web interface. For more information,

see https://team.inria.fr/ibis/wellinverter.

Contact: Hidde.de-Jong@inria.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past decade, a variety of new experimental technologies

have become available for measuring gene expression over time.

They provide valuable information for the construction and valid-

ation of models of gene regulatory networks, involving tasks like

parameter estimation, hypothesis testing and model selection

(Bansal et al., 2007; de Smet and Marchal, 2010; Villaverde and

Banga, 2014). A critical step in the exploitation of the experimental

data is the estimation of biologically relevant quantities, in particu-

lar promoter activities (the rate of transcription of a gene as a frac-

tion of the maximum rate), mRNA concentrations and protein

concentrations, from the primary data provided by the measurement

instruments. This requires data analysis procedures that are un-

biased and robust to measurement noise.

Fluorescent reporter genes have become widely used for monitor-

ing gene expression in bacteria at high temporal resolution in a non-

intrusive way (Chudakov et al., 2010; Giepmans et al., 2006). The

underlying principle is the fusion of a gene of interest and/or the

promoter region driving its expression with a gene encoding a fluores-

cent protein (Fig. 1). A bacterial strain carrying the resulting reporter

gene, on the chromosome or on a plasmid, emits a fluorescence

signal proportional to the amount of reporter protein in the cell.

VC The Author 2015. Published by Oxford University Press. i71
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 31, 2015, i71–i79

doi: 10.1093/bioinformatics/btv246

ISMB/ECCB 2015

https://team.inria.fr/ibis/wellinverter
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv246/-/DC1
http://www.oxfordjournals.org/


When reporter strains are grown in a microplate, the fluorescence

and the absorbance (optical density) of the culture can be automatic-

ally measured every few minutes in a highly parallelized way. The

resulting data contain information on population-level gene expres-

sion that is highly valuable for such applications as the inference and

analysis of regulatory networks in bacterial cells (Berthoumieux

et al., 2013; Gerosa et al., 2013; Keren et al., 2013; Ronen et al.,

2002; Stefan et al., 2015).

The extraction of useful information from reporter gene data is

not easy to achieve though, since it is often buried in noise, espe-

cially at low population densities. Moreover, the fluorescence and

absorbance measurements are only indirectly related to promoter

activities and protein concentrations, requiring dynamical models of

the expression of reporter genes for their interpretation. Several

methods have been proposed to process the fluorescence and absorb-

ance signals and estimate time-varying promoter activities and pro-

tein concentrations from the data (Aı̈chaoui et al., 2012; Bansal

et al., 2012; de Jong et al., 2010; Finkenstädt et al., 2008; Leveau

and Lindow, 2001; Lichten et al., 2014; Porreca et al., 2010; Ronen

et al., 2002; Wang et al., 2008). The methods differ in the scope of

the estimation problems considered, some being restricted to the in-

ference of promoter activities and others also considering mRNA

and protein concentrations. In addition, the approaches used to esti-

mate these quantities from the primary data are quite different.

Some methods are indirect, in the sense that they smoothen the data

first and reconstruct the profiles of interest via the measurement

model only in a second step. This results in a propagation of estima-

tion errors that is difficult to control. Other methods state a regular-

ized data fitting problem directly in terms of the quantities of

interest, thus, proceeding in a single and better controlled optimiza-

tion step.

In this article, we propose a general, comprehensive approach to-

ward the reconstruction of gene expression profiles from reporter

gene data and solve the estimation problems it comprises in a math-

ematically sound and practical manner. We formulate the estimation

problems in the classical framework of regularized linear inversion

(Bertero, 1989; de Nicolao et al., 1997; Wahba, 1990), which gives

access to a range of powerful tools for robust estimation. Contrary

to the related work of Bansal et al. (2012) and Porreca et al. (2010),

we consider not only the inference of promoter activities, but also of

growth rates and protein concentrations. Moreover, no restrictions

are imposed that limit the practical applicability of the approach.

We propose efficient procedures for the implementation of the

methods and show by means of an in silico simulation study under

realistic conditions that they perform better than the indirect

approaches usually encountered in the experimental literature. The

algorithms have been implemented in a Python package and are also

accessible through a web application.

Our linear inversion methods have been tested on fluorescent re-

porter gene data acquired in experiments with the model bacterium

Escherichia coli. These experiments aim at quantifying the dynamics

of gene expression during growth transitions induced by carbon up-

shift or depletion. We show that linear inversion succeeds in ro-

bustly reconstructing growth rate, promoter activity and protein

concentration over the entire duration of the experiment, in particu-

lar in the beginning when the population density and thus the signal-

to-noise ratio are low. Moreover, we show that our methods reliably

capture rapid changes in gene expression during growth transitions,

when promoter activities may change 10- to 100-fold within a dozen

of minutes (Baptist et al., 2013; Enjalbert et al., 2013; Kao et al.,

2005). Reconstructing these transient gene expression profiles from

the data is highly important for increasing our understanding of the

functioning of the underlying regulatory networks, but is difficult to

achieve.

To the best of our knowledge, the methods and computer tools

presented in this paper provide the most comprehensive solution for

analyzing reporter gene data available to date. Although the applica-

tion has focused on fluorescent reporter gene data, the methods are

directly applicable to the analysis of luminescent reporter gene data

or other time-series gene expression datasets. In addition, the gene

expression models underlying the methods are valid not only for

bacteria but also for higher organisms.

2 Linear inversion methods

In this section, we review properties of linear ordinary differential

equations (ODEs) and linear relationships between different outputs

driven by the same input. This theoretical framework enables us to

estimate growth rate, promoter activity and reporter concentration

using simple linear inversions in Section 3.

2.1 Inversion of a linear ODE system
We consider the following linear ODE model with input uðtÞ 2 R
and output yðtÞ 2 R:

d

dt
xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ;

yðtÞ ¼ CðtÞxðtÞ;

xð0Þ ¼ x0:

8>>><>>>: (1)

In this system, xðtÞ 2 Rn is a vector of state variables, and AðtÞ;
BðtÞ;CðtÞ are known time-varying matrices with dimensions n�n,

n� 1; 1� n, respectively. Given a set of noisy observations

~yðtiÞð Þ1�i�Ny
of yðtiÞ, we wish to estimate the unknown input u(t) and

initial conditions x0. The solution of Equation (1) at time t with input

u and initial conditions x0 can be formulated explicitly as:

yðt; u; x0Þ ¼ CðtÞ Uðt; 0Þ x0 þ
ðt

0

Uðt; sÞBðsÞ uðsÞ ds

� �
; (2)

where Uðt; sÞ is known as the state transition matrix in linear sys-

tems theory, and depends on the values of A between s and t (Chen,

1970). Notice that in this equation yðt; u;x0Þ depends linearly on the

signal u and the initial conditions x0, making the estimation of these

variables from ~yðtiÞð Þ1�i�Ny
a linear inversion problem (Bertero,

1989; de Nicolao et al., 1997; Wahba, 1990).

Fig. 1. Expression of the gene acs in Escherichia coli and the associated re-

porter gene pacs-gfp. acs and gfp mRNA are transcribed, and translated into

the proteins Acs and GFP, respectively. Both mRNA and protein are

degraded. Moreover, GFP is converted into a mature form in which it emits

fluorescence when excited. Because acs and its reporter have the same pro-

moter region, the transcriptional regulation of the two genes is identical. The

variables are as defined in Equations (16) and (17)
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Under the classical assumption of Gaussian i.i.d. measurement

noise, the maximum likelihood solution of this problem can equiva-

lently be written as

Find ðû; x̂0Þ ¼ argmin
ðu;x0Þ

Errðu; x0Þ; (3)

where

Errðu; x0Þ ¼
XNy

i¼1

yðti; u; x0Þ � ~yðtiÞð Þ2:

Without further assumptions on u(t) this problem is ill-posed,

i.e. there are infinitely many equivalent solutions ûðtÞ; x̂0ð Þ, many of

which will be unrealistic from a biological point of view. The prob-

lem must therefore be regularized by formulating additional as-

sumptions that lead to a unique, acceptable solution.

To this end, we discretize the time space of the input into Nu

intervals ½sj; sjþ1½, of equal length ds. We assume that on this grid of

time intervals the input u(t) is sufficiently well approximated by a

piecewise-constant input uðsjÞ
� �

1�j�Nu
:

uðtÞ ¼
XNu

j¼1

uðsjÞ1½sj ;sjþ1 ½ðtÞ: (4)

Because the output y(t) depends linearly on u, the values

yðti;u; x0Þð Þ1�i�Ny
depend linearly on uðsjÞ

� �
1�j�Nu

. If we define the

following vectors:

u ¼

uðs1Þ

uðs2Þ

..
.

uðsNu
Þ

0BBBBB@

1CCCCCA; y ¼

yðt1; u;x0Þ

yðt2; u;x0Þ

..
.

yðtNy
; u;x0Þ

0BBBBB@

1CCCCCA; ~y ¼

~yðt1Þ
~yðt2Þ

..
.

~yðtNy
Þ

0BBBBB@

1CCCCCA;

and w ¼ x0 uð ÞT , then there exists an observation matrix Hw with

dimension ðNu þ nÞ �Ny, such that

Hw w ¼ y: (5)

The matrix Hw is composed of two matrices:

Hw ¼ Hx0
Huð Þ;

where Hx0
is a Ny � n matrix describing the influence of the

initial conditions on y, and Hu a Ny �Nu matrix describing the

influence of u on y. The computation of Hw can be generally

performed using a numerical ODE solver, as explained in

Supplementary Section S3. However, for the cases of interest

described in Section 3, we provide more effective formulas for the

computation of Hw.

Our inversion problem now writes as a multivariate linear re-

gression problem:

Find
x̂0

û

 !
¼ ŵ ¼ argmin

w
jjHww� ~yjj22: (6)

This problem may also be ill-posed, in particular when Nu > Ny.

Tikhonov regularization on the first derivative (Hansen, 1992) con-

sists in introducing a penalty on the successive variations of u,

modulated by a regularization parameter k�0:

Find ŵ ¼ argmin
w

jjHww� ~yjj22 þ k
XNu�1

j¼1

ujþ1 � uj

� �2
; (7)

where uj and ujþ1 denote the jth and ðjþ 1Þth element of u, respect-

ively. Practically, this penalty is implemented by introducing a new

ðNu þ nÞ � 1-vector v ¼ Lww and a new ðNyÞ � ðNu þ nÞ-matrix

Hv ¼ HwL�1
w , where Lw is a matrix of the form

Lw ¼
xIn 0

0 Lu

 !
:

In the formulation above, In is the n�n identity matrix, and

x 2 R a small but non-zero number ensuring that the values of x0

contribute negligibly to the penalty term while keeping Lw

invertible. Lu is the Nu �Nu discrete differentiation matrix

Lu ¼

� 0

�1 1

. .
. . .

.

0 �1 1

0BBBBB@

1CCCCCA:

In Bansal et al. (2012), the parameter � is chosen equal to 1, but

this results in a biased estimation of u0 as � represents a penalty on

this parameter. Supplementary Section S1 discusses how to find an

appropriate value for �, typically 0 < �� 1.

The inversion problem of Equation (7) can be reformulated in

matrix form as

Find
x̂0

û

 !
¼ L�1

w v̂; where (8)

v̂ ¼ argmin
v

jjHvv� ~yjj22 þ kjjvjj22: (9)

For k large enough, this problem admits a unique solution

(Hoerl and Kennard, 1970):

x̂0

û

 !
¼ ŵ ¼ L�1

w ðHT
v Hv þ kIÞ�1HT

v ~y: (10)

The regularization parameter k can be set arbitrarily. However,

k too large will lead to over-smoothed estimates of u(t), whereas k
too small will lead to under-smoothed (unstable) estimates of u(t).

Many techniques have been proposed to automatically select a

proper k to regularize a given problem. In this article, the choice of k
will always be based on generalized cross-validation (GCV) (Golub

et al., 1979), a fast procedure which aims at maximizing the predict-

ive power of the resulting estimate of u. It is also straightforward to

deal with additional linear constraints in the problem of Equations

(8) and (9), for instance to ensure that the estimated input û is al-

ways positive (Supplementary Section S2 for technical details).

2.2 Linear inversion involving ODE systems with

identical input
We now consider two linear ODE systems, defined as in Equation

(1), sharing the same input u(t), but having different variables x1ðtÞ
and x2ðtÞ, possibly different parameters, different initial conditions

x0;1 and x0;2, and different outputs y1 and y2. The goal is to estimate

the profile y1 from observations of y2. This case will be found useful

in Section 3.4 for computing protein concentrations. We have seen

in the previous section that there is a linear relationship between u

and y1 on one hand, and between u and y2 on the other hand. This

gives rise to linear inversion problems defined by the observation

matrices Hw1
and Hw2

, respectively (Fig. 2):

Hw1

x0;1

u

 !
¼ y1 and Hw2

x0;2

u

 !
¼ y2:

When Hw1
is invertible (which can be enforced in many cases since

the length ds of the discretization intervals of u can be chosen
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arbitrarily), it is possible to relate y1 to y2 through a chain of linear

transformations:

x0;2

y1

 !
!H1

x0;2

x0;1

u

0BB@
1CCA��!H2

x0;2

u

 !
���!

Hw2
y2;

where matrices H1 and H2 are defined as follows:

H1 ¼
In2

0

0 H�1
w1

 !
; H2 ¼

In2
0n2�n1

0

0 0Nu�n1
INu

 !
;

and n1, n2 are the lengths of vectors x1ðtÞ; x2ðtÞ.
By lumping this chain into a single transformation matrix

Hy ¼ Hw2
H2H1 we obtain

Hy

x0;2

y1

 !
¼ y2;

and y1 can be estimated from observations of y2 using Tikhonov

regularization with GCV, as explained in the previous section.

3 Estimation of gene expression profiles from
fluorescent reporter gene data

In this section, we will show how recurring problems in the analysis

of reporter gene data, the estimation of growth rate, promoter activ-

ity and protein concentration, can be mapped to the linear inversion

problems formulated above. We apply the resulting methods to the

analysis of fluorescent and absorbance signals measured in popula-

tion-level experiments in E. coli, in conditions involving time-vary-

ing changes in growth rate and gene expression.

3.1 Fluorescent reporter gene experiments in E. coli
Changes in the environment trigger a variety of responses in bacter-

ial cells, affecting intracellular metabolite pools within seconds and,

on a longer time-scale, protein concentrations and physical param-

eters like cell size. The regulatory networks controlling these adapta-

tions are complex and only partially understood.

In this article, we consider four genes playing a key role in the

adaptation of E. coli to perturbations due to the sudden availability

or depletion of carbon sources in the medium. These genes are fis,

encoding a global regulator responsible in particular for activating

ribosomal RNA transcription (Bradley et al., 2007); gyrA, coding

for DNA gyrase which negatively supercoils DNA (Travers and

Muskhelishvili, 2005); crp, whose product regulates the transcrip-

tion of hundred of genes when activated by the secondary messenger

cyclic adenosine monophosphate (cAMP) (Gosset et al., 2004) and

acs, encoding an enzyme required for acetate consumption (Wolfe,

2005). We used reporter strains obtained by transforming the E. coli

wild-type strain with reporter plasmids carrying a transcriptional fu-

sion of the promoter region of the above genes with a gfp reporter

gene. The reporter genes for acs and crp code for GFPmut2, a re-

porter with a long half-live (19 h), whereas the other reporter genes

code for GFPmut3, with a short half-live of 1 h (Supplementary

Section S4 for details on the plasmids and strains used in this study).

Overnight stationary-phase cultures of the reporter strains were

diluted into the wells of a microplate containing minimal medium

with glucose. The bacteria were observed in a microplate reader up

until a few hours after glucose exhaustion (Supplementary Section

S4 for details on the experimental conditions). The carbon upshift

provokes a strong activation of the expression of many genes, while

growth arrest following glucose exhaustion triggers the activation of

so-called catabolite genes, responsible for the assimilation of second-

ary carbon sources, such as acetate secreted during rapid growth on

glucose (Baptist et al., 2013; Enjalbert et al., 2013; Kao et al.,

2005). The absorbance (600 nm) and fluorescence (485/520 nm) of

the growing bacterial cultures was measured for each of the 96

wells, typically one measurement per minute per well.

The absorbance (optical density) measurements are usually

assumed proportional to the volume VðtÞ 2 Rþ of the growing cell

population. More precisely, for measurements made at time-points

ti, we have the following measurement model:

~VðtiÞ ¼ aVðtiÞ þ �i; (11)

where ~VðtiÞ represents the absorbance measurement at ti, a 2 Rþ an

unknown proportionality coefficient, and �i measurement noise. We

assume that the fluorescence measurements have been corrected for

autofluorescence of the bacteria. Here, we simply subtracted the

fluorescence time-course profile of a control strain carrying no re-

porter plasmid, but in other situations more sophisticated methods

for background correction may need to be used, so as to avoid bias

(Lichten et al., 2014; Stefan et al., 2015). The resulting fluorescence

signal can be assumed proportional to the total quantity of active

(mature) fluorescent protein R(t) in the growing cell population:

~RðtiÞ ¼ bRðtiÞ þ �0i; (12)

where ~RðtiÞ represents the fluorescence measurement at ti, b 2 Rþ
an unknown proportionality coefficient, and �0i measurement noise.

The absorbance and fluorescent measurements that will be used

hereafter are shown in the top row of Figure 3. The data illustrate

some of the difficulties encountered in the analysis, namely weak

signals in the beginning of the experiment, when the volume of the

cell population is low, and rapid changes during growth transitions.

3.2 Estimation of growth rate
The exhaustion of glucose in the medium around 500 min is fol-

lowed by growth arrest, causing a break in the absorbance curves

(Fig. 3). In order to sharply distinguish the growth phases, it is im-

portant to precisely estimate the growth rate of the population,

defined by

lðtÞ ¼ 1

VðtÞ
d

dt
VðtÞ ¼ d

dt
logVðtÞ: (13)

It is possible to compute lðtÞ from the absorbance measurements
~VðtiÞ of the volume V(t), by smoothing interpolation, subsequent

differentiation and numerical resolution of Equation (13). However,

this method is unstable when the signal-to-noise ratio is low, espe-

cially in the early stages of the experiment. Moreover, measurements

of V(t) can exhibit a high noise-to-signal ratio and even be negative

at times, which prohibits the use of log V as an input variable.

Fig. 2. Schematic representation of the linear relationships between vari-

ables u; x0;1; x0;2; y1 and y2. Arrows indicate the linear relationships derived

in Section 2.2
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As an alternative approach, we formulate the problem as a linear

inversion problem. We first rewrite Equation (13) as

d

dt
ða VÞðtÞ ¼ a VðtÞ lðtÞ ’ ~VðtÞ lðtÞ; (14)

where ~VðtÞ is an interpolated version of the measurements ~VðtiÞ.
Replacing the volume by the experimentally measured absorbance

signal has the advantage of bringing the equation into the form of

Equation (1) (we use scalars to represent 1D vectors and matrices in

order to simplify the notation):

uðtÞ ¼ lðtÞ; xðtÞ ¼ a VðtÞ; yðtÞ ¼ a VðtÞ

AðtÞ ¼ 0; BðtÞ ¼ ~VðtÞ; CðtÞ ¼ 1:

That is, the growth rate is the input and the volume the output of

a linear system, so that the growth rate can be estimated by linear in-

version from the absorbance measurements.

The observation matrix Hw for this system can be computed as

explained in Supplementary Section S3.1. Solving the problem of

Equations (8) and (9) by regularization, we obtain the estimates l̂

and V̂0 of the growth rate and the initial volume, respectively.

The growth rate estimations l̂ðtÞ are shown in the second row of

Figure 3. As can be seen, upon glucose exhaustion the growth rate

drops from its maximum value to 0. Growth arrest is abrupt in the

conditions under which the data for acs and crp were acquired

(Supplementary Section S4).

As our method relies on penalizing successive variations of lðtÞ,
the question arises whether this entails a strong bias. In particular,

how well estimated are the timing of the transition between the two

growth phases, and the values of the growth rate during each phase?

We tested the method on simulated data similar to the measure-

ments in Figure 3, notably with equivalent sampling densities and

signal-to-noise ratios. The results are presented in Supplementary

Section S5. They show that our estimation method is able to recover

different growth-rate profiles, with very low bias and moderate

variance.

For comparison we also estimated the growth rate with the indir-

ect method described after Equation (13). In particular, we

smoothed the absorbance measurements ~VðtiÞ by means of smooth-

ing splines in order to estimate the volume and its derivative, and

computed an estimate of lðtÞ by means of Equation (13). For simu-

lated data shown in Figure 4A, the results in panel B show that at

the beginning of the experiment, when the absorbance signal is low,

the growth rate estimation is highly unstable. Additional numerical

experiments, shown in Supplementary Section S5, indicate that

increasing the smoothing parameter to reduce the variance of the es-

timates introduces a strong bias on the estimate, reflecting the well-

known variance-bias trade-off. We conclude that the proposed lin-

ear inversion method performs better than this indirect approach.

Notice that the estimation of growth rate and initial volume also

leads to a denoised estimation of the population volume by

Equation (5):

ca V ¼ Hw ca V0 bl� �
; (15)

which will be used in the next sections for the estimation of pro-

moter activity and protein concentration.

3.3 Estimation of promoter activity
The interest of the use of reporter genes is that, by construction,

they provide information on the expression of a gene of interest. We

will focus on transcriptional fusions here, where the reporter gene

and the gene of interest share the same promoter region and their

promoter activities can be considered identical, possibly up to a

multiplicative constant (Fig. 1).

Fig. 3. Fluorescence and absorbance data obtained from reporter gene experiments in E. coli and estimations of growth rate, promoter activity and protein

concentration from these data. The measured fluorescence and absorbance signals are shown in the top row. The estimations of growth rate, promoter activity

and protein concentration are denoted by l̂ðtÞ; âðtÞ and p̂ ðtÞ, respectively. The fluorescence signal, âðtÞ, and p̂ ðtÞ have been divided by their mean as they have

different orders of magnitude for genes fis, gyrA, crp and acs. For each signal, four replicates are shown, corresponding to different wells of the microplate
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The relation between promoter activity and observed fluores-

cence and absorbance signals is indirect and models of gene expres-

sion are needed to interpret the primary data. Several models have

been proposed in the literature (see the references in the introduc-

tion), but here we follow with some modifications the model used in

de Jong et al. (2010). The expression of a fluorescent reporter gene

is modeled as a three-step process involving transcription, transla-

tion and maturation of the fluorescent protein (Fig. 1). The variables

of the model are MðtÞ;RuðtÞ;RðtÞ 2 Rþ, denoting the total quantity

of gfp mRNA in a growing cell population and the total quantity of

immature and mature Green Fluorescent Protein (GFP), respectively

(in mmol). In comparison with other models, we consider total

amounts of molecules and not concentrations. This has the advan-

tage of simplifying the estimation of promoter activities, since terms

due to growth dilution drop from the equations.

The rate of transcription drives the dynamics of gene expression

and is defined as km aðtÞVðtÞ, representing the total amount of

mRNA produced per time unit in the growing cell population

(mmol min�1). Parameter km 2 Rþ represents the maximum tran-

scription rate per unit volume, and we will call aðtÞ 2 Rþ, which is a

dimensionless quantity scaled between 0 and 1, the promoter activ-

ity. This quantity is the net effect of the different regulatory mechan-

isms driving the transcription of the gene, involving RNA

polymerase, transcription factors and other regulators. With the

constants dM; kU; dR;kR 2 Rþ (min�1), characterizing the degrad-

ation, translation and maturation steps, we obtain the following

ODE system:

d

dt
MðtÞ ¼ kM aðtÞVðtÞ � dM MðtÞ;

d

dt
RuðtÞ ¼ kU MðtÞ � ðdR þ kRÞRuðtÞ;

d

dt
RðtÞ ¼ kR RuðtÞ � dR RðtÞ:

8>>>>>>><>>>>>>>:
(16)

Notice that the transcription rate is modulated by the volume of

the growing cell population, which can be replaced by its estimate

from Equation (15). As a consequence, the first equation of the

model writes

d

dt
MðtÞ ¼ k0M aðtÞ ca V ðtÞ � dM MðtÞ;

where k0M ¼ kM=a. The resulting gene expression model can be eas-

ily brought into the form of Equation (1):

xðtÞ ¼

MðtÞ

RuðtÞ

RðtÞ

0BBBB@
1CCCCA; AðtÞ ¼

�dM 0 0

kU �ðdR þ kRÞ 0

0 kR �dR

0BBBB@
1CCCCA;

BðtÞ ¼

k0M
ca V ðtÞ

0

0

0BBBB@
1CCCCA; CðtÞ ¼

0

0

b

0BBBB@
1CCCCA; uðtÞ ¼ aðtÞ;

yðtÞ ¼ bRðtÞ:

This allows the promoter activity a(t) as well as the initial condi-

tions M0, Ru0
, R0 to be estimated from the measured fluorescence

signal ~RðtiÞ. Whereas the degradation constants dR, dM and the mat-

uration constant kR can usually be measured with high precision

(de Jong et al., 2010), this is generally not the case for the other

parameters. However, we prove in Supplementary Section S6 that

setting b;kU;k
0
M to 1 still allows the time-varying profile of a(t) to

be estimated, up to some unknown multiplicative coefficient (as

usual in the literature).

Section 3.2 provides an efficient procedure for computing the ob-

servation matrix Hw for the above system. The efficiency and accur-

acy of the computation of the observation matrix can be further

increased when gfp mRNA is unstable and the maturation time is

fast (i.e. for kR and dM large compared with dR), which is the case

for the reporter genes used in this study (de Jong et al., 2010). This

makes it possible to lump the gene expression model of Equation

(16) into a single step and thus simplify the regularized regression

problem.

The linear inversion method for computing the promoter activity

was applied to the reporter gene data in Figure 3, resulting in the

estimates shown in the third row. We notice a sharp peak in the pro-

moter activity of fis right after the nutrient upshift, which is consist-

ent with previous reports (Azam et al., 1999), and the same

behavior is observed for gyrA. Whereas the activity of the crp pro-

moter shows little variation, consistent with the observation that the

Crp concentration does not change much across growth phases

(Kuhlman et al., 2007), upon glucose exhaustion the activity of acs

A

B

C

D

Fig. 4. Comparison of different methods for the estimation of growth rate

and promoter activity from reporter gene data. We compare indirect

approaches based on plugging empirically smoothed data into measurement

models with the direct linear inversion methods proposed here (including a

variant in which � is set to 1). Additional examples can be found in

Supplementary Section S5. (A) Simulated noisy absorbance data (gray) and

fluorescence data (green). (B) Estimates of the growth rate lðtÞ obtained with

the different methods. (C) Estimates of promoter activity a(t). (D) Estimates of

protein concentration p(t), using the direct method developed in this article,

and an indirect method consisting in the estimation of a(t), followed by nu-

merical solution of Equation (17). Solid lines and shaded regions represent

the mean 6 one standard deviation over 100 simulations. The direct methods

perform better than the indirect methods in that they yield estimates with less

bias and lower variance. The use of �¼1 may introduce a bias
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shows a dramatic increase, in large part due to sudden accumulation

of cAMP in the cell (Berthoumieux et al., 2013; Wolfe, 2005). These

examples illustrate that the method correctly infers known fast

changes in gene expression from the data, while avoiding overfitting

outside the transition region.

Like in Section 3.2, we used in silico benchmarks resembling the

actual data to further evaluate the ability of the method to recon-

struct promoter activities, in particular the timing of the peak

and its amplitude. The results in Figure 4C and Supplementary

Section S5 show that the method is stable even when the signal-

to-noise ratio is low, and captures the rapid variations in promoter

activity with high precision. Like in Section 3.2, we remark that

the method is robust, although it introduces some bias in extreme

cases. However, this bias is much smaller than that obtained by an

indirect method analogous to that outlined in the previous section

(Fig. 4C).

The estimation of the promoter activity is interesting in its own

right, as it gives insight into changes in the transcriptional activity of

specific genes during growth transitions. However, it can also be the

first step toward the estimation of the concentration of the regula-

tors of a gene (Bansal et al., 2012; Finkenstädt et al., 2008) or of the

concentration of the protein encoded by the gene of interest (de Jong

et al., 2010). In the next section, we will develop a direct linear in-

version method for addressing the latter problem.

3.4 Estimation of protein concentration
The expression of a gene of interest involves the same steps as the ex-

pression of the reporter gene, without the maturation step (Fig. 1).

As explained in the previous section, in the case of transcriptional

fusions the promoter activities a(t) of the two genes are the same.

However, the other parameters describing mRNA and protein syn-

thesis and degradation may be different.

In order to model the expression of the gene of interest, we intro-

duce new variables describing the total amount of mRNA and pro-

tein for the gene of interest, denoted by N(t) and P(t) (mmol),

respectively, and new kinetic constants kN ; dN ; kP;dP (min�1) repre-

senting the production and degradation rate of the mRNA and pro-

tein of interest. The protein concentration is given by

pðtÞ ¼ PðtÞ=VðtÞ. This results in the following ODE system:

d

dt
NðtÞ ¼ kN VðtÞ aðtÞ � dN NðtÞ;

d

dt
PðtÞ ¼ kP NðtÞ � dP PðtÞ;

pðtÞ ¼ PðtÞ=VðtÞ:

8>>>>><>>>>>:
(17)

Introducing the variables N0ðtÞ ¼ aNðtÞ and P0ðtÞ ¼ aPðtÞ, the

system of Equation (17) becomes

d

dt
N0ðtÞ ¼ kN a VðtÞ aðtÞ � dN N0ðtÞ;

d

dt
P0ðtÞ ¼ kP N0ðtÞ � dP P0ðtÞ

pðtÞ ¼ P0ðtÞ= a VðtÞð Þ:

8>>>>><>>>>>:
(18)

Like in the previous section, aVðtÞ can be replaced by the experi-

mentally measured absorbance signal ca V ðtÞ, yielding:

xðtÞ ¼
N0ðtÞ

P0ðtÞ

0@ 1A; AðtÞ ¼
�dN 0

kP �dP

0@ 1A; uðtÞ ¼ aðtÞ;

BðtÞ ¼
kN

ca V ðtÞ

0

0@ 1A; CðtÞ ¼
0

1= ca V ðtÞ

0@ 1A; yðtÞ ¼ pðtÞ:

For the estimation of the protein concentration p(t), the scheme

outlined in Figure 2 applies, with uðtÞ ¼ aðtÞ; y1ðtÞ ¼ pðtÞ, and

~y2ðtÞ ¼ ~RðtÞ. This allows an estimate of p(t) to be obtained from the

experimental measurement of R(t) as explained in Section 2.2.

When the gene expression model in Equation (18) can be reduced to

a single step, the observation matrix of the problem can be com-

puted in an efficient way as explained in Supplementary Section

S3.4.

The protein concentrations estimated from the E. coli reporter

gene data by means of the above method are shown in the bottom

row of Figure 3. The degradation constant of Fis was measured

[dP ¼ 0:0065 min�1; de Jong et al. (2010)], whereas the other pro-

teins were assumed to be long-lived (dP ¼ 0:001 min�1), like most

proteins in E. coli (Larrabee et al., 1980). We observe that the Fis

concentration transiently increases after the nutrient upshift, which

is consistent with the role of Fis in activating the synthesis of stable

RNAs necessary for growth (Dennis et al., 2004). The concentration

of Crp is stable during growth on glucose and somewhat increases

after glucose exhaustion, as expected from the fact that Crp acti-

vates catabolic genes needed for growth on poor carbon sources

(Gosset et al., 2004). Interestingly, this accumulation cannot be sim-

ply inferred by looking at the fluorescence data, which show no in-

crease after glucose exhaustion. It illustrates the importance of

taking into account different half-lives for reporter proteins and pro-

teins of interest.

We also tested this method on the simulated data. The results are

reported in Figure 4D and show that linear inversion is more stable

and introduces less bias than other approaches, notably indirect

approaches based on the estimation of a(t) and numerical integra-

tion of Equation (18) using this estimate. Another advantage of the

linear inversion method is that it does not need an estimate of the

initial conditions, which are often unknown. In conclusion, our dir-

ect method allows rich information on gene expression to be

inferred from the absorbance and fluorescence data under reason-

able assumptions.

4 Software for applying linear inversion methods

As they rely on few assumptions and require virtually no hand-tun-

ing, the linear inversion methods presented above are suitable for

routine treatment of reporter gene data obtained in microplate ex-

periments, which generate a huge quantity of measurements (typic-

ally 104 � 105 data points). The linear inversion methods were

implemented in the Python package WellFARE, relying on the scien-

tific libraries NumPy and SciPy (Jones et al., 2001). In addition, the

package provides utilities for parsing data files and removing out-

liers from the absorbance and fluorescence signals. The WellFARE

package is available under an LGPL license, but has also been inte-

grated into a web application called WellInverter, which provides a

user-friendly access to the linear inversion methods through a web

browser (Fig. 5). The user can upload data files by means of

WellInverter, remove outliers and subtract background, and launch

the procedures for computing growth rates, promoter activities, and

protein concentrations (Supplementary Section S7).

5 Discussion

The inference of meaningful gene expression profiles from indirect

experimental data is a key step in the analysis of dynamical models

in systems biology. As reporter genes tend to become ubiquitous, it

is important to develop reliable methods for the automated
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treatment of the large amounts of data becoming available. We have

shown that the estimation of growth rate, promoter activity, and

protein concentration from reporter gene data can be expressed as

linear inversion problems using ODE-based measurement models

and we proposed efficient procedures to compute the observation

matrices solving these problems. The methods thus obtained were

used to study the expression dynamics of several genes of E. coli

during growth transitions, where they confirmed their ability to han-

dle critical issues in reporter gene data analysis: low signal-to-noise

ratios and rapid changes in gene expression in response to environ-

mental perturbations. The validity of these estimation procedures

was reinforced by tests on simulated data, which showed that the

methods are robust and little biased.

Several methods for the analysis of reporter gene data have been

proposed in the literature, all of which are implicitly or explicitly

based on the same or very similar measurement models for interpret-

ing the data. The major differences between the approaches lie in

the information they extract from the data and in the way the pro-

files are computed from the primary data. The basic idea underlying

the linear inversion methods presented here is that they are direct, in

the sense that they perform regularization on the quantity to be esti-

mated, rather than by plugging empirically smoothed versions of the

data into the measurement models (de Jong et al., 2010; Ronen

et al., 2002). Our results show that this improves the robustness of

the estimation process. In comparison with Bansal et al. (2012), we

extend the linear inversion methods to growth rates and protein con-

centrations, thus more fully exploiting the information contained in

reporter gene data. Moreover, we improve the practical applicability

of the approach in that we do not need to make assumptions that

are often not realistic, such as zero initial promoter activities, con-

stant growth rate and direct measurements of reporter concentra-

tions. The linear inversion methods remain tractable when

improving estimation through the addition of linear constraints (e.g.

to ensure positive promoter activities and protein concentrations),

the consideration of uncertainty on the data, or the use of different

regularizations (L1 regularization or regularization on the second

derivative) (de Nicolao et al., 1997).

The methods described in this article are made available as a

Python package and can also be accessed through a user-friendly

web application. Other tools for the analysis of reporter gene data

are WellReader (Boyer et al., 2010) and BasyLICA (Aı̈chaoui et al.,

2012). Although the Matlab program WellReader uses the indirect

approaches from de Jong et al. (2010), BasyLICA is based on the use

of Kalman filters, which also directly estimate quantities of interest

from the reporter gene data by a Bayesian approach. In comparison

with BasyLICA, WellInverter estimates not only promoter activities

but also protein concentrations from the data, and bases the infer-

ence of these quantities at a given time t not only on past data, at

time-points preceding t, but on the entire dataset. In addition,

WellInverter uses regularization based on GCV to avoid hand-

tuning.

The generality of the techniques used in this paper suggests that

they could be applied to a much wider range of problems. A neces-

sary condition for the application of the methods is that the meas-

ured data is linearly related to the biological quantity of interest.

Notice that this does not exclude time-varying parameters in

Equations (16) or (17), for instance a time-varying degradation con-

stant of the protein, due to a change in half-live after a growth tran-

sition (Hengge-Aronis, 2002). As long as the time-varying

parameters are known, for example when their profile has been

measured, the inversion problem remains linear. To some extent,

this even allows non-linear estimation problems to be handled in

our framework, as illustrated by the growth-rate estimation in

Section 3.2.

The methods proposed in this article provide the most general

and comprehensive treatment of the reconstruction of gene expres-

sion profiles form reporter gene data available today, based on a

solid mathematical foundation and supported by user-friendly com-

puter tools. The approach directly carry over to luminescent re-

porter genes and may also apply to time-series data obtained by

completely different experimental technologies, like DNA micro-

arrays, RNA-Seq or quantitative proteomics. Although we validated

and illustrated the methods by means of reporter gene data from

bacterial kinetics, the measurement models of Equations (16) and

(17) are sufficiently general to apply to higher organisms as well.
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