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Abstract: The main goal of this study was to assess the interannual variations and spatial patterns of
projected changes in simulated evapotranspiration (ET) in the 21st century over continental Africa
based on the latest Shared Socioeconomic Pathways and the Representative Concentration Pathways
(SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) provided by the France Centre National de Recherches
Météorologiques (CNRM-CM) model in the Sixth Phase of Coupled Model Intercomparison Project
(CMIP6) framework. The projected spatial and temporal changes were computed for three time slices:
2020–2039 (near future), 2040–2069 (mid-century), and 2080–2099 (end-of-the-century), relative to
the baseline period (1995–2014). The results show that the spatial pattern of the projected ET was
not uniform and varied across the climate region and under the SSP-RCPs scenarios. Although the
trends varied, they were statistically significant for all SSP-RCPs. The SSP5-8.5 and SSP3-7.0 projected
higher ET seasonality than SSP1-2.6 and SSP2-4.5. In general, we suggest the need for modelers and
forecasters to pay more attention to changes in the simulated ET and their impact on extreme events.
The findings provide useful information for water resources managers to develop specific measures
to mitigate extreme events in the regions most affected by possible changes in the region’s climate.
However, readers are advised to treat the results with caution as they are based on a single GCM
model. Further research on multi-model ensembles (as more models’ outputs become available) and
possible key drivers may provide additional information on CMIP6 ET projections in the region.

Keywords: CMIP6; global climate model (GCM); CNRM-CM; SSP-RCPs; historical; projection;
ET; Africa

1. Introduction

Evapotranspiration (ET) is an important parameter of the water, carbon, and energy
cycle [1–5]. Evaluating ET change is pivotal for formulating evidence-based strategies to
enhance regional monitoring of water resource management and the design of policies that
promote sustainable agriculture, mostly in water-limited regions in a warming climate [6–8].
Moreover, our current climate models show a rising temperature (T) expected to impact
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the hydrological cycle, thus increasing ET. Increases in ET are predicted to result in more
frequent and intense extreme events (e.g., floods, droughts, and heatwaves) [9,10]. Thus,
understanding our future climate under the current global warming would improve our
response to the resulting impacts [6].

To project the future climate, global climate models (GCMs) are used [10–16]. Datasets
from different climate centers provide opportunities for projecting simulations of climate
variables [10,13,14]. Now, historical and simulated data records covering a longer period
of time have been generated and are available for research [13,14]. The Sixth Phase of
Coupled Model Intercomparison Project (CMIP6) is an updated version of phase 5 (CMIP5)
with similar radiative forcing levels for 2100. The Representative Concentration Pathways
(RCP2.6, RCP4.5, RCP6.0, and RCP8.5) are now known as the Shared Socioeconomic
Pathways (SSP1-2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5) [12,17]. We refer readers to the
following literature for more details on: CMIP-1 [13,18,19]; CMIP-2 [14,16], CMIP-3 [18–21],
CMIP5 [20,22–24], and CMIP6 [25–28]:

Much of the literature on the projection of climate models has been conducted at the
global and regional scales where GCM datasets are available [10,15]; however, they offer
limited information on few variables of interest (such as ET) in regions with heterogeneity
in biophysical and environmental conditions [29]. Indeed, precipitation (P) and T pro-
jections studies have been discussed in the literature under different CMIP frameworks.
Even now, with CMIP6, there is sufficient evidence to suggest the occurrence of a simu-
lated mean warming climate due to a rising T [12,19–21,24,27,30–36]. A warming climate
certainly impacts P distribution, which influences ET in both space and time [10,27,28].
Moreover, this comes as a natural question in the study of projections of future changes in
ET seasonality vis-a-vis recent evidence of significant changes in P and T in some parts of
the world [22,25,27,30–32,37,38].

In the CMIP suite, the simulated ET variable comprises three components: plant
transpiration, soil evaporation, and canopy interception [1,4]. Understanding ET interan-
nual variations, spatial patterns, and how ET is represented in CMIP6 model simulations
of the present and future climate may increase our confidence in the results for hydro-
meteorological applications.

The CMIP framework is a community research tool developed to help us under-
stand the physical climate response to future emissions in a warming climate [11,12,14,16].
According to Eyring et al. [12], advances in climate modeling technology coupled with
enhanced resolutions have improved how we represent essential indicators of climate
variables. For example, the CMIP6 archive has so far proven to have the advanced skill to
capture large-scale patterns of climate variables [39] and would support climate change
research in the upcoming years [40,41].

Unlike in previous studies where multi-models were evaluated and projected, we
selected one model following the work of [42–46] but focusing only on future changes
of ET as the variable of interest. In particular, we focused on CNRM-CM models from
the France Centre National de Recherches Météorologiques. Our choice of CNRM-CM
was dictated by data availability and previous evaluation studies of P and T [27]. We
do not wish to describe all model components here, and their couplings are provided
in Voldoire et al. with a detailed explanation [46]. Additionally, Voldoire et al. [46,47]
provide a difference between CNRM-CM5 and CM6. We highlight a few of the remarkable
changes or modifications made in the land surface model [48], atmospheric model [49],
and ocean (sea-ice) model [50] component resolutions, respectively. The major upgrades
and modifications improved the simulation outputs of tropical climates [46].

Africa is considered a hotspot of global warming (see AR4 and 5 [10,15] for detailed
analyses). According to the authors of [10], the continent is warming, and a statistically
significant warming trend is projected for Africa in the 21st century. A similar study
is consistent with P projection over Africa. However, the projected ET changes are less
clear. Africa is characterized by several climate zones based on the Köppen–Geiger climate
classifications [51]. Across the continent, the hotspots of climate characteristics, such as
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land–atmosphere fluxes or near-surface temperature, can be found in some of these climate
zones (e.g., arid and semi-arid regions), where P is closely dependent on soil moisture
availability [52,53], making the continent a suitable regional test bed for studies. In this
study, we can fairly assess the added benefits of the CNRM-CM6 model product without
the added noise of the global scale [6,54]. We extend and build on previous studies to show
a comprehensive picture of the future changes in ET over Africa under rapid warming and
investigate their possible trends. Thus, following the works of [43,44,55] (using a single
model) and [27] (i.e., climatology studies), the main aim of this research was to study future
ET seasonality at regional scales, and the outcome from this study is highly important and
relevant within the ongoing studies in climate change [10,15].

To study CMIP6 ET projections under the four combined scenarios of the SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 can provide insights into the regional development of
future climate change policy [10].

The objectives for this study are (1) to examine the projected changes in simulated
ET over Africa using the latest CNRM-CM6 of the CMIP6 dataset and (2) to quantify and
analyze the interannual variations of projected ET seasonality across the different SSP-RCPs
over Africa.

The rest of the paper is organized as follows. In Section 2, the data used and methods of
study are described. In Section 3, the results are presented, and in Section 4, the discussion
of the results is presented. The main conclusions of the study are summarized in Section 5.

2. Materials and Methods
2.1. Description of Study Area

Continental Africa is a climatologically diverse region located geographically between
32◦00′ N and 35◦00′ S and 14◦00′ W and 52◦00′ E. The continent has a huge landmass area
stretching to nearly 30.37 million km2. The continent straddles the equator and is boarded
to the southeast by the Indian Ocean, to the northeast by the Mediterranean Sea, and to the
west by the Atlantic Ocean [56].

The observed mean P in Africa does not exceed 700 mm year−1, and the mean T
ranges from 15 ◦C to 27 ◦C. The P and T distribution helps define African’s two distinct
weather patterns, where the P distribution in space and time is modulated by the oscillation
of the intertropical convergence zone (ITCZ) [57].

The presence of the huge oceans partly interacts with the global climate forcing
systems, such as the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole
(IOD). These teleconnections and the complex topography (Figure 1a) [58] partly help to
explain the seasonality of different climatic variables [21,59].

The vegetation cover interacts in complex ways to affect weather and climate [60,61].
The continent has experienced years of land use land cover (LULC) change [62]. The
period 1980–2005 reflects and captures all forms of anthropogenic activities in the region,
particularly in global warming [61,62]. Figure 1b shows the 2016 LULC map from the
European Space Agency Climate Change Initiative (ESA CCI) product [63]. Here, we
regrouped the LULC into seven dominant classes: forest, shrubland, savannas, grassland,
cropland, urban and built-up, and barren or sparsely vegetated. According to the authors
of [61,62], widespread degradation is set to intensify due to unmanaged human activities
(e.g., overgrazing, agricultural expansion, overexploitation, and deforestation) over some
parts of the African region.

Figure 1c shows the Köppen climate map of the study area. In addition, Africa’s
climate may be re-classified into seven different zones according to the Köppen–Geiger
Classification (Figure 1c): arid (desert), semi-arid (Sahelian), humid-tropical, tropical, and
Mediterranean [57]. Ongoing global warming has led to changes in the different climate
factors such as P and ET. Knowledge about these changes and the response of these climate
factors (e.g., ET) to global warming and their implications for nature and human society is
valuable [3,52].
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Figure 1. Geo-information of (a) digital elevation model (DEM) from NASA SRTM [58], (b) LULC
from ESA CCI [63], and (c) climate zones from the Köppen climate map across Africa.

2.2. Climate Modeling Data

To highlight the spatial pattern and interannual variabilities of simulated ET, we
focused our analyses fully on the CNRM-CM6 future projections (2015–2100). The GCM
CNRM-CM6 outputs and statistical procedures are discussed in the subsections below. The
global monthly CNRM-CM6 product used in this study is briefly described below.

The variable used in this study was ET (denoted as evspsbl) in the CMIP6 archive at
a spatial resolution of 1.4◦ × 1.4◦, and we used one ensemble member (r1i1p1;) for this
analysis, where (r1) denotes the first initial conditions for the first initialization method (i1)
using the first set of physics (p1). The CNRM-CM-6 output ran under an updated form of
RCP, that is, SSP1-2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5. The CNRM-CM of the CMIP model
was chosen based on the data availability, and the CM6 has historical data (from 1850 to
2014 and from 2015 to 2100). We used the monthly outputs of the CNRM-CM6 climate
model data to examine the projection of simulated ET.

2.3. Statistical Analysis of Historical and Projection of ET

Different statistical methods were used to achieve the objectives of this study. First,
we performed unit conversion where necessary. The ET products were converted from
their respective units (kilograms per square meter per second) to millimeters per month,
accounting for the number of days each month.

Second, the GCMs CNRM-CM6 dataset was aggregated to the annual and seasonal
timescale. We computed and quantified seasonal climatology for the entire continental
Africa by spatially averaging the long-term ET over the study area. We selected the period
1995–2014 as our baseline period for historical analysis. The unit of analysis used for the
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projection was annual and seasonal changes. The projected changes in ET for the SSP-RCPs
scenarios were based on three time slices: near future (2020–2035), mid-century (2050–2069),
and end-of-the-century (2080–2099) [64]. These time slices provide information on the
expected magnitude of the climate response over each time window [50]. In addition, we
used time series analysis to analyze temporal variation in the historical observations and
projections of simulated ET in CNRM-CM6. Further, to determine the projected climate
change signals for each time window, we calculated the difference between the future time
window and the reference period (i.e., 1995–2014) and projected from 2015 to 2100 under
the SSP-RCPs (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) emission scenarios.

Finally, we applied the linear trend analysis to estimate the projected ET trends over
the region. Simultaneously, the significance of these linear trends was examined by Mann–
Kendall trend analysis [65–67]. For the detailed computation procedure, please refer to the
studies of [68–70].

3. Results

This section describes the simulated ET climatology (i.e., annual and seasonal mean
changes) across Africa. We focused on the spatial pattern and interannual variations of the
historical and SSP-RCPs (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5).

3.1. Projected Changes in Annual and Seasonal ET
3.1.1. Temporal Variations

Figure 2 depicts the interannual variations of ET for historical and future periods
over Africa from 1995 to 2100 under the new SSP-RCPs scenarios (i.e., SSP1-2.6, SSP2-4.5,
SSP3-7.0, and SSP5-8.5) relative to the historical mean.

Figure 2. The annual ET in the historical period (1995–2014) and future period (2015–2100) under SSP1-2.6, 2-4.5, 3-7.0, and
5-8.5 scenarios relative to the historical mean.

Generally, the results showed that ET during the historical period showed different
variations from 1995 to 2014, but it showed a decreasing rate up to 5 mm year−1 at the end
of the present-day climatology (Figure 2, black line). Under SSP1-2.6 and SSP5-8.5, ET was
projected to decrease from 2015 to 2019, and then recover (significantly increasing from
2000 to 2035, before decreasing from 2036 to 2100). We projected a prominent recovery
of ET by a magnitude ranging 0–20 mm year−1 under the SSP1-2.6 at the beginning of
the near future (NF) (2020–2035), slightly decreasing after 2035 at a magnitude range of
5–60 mm year−1, especially at the beginning of the NF, before slightly decreasing at the
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end of 2035. The simulated ET was projected to remain negative through the mid-century
(MC) (i.e., 2055) until the end of the century (EC) (2100).

A similar magnitude was projected under SSP2-4.5, where ET increased shortly after
2015, and was then projected to decrease at the end of 2100, albeit with intermittent
increases disappearing from 2035 to 2100. The decreasing ET trend from 2015 to 2100 was
shown under SSP3-7.0 and SSP5-8.5, with subsequent recovery of a slightly increasing
trend and decreasing afterward over the projected future period.

However, under SSP3-7.0, the study projected a relatively small increase (up to a few
years) compared to the other remaining scenarios. The SSP1-2.6 and SSP5-8.5 showed the
highest projected ET decrease compared to the other two SSPs. Based on the above results,
this study found complex changes in the simulated ET during 2015–2100, with the specific
results of an increase (decrease) first, followed by a decrease (increase), and, finally, a return
to an increase (decrease) for the historical and future periods.

Figure 3 shows the seasonal variations of ET based on the historical mean (1995–2014,
black line) under the SSP-RCPS (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) scenar-
ios (colored lines). The historical monthly simulated ET climatology was computed for
1995–2014 to explain the seasonal variability. The result presents strong temporal variations
(in historical ET, black color) and ranges from 27.5 to 50.1 mm mon−1. We observed ET
seasonality starting from boreal winter and slightly declining in boreal spring. For example,
the peak in February was recorded as 50.1 mm mon−1 and then slightly decreased in March
(49.5 mm mon−1) and April (46 mm mon−1). On the other hand, we observed boreal
summer as having the lowest in ET seasonality. June had the record with 31 mm mon−1

and August with 30.1 mm mon−1, while July had the lowest at 27.5 mm mon−1.

Figure 3. Seasonal variations of ET in the historical period (1995–2014) and future period (2015–2100)
under the SSP1-2.6, 2-4.5, 3-7.0, and 5-8.5 scenarios. (Note: the historical period in the figure is
the original value, using the right coordinate; the future period under four scenarios is computed
by subtracting the historical mean from the entire time series, using the left coordinate). The unit
is mm month−1.

Figure 3 shows the monthly ET changes in the future climate (i.e., relative to the
baseline period) (Figure 3: SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). For the projections, the
projected monthly ET climatology was computed by subtracting the historical mean from
the entire time series for the SSP1-2.6, 2-4.5, 3-7.0, and 5-8.5 scenarios.

The future seasonal climatology projected a different pattern relative to the historical
one (Figure 3). The results projected a temporal trend ranging from 0.5 to 3 mm mon−1. The
ET changed peak in February, June, and October for all scenarios (Figure 3). The seasonal
pattern of projected ET in all the SSP-RCPs showed that the magnitude of change was
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higher in October–November (OND) than in June–August (JJA) and in February. SSP1-2.6
and SSP2-4.5 projected a lower seasonal mean than the SSP3-7.0 and SSP5-8.5 scenarios.
SSP1-2.6 and SSP2-4.5 projected a decrease from winter to summer, but ET increased in
autumn relative to the SSP3-7.0 and SSP5-8.5 scenarios.

3.1.2. Spatial Variations

To better understand the ET seasonality and quantify their relative spatial distribu-
tion in the future climate across the continent, we calculated and compared the spatial
distribution of the multi-year mean ET in the historical (1995–2014) and future (2020–2100)
periods. Figure 4 depicts the spatial land ET distribution associated with the variations of
the historical and all SSP-RCPs scenarios.

Figure 4. Spatial distribution of multi-year mean evapotranspiration (a) in the historical period
(1995–2014) and (b–e) ET change in the future period (2020–2099) under the SSP1-2.6, 2-4.5, 3-7.0,
and 5-8.5 scenarios relative to the historical mean. The unit is mm year−1.

In Figure 4a, we present the spatial distribution of the multi-year mean ET in the
historical periods (1995–2014). We observed a spatially distinct band of average annual
historical ET (Figure 4a) distributed in the humid tropical (i.e., along the west of the Sahelian
belt stretching to the Guinean coast). The average annual ET with the highest value was
distributed in equatorial regions at 5◦ S–5◦ N (i.e., the interior of the Congo Forest), while
it was lowest in the Sahara Desert (in the geographic locations of 20◦ N–35◦ N and small
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patches of arid zones in the east of the Sahelian belt to the Horn of Africa (HoA) and the
Kalahari Desert in the south).

The annual ET presented a spatially distinct band of ET distribution in the range
of <200 to >1000 mm (Figure 4a). The highest ET (of >1000 mm year−1) occurred in
regions where mean precipitation (P) exceeded 2500 mm year−1, while it was lowest
(<200 mm year−1) in areas with a lower annual P (<50 mm year−1). On the other
hand, we observed distinct spatial patterns in ET in the interior of the Ethiopian and
Kenyan Highlands (in the HoA region) and at locations (15◦ S) with historical ET values of
600–800 mm year−1.

Figure 4b–e shows the projection of the spatial distribution of the multi-year mean ET
obtained by subtracting the historical mean from the entire time series. Under all SSP-RCPs
scenarios, the ranges of the spatially averaged ET changed in overlap but were different in
relative magnitudes. In general, under all four SSPs-RCPs, decreases in ET (Figure 4b–e)
were projected mainly over geographical locations located 18◦ S–30◦ S. We observed spatial
patterns of high magnitudes (>100 mm year−1) similarly distributed in the arid regions of
the Kalahari Desert.

The spatial pattern of slight increases in ET under SSP1-2.6 and SSP2-4.5 was similarly
distributed in regions north of the equator. For example, the spatial pattern of high
magnitudes of projected values (i.e., <50 mm year−1) in ET under SSP1-2.6 and SSP2-4.5
was prominent in small pockets at 20◦ N–35◦ N (in the Sahara Desert), patches around
05◦ N–equator, i.e., the Guinean coast), the equatorial region (in the Congo Basin), and
patches in the HoA region (see Figure 4b,c). Additionally, patches of high values of
<50 mm year−1 occurred at the tips of the HoA region and in the peripheral regions of
bodies of open water.

Spatially, the geographical distribution of the projected increase in ET was similarly
distributed in the same regions as shown in Figure 4d,e. However, the pronounced pattern
of increases in the projected ET was detected under SSP3-7.0 and SSP5-8.5. We observed
high values, increasing up to >100 mm year−1, in patches located at the northeast tips
of Mozambique (at locations around 15◦ S). In addition, we observed an interesting but
complex spatial pattern of high values of the projected ET (>150 mm year−1) at locations
around 15◦ S (the northeast tips of Mozambique) and in the peripheral regions of large
bodies of open water.

To design short- to medium-term policies to mitigate the potential impacts in different
sectors of society, it crucial to analyze and understand the changes in the lengths and
timing of the ET within shorter future timeframes. Here, we present an analysis of three
different future periods: near future (NF) (2020–2039), mid-century (MC) (2050–2069), and
end-of-the-century (EC) (2080–2099), for all SSPs to provide a better understanding of their
seasonality and quantify their relative spatial distribution of ET in future periods. Figure 5
illustrates the spatial distribution of the multi-year mean ET for three different future
periods for the SSPs. From the figure, positive (negative) ET values denote a projected
increase (decrease).

In general, under all SSPs and periods, we observed similarities in the spatial distribu-
tion of projected increase (decrease) of ET in the same geographical regions. For each period,
we observed a slight exception in regions around 15◦ S–18◦ S (with a pronounced pattern of
ET detected); this showed similar magnitudes of positive (negative) ET values irrespective
of the SSPs under consideration. Spatially, we detected a pronounced pattern of positive
(negative) ET at MC (Figure 5c2,d2) and EC (Figure 5c3,d3) south of the equator, namely,
18◦ S–15◦ S (30◦ S–18◦ S), respectively. Under all four SSPs, SSP1-2.6 and SSP2-4.6 showed a
similar spatial pattern of ET compared to the SSP3-7.0 and SSP5-8.0 scenarios. However,
CNRM-CM6 simulated a pronounced pattern of ET in SSP3-7.0 (c1, c2, c3) and SSP5-8.0 (d1,
d2, d3) in comparison to the SSP1-2.6 (a1, a2, a3) and SSP2-4.6 (b1, b2, b3) scenarios.
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Figure 5. Spatial distribution of multi-year mean ET based on the historical mean (1995–2014) under
the SSP1-2.6 (a1–a3), 2−4.5 (b1–b3), 3−7.0 (c1–c3), and 5−8.5 (d1–d3) scenarios in three future
periods (2020–2039; 2020–2069; and 2080–2099). A positive (negative) ET value denotes a projected
increase (decrease). The unit is mm year−1.

3.2. Linear Trend in Projected ET

To detect changes, we conducted a linear trend analysis based on the Mann–Kendall
test and Sen’s slope test [65–67]. We calculated the trends on a per-pixel basis. The trends
were tested for significance, and the shaded areas represent grid points in which the linear
trends are significant at a 95% confidence level. Figure 6 depicts the spatial pattern of the
CNRM-CM6-projected linear trends for future climate (2020–2099) under all SSP-RCPs.
The positive values depict an increase, and the negative values depict a decrease.

Generally, as seen in Figure 6, the projected changes in ET were diverse in the projected
spatial distribution. We observed significant differences in their relative magnitudes (and
direction) of linear trend values under all SSPs. Under the SSPs, we observed locations
at 15◦ S–30◦ S (the Kalahari Desert, extending to the tips of Mozambique) presenting
an interesting picture. For example, we observed locations south of the equator (i.e., at
15◦ S–30◦ S) showing increasing dryness as the emission scenarios increased from low
to high.

A strong increase in projected dryness conditions occurred under the SSP3-7.0 and
5-8.5 scenarios, whereas relatively less dryness or no significant trend was found north of
the equator (20◦ N–30◦ N, Sahara Desert) under the high-emission scenarios (SSP3-7.0 and
5-8.5). For the same geographic locations (i.e., 20◦ N–30◦ N and 15◦ S–30◦ S), we observed
less dryness or no significant trend under SSP1-2.6 and SSP2-4.6.
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Figure 6. The linear trends of evapotranspiration under the SSP1-2.6, 2-4.5, 3-7.0, and 5-8.5 scenarios
in the future period (2020–2099). The positive values depict an increase, and the negative values
depict a decrease. The unit is mm decade−1. The black dots indicate that the trend passes the
0.05 significance test.

In Figure 6a–d, we detected a striking bipolar linear trend in the semi-arid region (west
of the Sahelian belt) and the equatorial region (in the Congo Basin). For example, SSP1-2.6
and SSP2-4.5 showed projected dryness trends, whereas SSP3-7.0 and 5-8.5 showed wetness
trends. A spatially distinct pattern of negative projected ET trends ranged from 5 to 15 mm.
In contrast, SSP3-7.0 and SSP 5-8.5 projected relatively high values in magnitudes of
>5–30 mm/10 a. The changes in trends (Figure 6a,b) were similar in the Sudano-Sahel
belt and equatorial regions. We observed projected dryness (wetness) conditions under
SSP1-2.6 and SSP2-4.5 (SSP3-7.0 and SSP5-8.5). These results suggest that future dryness
(wetness) conditions will most likely increase dramatically in these regions, especially
under SSP1-2.6 and SSP2-4.5 (SSP3-7.0 and SSP5-8.5).

We extended the analysis to understand how the trends (both magnitude and direction)
under three different shorter future periods may improve our understanding of their
seasonality and help quantify their relative spatial distribution of ET in future periods.
In Figure 7, we present the linear trends of ET in three future periods: NF, MC, and EC,
under the same radiative forcing. Generally, from the figure, positive (negative) ET values
represent a projected wetting (drying) trend per decade.

From Figure 7, we observed that there was spatial heterogeneity in the trend results
with differences in their relative magnitudes for all three periods under all radiative forcing.

In the NF, we observed the transition zones showing a drying trend of about 5–15 mm/10 a
under the SSP1-2.6 and SSP2-4.5 scenarios in the Sudano-Sahel–Guinean coast belt towards
the equatorial zones in the Congo Basin and regions with distinctly open water bodies
and channels (in HoA). However, we observed a more distinct and sharply decreasing



Int. J. Environ. Res. Public Health 2021, 18, 6760 11 of 17

trend under SSP2-4.5 (Figure 7b1) than SSP1-2.6. Then, in the MC, the trend changed in
magnitude and direction. A strong wetting trend was observed in the MC, but this time
SSP1-2.6 produced more wet scenarios than SSP2-4.5 (Figure 7a2,b2) with ET values ranging
from <15 to >30 mm/10 a, mainly in semi-arid regions and equatorial zones of Africa.

Finally, EC projections (Figure 7a3,b3) showed a similar spatial distribution of ET
trends values to the NF (Figure 7a1,b1), particularly in the HoA regions extending to the
Kenyan Highlands, and areas north of Lake Victoria to the southeast tip of Mozambique
(i.e., 18◦ S–22◦ S) under SSP1-2.6 and SSP2-4.6. Distinctively, we observed that the spatial
distribution of the linear trends of ET displayed a bipolar result in depicting linear trends
(in both magnitude and direction) in different geographical locations over the study region.

Under SSP1-2.6 (SSP2-4.6), we observed a wetting (drying) trend in patches surround-
ing the Kalahari Desert extending to large patches at 18◦ S–25◦ S (in the southwestern
portion of Southern Africa) for NF and EC. Similarly, in the SSP3-7.0 and 5-8.5 scenarios,
we observed a bipolar result in depicting linear trends (in both magnitude and direction),
particularly in the HoA extending to the southeast tip of Mozambique (i.e., 18◦ S–22◦ S).
However, patches surrounding the Kalahari Desert extending to large patches at 18◦ S–25◦ S
(in the southwestern portion of Southern Africa) showed similar trends (in magnitude and
direction). Here, we observed that a trend (in 2020–2039) would eventually shift to a wetting
trend (in 2040–2069) and return to a drying trend (at end-of-the-century) at the rate of <15 to
>30 mm/10 a. Interestingly, we noted that under SSP5-8.5, a significantly wetting trend over
the 21st century was observed over the HoA, except for slight wetting shown in MC.

Figure 7. The linear trends of evapotranspiration under the SSP1-2.6 (a1–a3), 2-4.5 (b1–b3), 3-7.0
(c1–c3), and 5-8.5 (d1–d3) scenarios in three future periods (2020–2039, 2020–2069, and 2080–2099).
The unit is mm decade−1. The black dots indicate that the trend passes the 0.05 significance test.
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4. Discussion

Understanding past drivers of climate change is crucial for assessing future climate
change. The analysis of the CNRM-CM6 model captures well the annual (Figure 2) and
seasonal (Figure 3) cycle of ET across Africa. We found that the decreasing trends of
annual mean ET across the continent under all SSP-RCPs (Figure 2) was consistent with
the T and P seasonality over the region from CMIP6 [27], as in response to changes in P
and T, ET is naturally expected to change across the region. Interestingly, our findings
demonstrated that SSP3-7.0 and SSP5-8.5 showed a higher rate of changes than the other
two scenarios. Other studies found similar results for higher emissions [41,71,72]. For
example, Almazroui et al. [27] found a large heterogeneity of T associated with larger radi-
ation forcing in similar regions. This may be attributed partially to the larger uncertainty of
the changes in T associated with larger radiation forcing [64]. The findings for the seasonal
cycle for the historical period were unimodal and close to the cycle south of the equator.
This result is consistent with the CMIP6 P seasonality found in Southern Africa by [73].
However, the future climate presented an opposite seasonal cycle for all the SSP-RCPs
(Figure 3). This is not surprising due to the different seasonal cycles in the north and south
of the equator; the changes in seasonal mean may result in enhanced seasonality.

The dry seasons (i.e., winter and spring) experienced higher monthly ET values,
while the wet seasons (i.e., summer and autumn) experienced lower monthly ET values
(Figure 3). The ET seasonality coincided with and followed unimodal P patterns south of
the equator. Conversely, we projected a trimodal ET pattern for SSP-RCPs, consistent with
the P patterns in the equatorial regions. This may be linked to the increase in projected P
shown in the CMIP6 ensemble [27]. The relative change in future ET may suggest a wet
condition in OND, JJA, and in January–February (J–F). Higher emissions (SSP3-7.0 and
SSP5-8.5) projected greater wetting conditions than the other two scenarios.

The spatial patterns of ET for the historical and future climate were examined to
provide a better understanding of their seasonality and quantify their relative spatial
distribution in the future period (2020–2099) across the continent. We noted that the
simulated ET amounts were maximum over the equatorial regions (between 5◦ S and
5◦ N); this is consistent with the P seasonality in West Africa [74,75] and the equatorial
region [27,76]. The amount reduced moving towards the humid–tropical region, the
Sahelian region, and, finally, in the arid region of the Sahara Desert (Figure 4a). The
patches of arid conditions found in the HoA had a more pronounced decrease in ET than
in the Kalahari Desert (in the south). The humid–tropical zones (along with the Guinean
coast) and the interior of the Cameroonian, Kenyan, and Ethiopian Highlands provided
a comparatively similar mean ET. The ET pattern recorded is consistent with CMIP6 P
patterns found in East Africa [77], North Africa [78] and Southern Africa [73].

Compared to the spatial patterns under high emissions, SSP3-7.0 and SSP5-8.5 showed
simulated ET values relatively similar to the highest ET values, which were located over the
equatorial regions, with values increasing from the Congo Forest to the HoA (Figure 4d,e).
These results for the SSP3-7.0 and SS5-8.5 scenarios show that the humid–tropical and
equatorial zones are likely to experience a significant change in ET, especially in Central
and Eastern Africa; however, the same cannot be said about SSP1-2.6 and SSP2-4.5, as most
regions are predicted to experience a low amount of ET. Almazroui et al. [27] projected
high (low) P in similar locations. These findings are not surprising as it may be expected
that an increase in T would increase P and ET and thus intensify the hydrological cycle.
The regions with a larger projected annual mean P to global warming may likely have more
ET, suggesting that more P (wet conditions) under higher emission scenarios have a wetter
pattern. This is consistent with the higher P amounts projected for the regions (see [27,37])
in the CMIP6 models. The findings of the spatial pattern of ET for the historical and future
climate examined here provide our understanding of their seasonality and quantify their
relative spatial distribution of ET in the future period (2020–2099) across the continent.

The results of the trend analysis (Figure 6) show that the projected changes in ET are
diverse, with regions in the humid–tropical and equatorial zones, especially in Central
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and Eastern Africa, having significantly larger trend magnitudes under all SSPs. Regions
located in the Mediterranean (located in the northern tip of Africa) showed significantly
decreasing trends. This result is consistent with P [78] and T [27,76] trends over the north
of Africa. The results of the linear trend values for SSP1-2.6 and SSP2-4.5 are close to each
other and the same was found for higher emissions (SSP3-7.0 and SSP5-8.5). The difference
between SSP3-7.0 and SSP5-8.5 shows that SSP5-8.5 had more pronounced signals and
covered a much larger area (Figure 3).

Africa’s agriculture system is largely rainfed, and the growing seasons follow the P pat-
terns in space and time. Thus, from an agriculture policy perspective, these results suggest
that wet (dry) conditions would likely be favorable (unfavorable) for farming in regions
that coincide with the start of the planting seasons in water-limited regions. On the other
hand, from an urban policy perspective, regions located in wetter climate conditions may
likely experience increased P and subsequently an increased risk of flooding. Conversely,
dry conditions in the other months indicate that drier conditions may experience low or no
P, resulting in an increased drought risk [9]. The African region is the most vulnerable to
climate change impacts and arguably has a weak system to facilitate evidence-based policy
implementation designed for adaptive and mitigative strategies. This study highlighted
a key climate variable (i.e., the ET) from one CNRM-CM6 dataset. From the perspective
of public health, ET change and variability in the region in future scenarios may have
implications for the transmission of diseases, such as malaria, in some parts of the region,
consistent with [24,27,79,80] findings, but for P and T trends and variability.

We demonstrated the temporal pattern and spatial distribution of simulated ET in the
various climate regions of Africa using the CNRM-CM6 under all SSP-RCPs. Detecting
climate changes is crucial in developing adaptation and mitigation measures at the regional
and local scales. Our future dependence will be further influenced by increased evaporative
demand by the atmosphere. Particularly, these changes imply future water availability for
use by the different sectors of the society that depend on it. However, readers are advised
to use these results with caution as further studies using multi-model methods (as they
become available) may show which models perform well in which climate regions, thus
providing more information on tailor-made mitigation and adaptive measures for different
climate conditions.

5. Summary and Conclusions

Ongoing global warming has brought the discussion of mitigating the adverse impact
of extreme events to the forefront. We focused on ET, as future changes are projected to
influence evaporative demand by the atmosphere and potentially impact future water
availability for use by societies and the ecosystems.

According to Eyring et al. [12], CMIP6 has improved spatial resolution, and the
physics (concerning parameterization and components) have also significantly improved.
Additionally, the CMIP6 projections include socioeconomic impacts on the climate, making
them more realistic and usable. In recent times, much of the literature has investigated
projections of future climate in different regions worldwide for a wide variety of climate
variables, but without ET. This study aimed to contribute to the increasing demand for sci-
entific work by the climate science community by investigating the projection of simulated
ET using CMIP6 models.

We used CMIP6 CNRM-CM6 to assess future changes of the simulated ET from a
regional perspective and to examine the long-term changes (trends) across Africa for both
historical (1995–2014) and future SSP-RCPs scenarios (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5). The choice was based on data availability at the time of this study.

The CNRM-CM6 was able to reproduce the projected ET for future climates by quan-
tifying ET seasonality across continental Africa in both space and time. CNRM-CM6
captured the distribution of historical and projected ET over Africa at both annual and
seasonal scales. Historical analysis showed a striking distinct spatial pattern of average
annual ET across diverse climatic zones. The arid regions (the Sahara Desert and the Kala-
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hari areas) indicated declining ET trends by the end of the 21st century, with larger values
under the SSP5-8.5 scenario than under the SSP1-2.5 scenario. We observed a dominant
pattern of high (low) ET values projected in equatorial and tropical–humid regions. The
equatorial and tropical–humid regions shown demonstrated a projected wetting trend in
all four SSPs-RCPs. The highest trend values were in the equatorial region and under high
emissions (i.e., SSP3-7.0 and SSP5-8.5). This study thus provides an insight into Africa’s
changing climate in the 20th and 21st centuries.

In general, we suggest the need for modelers and forecasters to pay more attention to
how the simulated ET changes will impact the generation of extreme events. The findings
of this study provide useful information for water resources managers to develop specific
measures to mitigate extreme events in the regions most affected by climate variability.
However, these results are based on one GCM and therefore should be treated with caution.
Further research using multi-model ensembles (as the data become available) and possible
keys drivers over the region may provide additional information on ET climatology and
trends over Africa.
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