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Advanced Chemical Computing
Using Discrete Turing Patterns in
Arrays of Coupled Cells
František Muzika, Lenka Schreiberová and Igor Schreiber*

Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czechia

We examine dynamical switching among discrete Turing patterns that enable chemical

computing performed by mass-coupled reaction cells arranged as arrays with various

topological configurations: three coupled cells in a cyclic array, four coupled cells in a

linear array, four coupled cells in a cyclic array, and four coupled cells in a branched

array. Each cell is operating as a continuous stirred tank reactor, within which the

glycolytic reaction takes place, represented by a skeleton inhibitor-activator model where

ADP plays the role of activator and ATP is the inhibitor. The mass coupling between

cells is assumed to be operating in three possible transport regimes: (i) equal transport

coefficients of the inhibitor and activator (ii) slightly faster transport of the activator, and

(iii) strongly faster transport of the inhibitor. Each cellular array is characterized by two

pairs of tunable parameters, the rate coefficients of the autocatalytic and inhibitory steps,

and the transport coefficients of the coupling. Using stability and bifurcation analysis

we identified conditions for occurrence of discrete Turing patterns associated with

non-uniform stationary states. We found stable symmetric and/or asymmetric discrete

Turing patterns coexisting with stable uniform periodic oscillations. To switch from one of

the coexisting stable regimes to another we use carefully targeted perturbations, which

allows us to build systems of logic gates specific to each topological type of the array,

which in turn enables to perform advanced modes of chemical computing. By combining

chemical computing techniques in the arrays with glycolytic excitable channels, we

propose a cellular assemblage design for advanced chemical computing.

Keywords: chemical computing, discrete Turing patterns, coupled cells, bifurcation analysis, glycolytic oscillations

INTRODUCTION

Living cells can be considered as autonomous systems, which developed through evolution into
energetically efficient forms capable of analysis of the environment to find sources of energy
and material for maintenance, metabolism, and replication. Their subsystem for environmental
analysis requires an intracellular signaling network, such as sensor/receptor-repressor system of
Saccharomyces cerevisiae for glucose detection based on kinases (Snowdon and Johnston, 2016),
or signaling network based on MAPkinases (Sauro and Kholodenko, 2004; Hadač et al., 2017).
In multicellular organisms, due to cell differentiation, a signaling network system developed into
specialized signaling cells, the neurons, which form a network of cells creating the signaling system
of multicellular organisms. To show the energy efficiency of such cells we highlight a human
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neuron. It consumes in average 8 × 10−17 mol
cell·s

to 4 × 10−16 mol
cell·s

of glucose and 1 × 10−17 mol
cell·s

to 1 × 10−15 mol
cell·s

of oxygen
(McMurtrey, 2016). Neurons display high arithmetic and pattern
recognition performance, when integrated into network (Majaj
et al., 2015). Around 40 percent of consumed energy is
used for basal energetic consumption and the rest is used to
form and send currents among individual neurons, therefore
60 percent of consumed energy is used for data processing
(Engl and Attwell, 2015).

Since the network of signaling neurons is energetically
efficient, it is a source of ideas and techniques for building
artificial signaling systems called neural networks. Examples of
physically constructed neural networks include programmable
resistive elements (memristors) (Howard et al., 2014);
complementary metal–oxide–semiconductors (CMOS), which
Shen et al. used to construct a Darwin neural processing unit
with 2,048 neurons and power consumption ∼60 mW (Shen
et al., 2016); magnetic spin switches in 3D/2D architecture
(Roy et al., 2014); a pattern recognition technique, based
on network of bistable rectors (Hjelmfelt and Ross, 1993;
Hjelmfelt et al., 1993); network of gel droplets containing
BZ reaction system (Holley et al., 2011; Górecki et al., 2014)
and neuron-like units constructed using excitable channels
(Górecka and Górecki, 2006).

Neural network processors can be constructed also from
biological materials, for example: substitution of neuron units
with DNA cascades (Qian et al., 2011); techniques combining
DNA assays and transistors based on natural fluorescence (Lue
and Fang, 2008); substitution of neuron units by three types
of oscillators under batch conditions (Kim and Winfree, 2011).
The neural network can be substituted by a lattice of excitable
cells capable of signal addition, subtraction and conduction
(Adamatzky, 1998). It can be constructed as a model of linear 3D
neural network, using N layers of lattices, where (X-1)-th layer is
connected to X-th layer and the X-th layer is connected to (X+1)-
th layer, where X = 1, . . . ,N. This theoretical work was followed
by an experimental 2D lattice of liquid crystals to perform logic
calculations (Adamatzky et al., 2011).

In this work, we explore a simple substitute for a neural
network that performs chemical computing by utilizing discrete
Turing patterns occurring in a network of mass coupled chemical
cells with an autocatalytic reaction. From a theoretical point
of view, the origin of biological morphogenesis was proposed
by A. Turing (Turing, 1952) as manifestation of spatiotemporal
patterns arising due to reaction-diffusion in cyclic arrays of
coupled cells or in continuous tissue. Although his theory was
shown not to be valid in general (Wolpert, 1969; Kerszberg and
Wolpert, 1998), it does seem to apply in special cases, such as
functional development of a brain tissue (Garzón-Alvarado et al.,
2011), development of digits of mice (Bagudu et al., 2012) or
during Saccharomyces cerevisiae cell polarization (Kozubowski
et al., 2008; Giese et al., 2017). The key condition for occurrence
of Turing patterns is a synergy of input, output, autocatalysis,
inhibition, and diffusion. For spontaneous occurrence, diffusion
parameters of specific components have to be set to exhibit
short range activation and long range inhibition (Meinhardt

and Gierer, 1974, 2000; Kondo and Miura, 2010), in other
words, diffusion coefficient of an inhibitor has to be higher
than diffusion coefficient of an activator. In an array of cells,
the Turing instability gives rise to a non-uniform discrete
stationary concentration profile throughout the array. A non-
uniform concentration profile can thus be viewed as a discrete
Turing pattern. In contrast, within a continuous tissue, the
Turing instability leads to smooth spatiotemporal structures such
as labyrinth (Rudovics et al., 1999; Asakura et al., 2011), dots
(Ouyang et al., 1995; Rudovics et al., 1999; Vanag and Epstein,
2001), stripes (Ouyang et al., 1995), hexagons (Horvath et al.,
2009; Asakura et al., 2011), or helical patterns in cylindrical layers
(Bánsági and Taylor, 2015).

In a system of coupled oscillators, discrete Turing patterns

often coexist with oscillations, In particular, they were shown

to coexist by Bar-Eli (1984) and Vastano et al. (1987) for equal
transport rate coefficient of activator and inhibitor. Such a
system can be carefully perturbed to induce transition from
oscillations to a discrete Turing pattern. Early experimental
research was performed using the BZ oscillatory system, where
a membrane between cells was substituted by valves (Crowley
and Epstein, 1989) or peristaltic pumps (Bar-Eli and Reuveni,
1985; Dolník andMarek, 1988; Yoshimoto et al., 1993). Following

these findings, in our previous work we examined the case
of equal transport rate coefficients of activator and inhibitor

using a core model of (Goldbeter and Moran, 1984) glycolysis
as an oscillatory reaction. We identified coexisting discrete
Turing patterns in linear arrays of two and three coupled
cells (Muzika and Schreiber, 2013; Muzika et al., 2014) and
applied targeted perturbations to perform basic logical functions.
In our experimental research, we substituted membrane by a
reciprocal peristaltic pumping to form a cyclic array of four
coupled subsystems where the reaction of yeast extract and D-
glucose took place (Muzika et al., 2016). In agreement with
our theoretical predictions we found coexistence of discrete
Turing patterns with uniform oscillations and were able to
apply specific perturbations, inducing transition between discrete
Turing patterns and uniform oscillations.

The paper is organized as follows. In section Model we
provide details of the glycolytic model and formulate equations
describing arrays of coupled cells with an arbitrary topology.
In section Stability And Bifurcation Analysis the analysis of
stability and bifurcations of stationary states is used to construct
bifurcation diagrams for arrays of three and four coupled cells
at various fixed ratios of transport rate coefficients of ATP and
ADP and identify various types of discrete Turing patterns, their
occurrence, coexistence, and stability within a 2D parameter
space. By choosing specific regions with occurrence of multiple
discrete Turing patterns in arrays of three and four coupled cells
with various topology (linear, cyclic, T-shaped) and for various
ratios of transport rate coefficients, one-parameter diagrams
are chosen to provide a more detailed insight. Finally, section
Chemical Computing Devices is focused on studying various
aspects of chemical computing. By creating a system of precisely
targeted and precisely timed perturbations to induce transitions
between discrete Turing patterns and oscillations, we discuss a
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tautology/contradiction gate, advanced logic functions gates, and
advanced cellular assemblage design.

MODEL

Glycolysis is one of the oldest and most common biochemical
oscillatory reaction. Its purpose is to release energy from
carbohydrates, which a cell synthesizes during photosynthesis
or which a cell consumes from an external supply. A
mathematical model of the yeast glycolytic reaction chain
proposed by Hynne et al. (2001) consists of 24 reactions. It
incorporates an autocatalytic enzymatic reaction mediated by
phosphofructokinase and it also contains negative feedback
enzymatic reactions from the lower part of the glycolytic
chain catalyzed by pyruvate kinase and phosphoglycerate kinase.
To analyze dynamic behavior in the arrays of mass-coupled
cells, it is convenient to reduce the model involving entire
glycolytic reaction chain into a core model retaining only the
three aforementioned positive and negative feedback reactions.
Therefore, for our analysis of bifurcations and stability of
stationary states, the core model proposed by Goldbeter and
Moran (1984) is used.

From an experimentalist viewpoint both feedback reactions
can be regulated through temperature adjustments and also
through the level of pH, where synergic effect with fructose
2,6 bisphosphate occurs between pH = 9 and pH = 5. In
this range, the activity of phosphofructokinase is increased due
to a decreased energy consumption to create bonds (Deville-
Bonne et al., 1991; Tlapak-Simmons and Reinhart, 1998).
Phosphofructokinase can be stimulated by addition of glycolytic
metabolites or by addition of other components. In particular,
hydrocarbonate can increase the activity of phosphofructokinase
three times. In vivo experiments have shown that the addition of
hydrocarbonate increased motility of sperm cells (Hereng et al.,
2014) due to increased ATP-pool levels. We observed and used
the same effect to increase activity of phosphofructokinase in
our experimental research of discrete Turing patterns (Muzika
et al., 2016). Phosphofructokinase can be inhibited by addition
of: (1) ATP by up to 95%, (2) citrate by up to 60%, (3) PEP
by up to 50%, (4) fructose 6-phosphate by up to 70%, and (5)
phosphoglycerate by up to 60% (Mediavilla et al., 2007). These
positive and negative effects provide rationale for modifying
corresponding rate coefficients in the coremodel of glycolysis to a
considerable extent. Coupling of cells in multicellular organisms
is realized via gap junctions or in the case of artificial cellular
assemblages via artificial membranes or artificial ports/junctions.
Correspondingly, we add linear diffusion terms to the core
model, creating the following model of N coupled cells with
various topologies:

dxi

dt
= fx

(

xi, yi
)

+ qkADP

N
∑

j=1

δij
(

xj − xi
)

+ pi (t) ,

dyi

dt
= fy

(

xi, yi
)

+ kADP
∑N

j=1
δij

(

yj − yi
)

, (1)

fx = ν + σinh
yni

Mn + yni
− σM

xi (1+ xi)
(

1+ yi
)2

L+ (1+ xi)
2
(

1+ yi
)2

,

fy = φσM
xi (1+ xi)

(

1+ yi
)2

L+ (1+ xi)
2
(

1+ yi
)2

− kSyi − φσinh
yni

Mn + yni
,

(2)

i = 1, . . . ,N,

where {δij} is a non-negative structural matrix specifying the
topology of the array. In the special case of 1D (non-cyclic) chain:
δij = δji = 1 for j = i− 1; i = 2, . . . ,N,

δij = 0 otherwise,

and for a cyclic chain:

δij = δji = 1 for j = i− 1; i = 2, . . . ,N,

δ1N = δN1 = 1,

δij = 0 otherwise.

By properly choosing {δij}, more complex topologies, such as
T-shaped array can be defined.

The symbols xi and yi represent dimensionless concentrations
of ATP and ADP in the i-th cell, respectively. The function
pi(t) represents perturbation of i-th cell by ATP, see section
Chemical Computing Devices for more detail. The parameters
are as follows: M is Michaelis constant; ν represents ATP uptake
rate; n represents Hill coefficient; φ is the ratio of dissociation
constants of ATP and ADP; L represents allosteric constant
specifying affinity of the PFK conformation to the reactive state
rather than non-reactive conformation (Monod et al., 1965);
ks represents removal rate coefficient of ADP; σM represents
rate coefficient of autocatalysis; σinh represents rate coefficient of
inhibition; q represents ratio of the transport coefficient of ATP
relative to ADP; kADP represents transport coefficient of ADP
between each pair of coupled cells. The following parameters are
set according to Goldbeter and Moran (1984): φ = 1, ν = 1.84
s−1, L= 5× 106, n= 4,M = 10, ks= 0.06 s−1. There is a unique
stationary state in one cell that, depending on the two remaining
kinetic parameters σM and σinh, is either stable or undergoes
an oscillatory instability via a Hopf bifurcation. Below, we treat
σM and σinh as adjustable, as well as the coupling parameters
kADP and q. We use these four free parameters to construct
various bifurcation diagrams and thus demonstrate their effect
on occurrence of discrete Turing patterns and their overlap with
homogeneous periodic oscillations.

STABILITY AND BIFURCATION ANALYSIS

Bifurcation Scenarios
For the analysis of stationary and dynamic behavior of the
glycolytic oscillatory reaction in arrays with various topology
we use the program CONT (Kubíček and Marek, 1983; Kohout
et al., 2002). We chose such a parameter setup that the system
exhibits either a unique stable stationary state or unique stable
limit cycle in one cell avoiding thus the region of birhythmicity
(Goldbeter and Moran, 1984). These two basic regimes translate
in the context of arrays into a uniform stationary state and
uniform oscillations. However, their stability generally depends
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on the coupling strength. Under parameter settings used in this
work, the stable uniform stationary state may lose stability either
via a Hopf bifurcation leading to stable uniform oscillations or
via a symmetry breaking bifurcation leading to stable discrete
Turing patterns (i.e., stable non-uniform stationary states). In
addition, symmetry breaking bifurcation may occur also from
unstable uniform stationary states. On the other hand, symmetry
breaking bifurcation from the uniform oscillations was never
observed. These so-called primary bifurcations from the uniform
stationary states are complemented by secondary bifurcations
from the non-uniform stationary states, which include limit
point bifurcations (folds), secondary Hopf bifurcations as
well as secondary symmetry breaking bifurcations. Any Hopf
bifurcation curve in a two-parameter plane is either a closed
curve or it terminates when touching a curve of limit point
bifurcation at the Bogdanov-Takens codimension one point.
Also, two Hopf bifurcation curves may intersect at the point of
double Hopf bifurcation; additionally, there are other types of
singularity points, which we do not mention here. Details of all
these transitions depend on the particular array topology and
may be quite involved as described below.

In our previous work, an array of two coupled cells (Muzika
et al., 2014) and a linear array of three coupled cells (Muzika and
Schreiber, 2013) were described through bifurcation diagrams
in the parameter plane of σM and σinh and in the parameter
plane of σinh and kADP at fixed q. In the following we use the
same parameter planes. The region of stable uniform stationary
state (SUSS) in Figures 1A,B is a region that all arrays with q
≤ 1 share throughout all the topologies, because it does not
depend on kADP. The region of unstable uniform stationary
state (UUSS) and simultaneously stable uniform oscillations
(SUO) contains subregions of coexisting stable or unstable non-
uniform stationary states (discrete Turing patterns) for all arrays
with q ≤ 1. The regions of Turing patterns are described with
numbers in the format a-b, where the first number defines the
number of stationary states and the second number defines the
number of stable stationary states. Figure 1A shows that with
increasing positive feedback rate coefficient σM , two triplets
of unstable symmetric non-uniform patterns occur through
a primary symmetry breaking bifurcation from an unstable
uniform stationary state and the limit point curve delimits the
region of their occurrence (region 7-0). Three of these unstable
non-uniform patterns become stabilized (region 7-3) at ≈ σM
= 70 s−1 by a Hopf bifurcation (full red curve), which is called
secondary stabilization. At higher inhibition rate coefficient σinh,
four new non-uniform stationary states occur from two non-
uniform branches via secondary symmetry breaking bifurcation
(from non-uniform symmetric to non-uniform asymmetric)
creating the region 11-0. With increasing autocatalytic rate
coefficient, two of the unstable non-uniform stationary states
are stabilized by a secondary Hopf bifurcation curve (region 11-
2). Further simultaneous increase of both σM and σinh leads
to another Hopf bifurcation curve, which destabilizes the stable
non-uniform patterns (region 9-0) again, creating a U-shaped
region of stable Turing patterns (region 11-2). These two regions
of stable non-uniform stationary states (region 11-2 and region
7-3) intersect each other above ≈ σM = 125 s−1 creating a

FIGURE 1 | Bifurcation diagram for three coupled cells in cyclic array, q = 1, in

planes: (A) σinh and σM, kADP = 0.1 s−1; (B) σinh and kADP, σM = 100 s−1. Red

curve—Hopf bifurcation curve; blue curve—symmetry breaking bifurcation

curve; green curve—limit point curve; full line—change of stability across the

line, dashed curve—no change of stability across the line; empty

square—intersection point of Hopf bifurcation/symmetry breaking

bifurcation/limit point curves; empty diamond—Bogdanov-Takens bifurcation

point; empty triangle—double Hopf bifurcation point; SUSS, stable uniform

stationary state; UUSS, unstable uniform stationary state; SUO, stable uniform

oscillations. Each parameter region is marked by a pair of numbers m,n, where

m is total number of stationary states and n is the number of stable stationary

states.

parameter region with five stable non-uniform stationary states
(region 11-5). Figure 1B represents the parameter plane of σinh
and kADP at σM = 100 s−1. This bifurcation diagram does not
possess the intersection of both regions of stable non-uniform
stationary states (region 7-3 and region 11-2 merging to region
11-5 in Figure 1A), instead it shows a disc (region 7-3) and two
other embedded disks (region 11-2 and region 9-0) delimited by
Hopf bifurcations with the region in-between them representing
stable Turing patterns (region 11-2).

For more complex topologies of arrays, bifurcation diagrams
abound with curves of Hopf bifurcation, symmetry breaking
bifurcation, and limit points, therefore we choose to show only
the bifurcation diagrams for three additional types of arrays
in the parameter plane σM and kADP. Figure 2 shows three
bifurcation diagrams for an array of four coupled cells with q
= 1 with the following topologies: linear, T-shaped and cyclic.
As in the previous case, at a first glance, the salient features
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FIGURE 2 | Comparison of bifurcation diagram four coupled cells in a parameter plane σinh and kADP, q = 1, σM = 100 s−1 in: (A) linear array, (B) T-shaped array, (C)

cyclic array. Red curve—Hopf bifurcation curve; blue curve—symmetry breaking bifurcation curve; green curve—limit point curve; full line—change of stability across

(Continued)
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FIGURE 2 | the line, dashed curve—no change of stability across the line; empty square—intersection point of Hopf bifurcation/symmetry breaking bifurcation/limit

point curves; empty diamond—Bogdanov-Takens bifurcation point; empty triangle—double Hopf bifurcation point; SUSS, stable uniform stationary state; UUSS,

unstable uniform stationary state; SUO, stable uniform oscillations. Each parameter region is marked by a pair of numbers m,n, where m is total number of stationary

states and n is the number of stable stationary states. For clarity, the upper-left corner region with many overlapping curves is magnified and displayed in the inset on

the right.

of the diagrams are the disc-like regions of stable non-uniform
stationary states (discrete Turing patterns) delimited by red
curves of secondary Hopf bifurcation, which are coexisting with
the stable uniform oscillations in the region delimited by two
parallel lines of primary Hopf bifurcation. The region of non-
uniform stationary states in Figure 2A (linear array) is the widest
region of Figure 2 and contains up to 15 coexisting stationary
states. Two non-uniform stationary states occur from a primary
symmetry breaking bifurcation creating region 3-0, which is
partly delimited by a limit point curve, where the number of
non-uniform stationary states is doubled creating the region 5-
0. Secondary Hopf bifurcation curves (full red curves) stabilize
the unstable non-uniform stationary states delimiting the region
3-2 and the very small region 5-2. With decreasing kADP four
new pairs of non-uniform stationary states occur and two of
them are doubled by a limit point curve, therefore creating
15 stationary states. Two of them are secondarily stabilized
creating the region 15-2 and where the region 3-2 intersects
with 15-2, they create the region 15-4. Another region delimited
by secondary symmetry breaking curve and limit point curve
overlaps with this dense region and a small inner part of it is
again secondarily stabilized by a Hopf bifurcation curve to form
region 5-2.

The bifurcation diagram for a T-shaped array is shown in
Figure 2B. The region 5-0 is much wider than in the case
of the linear array, while the region 3-0 is narrower. The
Hopf bifurcation curve (full red curve) secondarily stabilizes a
subregion of 3-0 into the region 3-2. Another secondary Hopf
bifurcation curve delimits the closed region 5-2 embedded in the
region 5-0. Both cases can be observed in the case of the linear
array, but the region 5-2 is much wider now. It is also intersected
by another limit point curve, adding two unstable non-uniform
stationary states creating the small region 7-2 and one stable
and one unstable non-uniform stationary state creating the small
region 7-3. The primary region 3-0 is further intersected with
branch point and limit point curves, where the most interesting
are two regions 15-2, which also occur in the case of the linear
array, and the region, where stabilizing Hopf bifurcation curves
intersect, creating the regions 18-4 and 9-4. The bifurcation
diagram for the cyclic 4-array is shown in Figure 2C. The region
3-0 is missing, however due to intersections of regions narrowed
by a limit point curves, there is a wide region 5-0 with small
overlap 7-0. Unstable non-uniform stationary states are again
stabilized by a secondaryHopf bifurcation curve creating a region
5-2. Then the whole region 5-0 is intersected by several symmetry
breaking bifurcation curves creating up to 19 stationary states
(region 19-0), which are stabilized by a Hopf bifurcation curve
to form the region 19-2 and then the region intersects with 5-2
to form the region 19-4. This region intersects also with another

region 11-4, creating the region 17-6 with the largest number of
stable Turing patterns.

For q > 1, a stable non-uniform stationary state may emerge
directly via a primary symmetry breaking bifurcation from the
stable uniform stationary state, which leads to spontaneous
occurrence of Turing patterns as well-known from many
experiments in spatially extended reactors (Castets et al., 1990;
Ouyang et al., 1995; Rudovics et al., 1999; Dolník et al.,
2001; Sanz-Anchelergues et al., 2001; Asakura et al., 2011).
To ensure sufficient conditions for spontaneous occurrence
of Turing patterns, we set q = 100 and σM = 10 s−1,
while the other parameters remain, as they were proposed
by Goldbeter and Moran (1984). We are comparing the
previously discussed three types of arrays in Figure 3. It is
clearly seen that the regions of Turing patterns now extend
below the lower primary Hopf bifurcation line for each topology
occurring via supercritical or transcritical branch point curves for
sufficiently low inhibiton rate coefficients σinh and disappearing
via subcritical or superscritical symmetry breaking bifurcation
curves at σinh ≈ 7 s−1.Notice that σM = 10 s−1 (ten times lower
than for case of q = 1), which causes the non-uniform patterns
to occur in the region within the kADP—σinh plane, having ∼10
times lower ranges in both directions.

The linear array, see Figure 3A, has again the widest region
of non-uniform stationary states. The largest region of stable
non-uniform stationary states is the region 3-2, which contains
a subregion 3-0 with no stable stationary state delimited by a
closed Hopf bifurcation curve, this is an opposite effect to the
secondary stabilization by a Hopf bifurcation curve observed
earlier. The region 3-2 is further intersected by new pairs of
non-uniform solutions arising via symmetry breaking bifurcation
curves to form up to 15 stationary states (region 15-4). The
regions with three stable non-uniform stationary states represent
patterns, where one of them occurs via a secondary symmetry
breaking bifurcation. Since the region 9-4 and the region 15-
4 intersect the region 9-3 and the region 7-3, two of the
stable non-uniform patterns arose from a secondary symmetry
breaking bifurcation and therefore they do not have a mirror
image as in case of the non-uniform patterns emerging via a
primary symmetry breaking bifurcation to form the region 3-2.
The T-shaped array is shown in Figure 3B. The widest region
5-2 combines the non-uniform stationary states arising from
secondary symmetry breaking bifurcation. The Hopf bifurcation
curves (full red curves) destabilize stable non-uniform stationary
states, creating closed curves of regions 11-2, 13-2, and 7-0, but
also, combined with symmetry breaking curves, they give rise
to the region 11-5, where there is the highest number of stable
non-uniform stationary states. At kADP = 0.02 s−1, regions 5-
2 and 11-4 further intersects with a symmetry breaking curve
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FIGURE 3 | Comparison of bifurcation diagrams of four coupled cells in a parameter plane σinh and kADP, q = 100, σM = 10 s−1 in: (A) linear array, (B) T-shaped array,

(C) cyclic array. Red curve—Hopf bifurcation curve; blue curve—symmetry breaking bifurcation curve; green curve—limit point curve; full line—change of stability

across the line, dashed curve—no change of stability across the line; empty square—intersection point of Hopf bifurcation/symmetry breaking bifurcation/limit point

curves; empty diamond—Bogdanov-Takens bifurcation point; empty triangle—double Hopf bifurcation point. Each parameter region is marked by a pair of numbers

m,n, where m is total number of stationary states and n is the number of stable stationary states.
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adding two new unstable non-uniform stationary states creating
the regions 13-4 and 7-2, and further below kADP = 0.01 s−1, even
15 non-uniform stationary states occur. The cyclic array, shown
in Figure 3C, has the narrowest region of non-uniform stationary
states, but also contains up to 21 non-uniform stationary states.
The largest region 9-2 has 9 stationary states, eight of them
arose from a secondary symmetry breaking curve. The Hopf
bifurcation curve partly delimits the region 9-2 together with
the symmetry breaking and limit point bifurcation curves. The
regions 15-4, 15-6, 7-4, 9-4, and 9-5 have such mixed boundaries
as well. At kADP = 0.02 s−1 the region 9-2 and smaller regions are
intersected with several symmetry breaking bifurcation curves
creating three separate regions 21-6 and other regions with 4
stable non-uniform stationary states.

Coexistence of Discrete Turing Patterns
After two-parameter analysis of arrays of coupled cells with
glycolytic oscillatory reaction, we now focus on one-parameter
analysis by creating solution diagrams (also called one-parameter
bifurcation diagrams), which are a more suitable tool to
distinguish the concentration profiles of all stable non-uniform
stationary states (discrete Turing patterns). It is possible to
construct any number of solution diagrams associated with the
bifurcation diagrams presented in Figures 2, 3 by fixing one
of the two parameters in the bifurcation diagram and plotting
stationary value of a selected component (ADP in our case) in a
selected cell (first cell) against the other parameter. However, we
choose to show only representatives for each case by fixing kADP
at certain value and varying σinh to compare the arrangement of
concentration profiles for various arrays. At first, we compare
linear, T-shaped and cyclic arrays for q = 1, kADP= 0.1 s−1,
σM = 100 s−1, see Figure 4. As described in section Bifurcation
Scenarios SUSS regions are present in every cell in every topology
of an array for q≤ 1, which is apparent when comparing all three
topologies in Figure 4. The SUSS regions are marked by blue
line [the plotted stationary value of ADP is independent of σinh
due to specific form of Equation (2)]. The other shared feature
are uniform oscillations represented by curves for minima and
maxima (black curve) merging at two primary Hopf bifurcation
points. TheHopf bifurcation at the right is supercritical, therefore
there is a transfer of stability from the SUSS to the SUO. The
left Hopf bifurcation point is subcritical and thus the emerging
uniform oscillations are unstable (dashed black curve) and only
upon a rapid increase of amplitude they become stable via fold
bifurcation (full black curve) marking the left boundary of SUO
(the corresponding value of σinh is virtually indistinguishable
from that corresponding to the Hopf bifurcation).

All stable non-uniform patterns are assigned a symbolic
pictographic representation. By increasing σinh in the linear
array, Figure 4A, after the Hopf bifurcation point giving rise
to uniform oscillations, when following the line of unstable
uniform stationary states, there is a primary symmetry breaking
bifurcation point, which gives rise to two unstable symmetric
non-uniform stationary states (green curve), breaking thus
the uniform symmetry. These two unstable symmetric non-
uniform stationary states become stable via secondary Hopf
bifurcations, which delimit a broad window of two stable Turing

patterns (full green lines). When we follow the bifurcated upper
unstable symmetric non-uniform branch, a secondary symmetry
breaking bifurcation point occurs creating two new non-uniform
stationary states, which are asymmetric (red curve), therefore
breaking the non-uniform symmetry. When σinh is decreased
the unstable asymmetric non-uniform stationary state becomes
secondarily stabilized by a Hopf bifurcation point and again
destabilized by another Hopf bifurcation point, forming the left
narrow window of two stable asymmetric Turing patterns (full
red curve). A similar scenario occurs on the right when σinh
is decreasing past the upper primary Hopf bifurcation point
ultimately forming a second wider window of stable asymmetric
Turing patterns overlapping with the window of stable symmetric
Turing patterns.

The T shaped array is shown in Figure 4B. The primary
symmetry breaking bifurcation on the line of unstable uniform
stationary states also creates a symmetric non-uniform stationary
state (green curve) which, unlike in the previous case does not
become stabilized.On the other hand, it bifurcates further via
a secondary symmetry breaking bifurcation to form unstable
asymmetric non-uniform stationary states, which are further
stabilized to form three separate windows of stable distinct
Turing patterns delimited by pairs of secondary Hopf bifurcation
points. While the leftmost window is narrow, the two others are
broad and overlapping. The cyclic array in Figure 4C displays
a symmetry breaking bifurcation from the unstable uniform
stationary states from both left and right side of the diagram. Due
to the symmetry of the array, this bifurcation gives rise to both
symmetric and asymmetric branches simultaneously. The six
emerging non-uniform stationary states are unstable but become
stabilized by secondary Hopf bifurcations ultimately forming a
window of four coexisting stable asymmetric Turing patterns
and a much broader window of two coexisting stable symmetric
patterns. These windows partly overlap. When further increasing
σinh there is another primary symmetry breaking bifurcation
point creating a pair of unstable symmetric states with a higher
degree of symmetry (see the pictograms), which again become
stabilized and form the rightmost broad window delimited by
secondary Hopf bifurcation points. The two windows of stable
Turing patterns with different symmetry strongly overlap.

The cyclic array of four coupled cell shows the largest variety
of stable non-uniform patterns. It is a promising example of
evolution of Turing patterns in a cyclic array system with varying
ratio of transport rate coefficients q, see Figure 5. The cyclic array
with q = 1 is shown in Figure 4C. For q = 1.2, Figure 5A, the
windows of stable symmetric non-uniform stationary states are
only slightly altered. When comparing stable asymmetric non-
uniform stationary states curve in Figure 5A with Figure 4C,
the left window is significantly broader. However, on the right
a broad window of stable asymmetric non-uniform stationary
states occurs, which is not present for q = 1. For q = 100,
Figure 5B, the curves in the diagram are altered significantly
including their stability. The left window of stable asymmetric
patterns disappeared entirely and at the same time the other
window of stable asymmetric patterns that newly occurred for
q = 1.2 vastly expanded to the left and covers now almost
entire range of non-uniform stationary states. In contrast, the
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FIGURE 4 | Comparison of solution diagrams of four coupled cells q = 100, σM = 100 s−1, kADP= 0.10 s−1 in: (A) linear array, (B) T-shaped array, (C) cyclic array.

Red curve—asymmetric non-uniform stationary state; blue curve—homogeneous stationary state; green curve—symmetric non-uniform stationary state; full line

–stable stationary solution, dashed curve- unstable stationary solution; empty square—Hopf bifurcation point; empty diamond—symmetry breaking bifurcation point.

Each stable stationary state has assigned a symbolic representation of its pattern.
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FIGURE 5 | Comparison of solution diagrams of four coupled cells in cyclic array, σM = 100s−1, kADP= 0.10 s−1, with varied ratio of q: (A) q=1.2, (B) q = 100. Red

curve—asymmetric non-uniform stationary state; blue curve—homogeneous stationary state; green curve—symmetric non-uniform stationary state; full line—stable

stationary solution, dashed curve—unstable stationary solution; empty square—Hopf bifurcation point; empty diamond—symmetry breaking bifurcation point. Each

stable stationary state has assigned a symbolic representation of its pattern.

two windows of stable symmetric patterns shifted to the right,
becamemuch narrower and do not overlap, neither mutually, not
with the window of stable asymmetric patterns. Thus, the effect
of varying q is profound as already indicated in Figure 3.

CHEMICAL COMPUTING DEVICES

The bifurcation analysis in Sections Bifurcation Scenarios and
Coexistence of Discrete Turing Patterns shows regions of stable
Turing patterns in each system of arrays of cells. To perform
chemical computing tasks, the system needs to be parametrically
set to the specific regions of coexistence of multiple Turing
patterns. To model dynamics of switching between Turing
patterns, we incorporated perturbation elements in the Equations

(1, 2), specifically:

pi (t) =

{

Ai tk ≤ t < tk + ∆T

0 tk + ∆T ≤ t < tk+1
k = 0, 1, 2, . . . ,m; i = 1, . . . ,N.

(3)

The function pi(t) represents a sequence of perturbations in
reactor i applied by imposing a constant inflow/outflow rate Ai,
within a time length 1T. Ai represents the amplitude (positive
or negative) of perturbation by the species x (ATP), applied at
times given by tk. A sequence {tk} of m perturbations is carefully
chosen to avoid effect of previous perturbations to toggle between
discrete Turing patterns and oscillations, and also to fit into a
clock time given by the central knockout system, see section Logic
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Gates. Specific perturbation amplitudes Ai and time length 1T
will be chosen for each type of the chemical computing system.
Furthermore, we assume that the level of y (ADP) is monitored
in each cell to evaluate the state of the system, because stationary
state of y does not depend on σinh. The concentration y of
uniform stationary state in one cell is used as a concentration
threshold level assigning to a non-uniform concentration profile
in each cell either logic 1, when the concentration is above
threshold level or logic 0, when the concentration is below
threshold level.

Tautology and Contradiction
In our previous chemical computing system (Muzika and
Schreiber, 2013; Muzika et al., 2014), simultaneous perturbations
with 1T = 100 s are used, which seems to be the minimum
perturbation length to achieve transitions under given model
parameters (the system shows large amplitude oscillations with
the shortest period T = 50.29 s). There are also small amplitude
oscillations, which are visible through superposition with large
amplitude oscillations, having period T ≈ 400 s.When the system
is carefully perturbed by a positive perturbation for a proper
time length 1T, it is possible to induce discrete Turing patterns
by perturbation of only one cell in the case of a non-cyclic
array. There are numerous possibilities to induce discrete Turing
patterns in two coupled cells. An example of such a perturbation
using 1T = 600 s applied at time tk = 1,400 s with Ai= 1.2, is
shown in Figure 6. We have found that 1T and tk are mutually
dependent when 1T = (2000 – var) s, tk = (100 + var) s, for
Ai =1.2, where var is a time length to be chosen by the user.
It is also possible to induce a discrete Turing pattern by certain

combination of multiple short perturbations of only one cell,
because when only one cell is perturbed, oscillations in all cells
start again after the perturbation ends. In this case the system is
able to remember previous perturbation for a certain time. Due
to this system “memory” discussed in (Goldbeter and Moran,
1984) the induction of discrete Turing patterns is possible using
two positive perturbations with the time delay between both
perturbations ≤ 500 s. In a linear array of three coupled cells,
discrete Turing patterns can be induced by a combination of
negative (Ai =−1.0) and positive (Ai = 2.0) perturbations.

Prior to a scheme for advanced cellular assemblages for
chemical computing, it is necessary to have a device always
defining truth and false statements. In Boolean terminology, we
are talking about tautology, which gives always the output true/1
and contradiction, which gives always the output false/0. We
propose this device using two coupled cells, where we induce
discrete Turing pattern by a perturbation of one cell as shown
in Figure 6. The induced Turing pattern is resistant to positive
perturbation Ai ≤ 1.2 and negative perturbation Ai ≥ −0.5
therefore such a device can be used as a tautology function in
the first cell and a contradiction function in the second cell.
In a system composed of advanced cellular assemblages, it can
be used as the basic true/false device necessary for knockout
perturbations (Muzika and Schreiber, 2013; Muzika et al., 2014),
see sections Logic Gates, Advanced Cellular Assemblages Design.

Logic Gates
Arrays of coupled cells with glycolytic oscillatory reaction show
coexistence of non-uniform stationary states and oscillations, see
Sections Bifurcation Scenarios, Coexistence of Discrete Turing

FIGURE 6 | Simulation of dynamic behavior of two cells (q = 1, σM= 100 s−1, σinh= 35 s−1, kADP= 0.1 s−1) working as a tautology/contradiction gate, where discrete

Turing pattern is forced by a long time perturbation (1T = 600s, Ai = 1.2) of only a single cell. To show robustness of the discrete Turing pattern, system is further

perturbed in the first cell by perturbations Ai = 1.2 at tk= {3,500, 4,500, 7,500} s and by Ai = −0.5 at tk= {5,500, 6,500} s using 1T = 100 s. The only pattern in this

figure is shown by its symbolic representation followed by digital 0/1 output assignment.
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FIGURE 7 | List of dynamic simulations of three coupled cells in cyclic array using central knockout perturbations system, kADP= 0.1 s−1, σinh= 35 s−1, q = 1:

(A) knockout perturbation {0 1 1}—resulting truth table Table 2B, (B) knockout perturbation {1 0 1}– resulting truth table Table 3A, (C) knockout perturbation {1 1 0}–

resulting truth table Table 3B. Each pattern in this figure is shown by its symbolic representation.

Patterns. When parameters are set to the region of coexistence
of multiple discrete Turing patterns, an array of coupled cells
operating under such conditions can be used for chemical
computing, provided it is combined with a microfluidic system
with carefully targeted perturbations.

Our chemical computing technique, employing digital ones
and zeros, is based on transitions among discrete Turing patterns,
therefore we need to avoid oscillatory behavior, which does
not correspond to digital 1 or digital 0 in this technique. In
previous work we proposed a local knockout perturbation system
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(Muzika and Schreiber, 2013; Muzika et al., 2014) to induce a
transition from stable uniform oscillations to a user predefined
discrete Turing pattern. The local knockout perturbation in those
systems was applied 200 s after indication of oscillations using
1T = 100 s.

As a technique more suitable to control larger number of cells
in the arrays, we propose a modification of the local knockout
perturbation system to a system called the central knockout
perturbation system. The difference is that the central knockout
perturbation system is designed to control only timings of the
knockout perturbation and is triggered at exact times in a row
tk= {1,000 k+ 600} s, k= 0, 1, 2, . . . ,max, wheremax represents
the finite number of perturbation sequences. For three coupled
cells using all variations of input perturbationsmax = 8, for four
coupled cells using all variations of input perturbations max =

16. Therefore, the central knockout perturbations define a clock
rate for chemical computing cells, the current setup has one
calculation per one cell per 1000 s.

When the central knockout system is activated it sends a
signal to the array of cells, see Figure 7, to apply user defined
knockout perturbation. The exact knockout perturbation in each
array of cells is unique for the array type with specific values of
the perturbation amplitudes Ai, the perturbation length 1T and
also the time delay. The central knockout perturbation system
allows each array to calculate a logical function by its own internal
parameters, it opens valves for input signals in a form of 1/0
and output valves in form of 1/0 using time delays, tinput−delay=

−100 s and toutput−delay= +900 s. Each cell has a receptor similar
to the one in local knockout perturbation system. It responds
when yis >80 by giving a signal to the knockout valve. When the
signal from the receptor and the signal from the central knockout
system occur simultaneously, channels are opened according to
user settings and the knockout perturbation is applied. Therefore,
each knockout valve can be considered as a simple internal AND
gate working on a different principle than our knockout logic
gate technique.

The knockout perturbation sequence can be set at any time,
each array of cells have its unique sequences, which are able
to induce a discrete Turing pattern. The user can choose
the sequence by creating temporary barriers in the excitable
channels (using any excitable channel technique e.g., that used
by Górecka and Górecki, 2006) blocking 0 or 1 signal to each
cell from tautology/contradiction array, which are not desired for
knockout, therefore only proper knockout sequence will be sent
into the array. The influence of knockout perturbations on the
behavior of the patterns in a cyclic array of three coupled cells is
shown in Figure 7. Knockout sequences for three coupled cells in
cyclic array are {0 1 1}, {1 0 1}, and {1 1 0}. Each sequence directly
influence the type of function calculated in each cell, because
it sets the 0 or 1 as the output value instead of oscillations. In
Figure 7A, cells are oscillating from time = 0 s until the input
perturbation |0 1 1|, at time = 500 s with the time length 1T =

100 s. Then the transition to a discrete Turing pattern occurs until
it is perturbed at time= 1,500 s by the input perturbation |1 0 0|,
which leads to uniform oscillations. Oscillations were detected
and knockout perturbation {0 1 1} was applied approximately
at time 1,720 s with the time length 1T = 100 s leading to a

TABLE 1 | Two-input logic gates and one-input inverter NOT.

Logic gate Algebraic Boolean expression

AND A1 • A2

OR A1 + A2

NOT A1

NAND A1 • A2

NOR A1 + A2

XOR A1 ⊕ A2 = A1 • A2 + A1 • A2

XNOR A1 ⊕ A2 = A1 • A2 + A1 • A2

discrete Turing pattern at time ∼1,840 s. The same sequence of
tasks happened with input perturbations |0 0 1| and |0 1 0| until
the time 4,500 s, where the input perturbation |1 0 1| with the
time length1T = 100 s leads to a second discrete Turing pattern.
At the time 5,500 s, the input perturbation |1 1 0| is applied
with the time length 1T = 100 s, which leads to a third discrete
Turing pattern. At the time 6,500 s, the input perturbation |0 0
0| is applied which leads to uniform oscillations. They are again
knocked out to the user predefined discrete Turing pattern using
the knockout sequence {0 1 1}. The same knockout sequence is
repeated with the last input perturbation |1 1 1|. Figure 7B shows
the same process using input perturbation sequences inTable 2A,
but for the knockout sequence {1 0 1}. Figure 7C shows again the
same process as in Figure 7A using input perturbation sequences
in Table 2A, with the knockout sequence {1 1 0}.

Output functions for each cell in the array assigned to a certain
knockout perturbation sequence are described below.

Truth Tables
To determine the output dynamics to specific input perturbation
sequences we added the knockout subroutine to the dynamic
simulation program (Kubíček and Marek, 1983; Kohout et al.,
2002) and thus we were able to determine response dynamics
of arrays of cells and based on these results we were able
to determine the output function of each cell and summarize
the results in the form of truth tables. To properly describe
functions in our truth tables, we express logical functions through
their Boolean expressions (Boole, 1854) shown in Table 1.
The output functions differ when using the local and central
knockout perturbation system with the same kinetic parameter
settings. Here we show only the results for the central knockout
perturbation system, because it allows us to propose larger
computing constructs.

In three coupled cells in a cyclic array, the highest number
of coexisting discrete Turing patterns is found in the parameter
range σinh ≈ (25;40) s−1 and kADP ≈(0.04;0.15) s−1, therefore
specific parameters σinh= 35 s−1, kADP = 0.1 s−1 used also in
refs. (Muzika and Schreiber, 2013;Muzika et al., 2014) fit into this
parameter region. We assume the kinetic parameters to be held
constant throughout the assemblage of arrays by maintaining the
temperature, concentrations of positive and negative effectors,
and the pH level. The table of input perturbation sequences for
the array of three coupled cells is shown in Table 2A. Dynamical
response to these input perturbation sequences in the cyclic array
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TABLE 2 | (A) Table of input signals valid for three coupled cells in cyclic array. (B)

Truth table for the logic gate with knockout perturbation {0 1 1} (three coupled

cells in cyclic array) σinh =35 s−1, kADP = 0.1 s−1.

(A) (B)

Input signals Output signals

1st cell

(A1)

2nd cell

(A2)

3rd cell

(A3)

1st cell

(y1)

2nd cell

(y2)

3rd cell

(y3)

0 1 1 0 1 1

1 0 0 0 1 1

0 0 1 0 1 1

0 1 0 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

0 0 0 0 1 1

1 1 1 0 1 1

A1 • (A2 ⊕ A3) A1 • A3 + A2 A1 • A2 + A3

TABLE 3 | (A) Truth table for the logic gate with knockout perturbation {1 0 1}

(three coupled cells in cyclic array) σinh = 35 s−1, kADP= 0.1 s−1. (B) Truth table

for the logic gate with knockout perturbation {1 1 0} (three coupled cells in cyclic

array) σinh=35 s−1, kADP=0.1 s−1.

(A) (B)

Output signals Output signals

1st cell

(y1)

2nd cell

(y2)

3rd cell

(y3)

1st cell

(y1)

2nd cell

(y2)

3rd cell

(y3)

0 1 1 0 1 1

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 0 1

1 1 0 1 1 0

1 0 1 1 1 0

1 0 1 1 1 0

A1+A2•A3 (A1 ⊕ A3)A2 A1•A2+A3 A1+A2•A3 A1•A3+A2 (A1⊕A2) •A3

of three coupled cells when using a given knockout perturbation
can be viewed as behavior of logic gates responding with output
functions to input perturbation sequences. The truth tables for
each cell in the cyclic array of three coupled cells responding to
the knockout perturbation sequence {0 1 1} is shown in Table 2B.
The truth tables for the same array when using the knockout
perturbation sequence {1 0 1} is shown inTable 3A, and tables for
the knockout perturbation sequence {1 1 0} is shown in Table 3B.
By comparing all three truth tables, we can see that the functions
A1 • A2 + A3 and A1 + A2 • A3 are present simultaneously for
two different knockout perturbation sequences.

The truth tables for four coupled cells with different topology
of arrays, different q and σinh, and for different knockout
perturbations are shown in Table 4. As the functions in four
coupled cells in the cyclic array repeat, for a given preset
knockout perturbation, the resulting functions are shown for

each cell based on the value of knockout perturbation applied
to each cell. For example, when the knockout perturbation
is set to {1 1 0 0} for q = 1 and σinh= 50 s−1, then the

resulting logic gate yields
[

(A1 ⊕ A3) ⊕ A4
]

+ A1 + A3 + A4

in the first cell,
[

(A1 ⊕ A3) ⊕ A4
]

+ A2 + A3 + A4 in the

second cell, (A1 ⊕ A2 ⊕ A4) • A3 • A1 • A2 in the third cell and
(A1 ⊕ A2 ⊕ A4) • A4 • A1 • A2 in the fourth cell.

Advanced Cellular Assemblages Design
Simple arrays of cells can be used to calculate basic logic
functions or to perform regulatory and analysis tasks. A group
of arrays of coupled cells can be arranged to form a cellular
assemblage capable of advanced chemical computing using its
parallel thread potential.

By assembling several arrays of cells to form an advanced
design, connecting outputs of each cell to an adjacent cell of
another array as an input perturbation via excitable channel
technique and connecting each array to the central knockout
perturbation system using again excitable channel technique, we
would like to describe, how such an assemblage would work using
the tautology/contradiction device, see Figure 8. The excitable
channels system can be formed using gel media with immobilized
enzymes or immobilized cells performing glycolysis, set to a
parameter region of excitation or hard excitation (Goldbeter and
Moran, 1984; Bagyan et al., 2005; Bolyó et al., 2010) in a similar
way proposed by Górecka and Górecki (2006). The assemblage
is divided into three parts: (1) the central knockout system;
(2) chemical computing block; (3) memory block. The central
knockout system is formed using one cell oscillating naturally
with T ≈ 50.3 s; the counter device (similar to Górecki et al.,
2003), which stacks up to 20 counts, and then sends a pulse to
the tautology/contradiction device while resets itself; and lastly
the tautology/contradiction array, see section Tautology and
Contradiction, which sends 0 and 1 pulses as a response to the
counter device pulses. The whole central knockout perturbation
system sends both 1 and 0 signals every ∼1,000 s into the system
through red and blue channels. The signals carried through
channels split at nodes marked by full circles (other crossings
of red or blue lines do not correspond to splitting or other
interaction). The chemical computing block is proposed as an
example and can be formed from completely different types and
sizes of arrays of coupled cells. In Figure 8, it is formed using
NAND based block (Muzika et al., 2014) without switchable
knockout perturbation sequences and block of arrays of four
coupled cells in a cyclic array with switchable (user defined)
knockout perturbation sequences. The perturbation can be set
using a knockout valve. In place of the cyclic 4-array there can
be any other array of cells depending on the desired data output.
The layout of the NAND based block resembles a subgroup of
the layout of CMOS NAND in the 8-bit ALU processor unit.
This specific choice does not account for the fact that the 0
signal (blue channel) to every left cell in the mass-coupled pairs
() needs to be inverted, neither does it optimize the layout or
use the parallel computing power. It is a simple example, the
optimization of NAND cells layout is not the goal of this work.
The third part is a memory block, which can be built using
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TABLE 4 | Table of output functions in each cell.

Output signals

Array type 1st cell

(y1)

2nd cell

(y2)

3rd cell

(y3)

4th cell

(y4)

T-shaped, q = 1

{0 0 1 0}, σinh = 35 s−1

A1 • A2 • A3 + A4 Tautology A2 + A3 + A1 ⊕ A4 A1 • A4 • A2 + A3

T-shaped, q = 1

{1 0 0 0}, σinh = 35 s−1

A1 + A4 + A2 ⊕ A3 Tautology A1 + A4 • A2 • A3 A1 • A2 • A3 + A4

T-shaped, q =1

{0 0 0 1}, σinh=35 s−1

A1 • A2 • A3 + A4 Tautology A1 + A4 • A2 • A3 A2 + A4 + A1 ⊕ A3

Linear, q = 1

{0 1 1 0}, σinh = 35 s−1

A1 • A3 • A2 + A4 A1 • A3 + A2 + A4 The same as

2nd cell

The same as

1st cell

Linear, q = 1

{1 0 0 1}, σinh = 35 s−1

A1 + A3 + A2 • A4 A1 + A3 • A2 • A4 The same as

2nd cell

The same as

1st cell

Cyclic, q = 1, q = 1.2

{0 0 1 1} {0 1 1 0} {1 1 0 0} {1 0 0 1},

σinh = 35 s−1

0 ∼ A1 • A3 • (A2 ⊕ A4) 0 ∼ (A1 ⊕ A3) • A2 • A4 0 ∼ A1 • A3 • (A2 ⊕ A4) 0 ∼ (A1 ⊕ A3) • A2 • A4

1 ∼ A1 + A3 + A2 ⊕ A4 1 ∼ A1 ⊕ A3 + A2 • A4 1 ∼ A1 + A3 + A2 ⊕ A4 1 ∼ A1 ⊕ A3 + A2 • A4

Cyclic, q = 1

{0 0 1 1} {0 1 1 0} {1 1 0 0} {1 0 0 1},

σinh = 50 s−1

0 ∼

(A2 ⊕ A3 ⊕ A4)•A1 •A2 • A3

0 ∼

(A1 ⊕ A3 ⊕ A4)•A2 •A1 • A3

0 ∼

(A1 ⊕ A2 ⊕ A4)•A3 •A1 • A2

0 ∼

(A1 ⊕ A2 ⊕ A4)•A4|•A1 • A2

1 ∼

[

(A2 ⊕ A3) ⊕ A4

]

+ A1 + A2 + A3

1 ∼

[

(A1 ⊕ A3) ⊕ A4

]

+ A2 + A3 + A4

1 ∼

[

(A1 ⊕ A2) ⊕ A4

]

+ A3 + A1 + A2

1 ∼

[

(A1 ⊕ A2) ⊕ A3

]

+ A4 + A1 + A2

Cyclic, q = 1.2

{1 1 0 0} {1 0 0 1} {0 1 1 0} {0 0 1 1},

σinh = 50 s−1

0 ∼ A1 • A3 • (A2 ⊕ A4) 0 ∼ (A1 ⊕ A3) • A2 • A4 0 ∼ (A2 ⊕ A4) • A1 • A3 0 ∼ (A1 ⊕ A3) • A2 • A4

1 ∼ A1 + A3 + A2 ⊕ A4 1 ∼ A1 ⊕ A3 + A2 • A4 1 ∼ A1 + A3 + A2 ⊕ A4 1 ∼ A1 ⊕ A3 + A2 • A4

Cyclic, q = 1.2

{1 1 1 0} {1 1 0 1} {1 0 1 1} {0 1 1 1} {1 1 0

0} {1 0 0 1} {0 1 1 0} {0 0 1 1},

σinh = 30 s−1

0 ∼ A2 • A3 • A4 •

(A2 + A3 + A4) • A1

0 ∼ A1 • A3 • A4 •

(A1 + A3 + A4) • A2

0 ∼ A1 • A2 • A4 •

(A1 + A2 + A4) • A3

0 ∼ A1 • A2 • A3 •

(A1 + A2 + A3) • A4

1 ∼ A2 • A3 • A4 •

(A2 ⊕ A3 ⊕ A4)

+ A2 + A3 + A4 + A1

1 ∼ A1 • A3 • A4 •

(A1 ⊕ A3 ⊕ A4)

+ A1 + A3 + A4 + A2

1 ∼A1 • A2 • A4 •

(A1 ⊕ A2 ⊕ A4)

+ A1 + A2 + A4 + A3

1

∼ A1 • A2 • A3 •

(A1 ⊕ A2 ⊕ A3) +

A1 + A2 + A3 + A4

0∼–knockout perturbation has value 0 in the respective column resulting to following function.

1∼–knockout perturbation has value 1 in the respective column resulting to following function.

In order to calculate each function properly, negative operators (NOT, NAND, NOR, NXOR) need to be processed first, otherwise commutative, associative and parenthesis rules apply.

some of our previously proposed techniques. Specifically, we
consider a technique, where 1-bit is stored using perturbation
of an array of two cells with the perturbation sequence either |1
0| or |0 1|, details are described in our previous work (Muzika
and Schreiber, 2013; Muzika et al., 2014). The advanced cellular
assemblage system can work continuously by being perturbed
with input perturbation sequences of 1 and 0 (“data input”),
while it continuously calculates output stream in a form of
1 and 0. Data stream is conducted through brown channels.
Output sequences can be stored in the memory block, used
further as “data output” or both operations simultaneously The
knockout switch blocks the knockout signal so that only a desired
central knockout perturbation sequence will reach the array
of cells.

DISCUSSION AND CONCLUSIONS

We analyzed three coupled cells in a cyclic array and four
coupled cells in linear, cyclic, and T-shaped arrays by methods of
one-parameter continuation, two-parameter continuation, and
dynamic simulation. We constructed and discussed bifurcation
diagrams for all the analyzed systems with a focus on stable

non-uniform stationary states (discrete Turing patterns). We
performed dynamical simulations to determine response to the
central knockout perturbation system with the aim of using them
for chemical computing tasks.

By comparing three and four coupled cells with equal ratio
of transport rate coefficients of both species ATP and ADP
for q = 1, we found that discrete Turing patterns occur
in arrays of four coupled cells in a wider parameter range
than in the case of three coupled cells. When comparing
different topology of arrays of four coupled cells, the cyclic
array has both the widest parameter regions of occurrence
of non-uniform stationary states and the largest number
of different discrete Turing patterns. Parameter setting for
occurrence of discrete Turing patterns for q = 1 can only be
found under specific conditions, such as increased temperature,
increased pH (Deville-Bonne et al., 1991; Tlapak-Simmons
and Reinhart, 1998) and the presence of carbonates (Hereng
et al., 2014). Under common laboratory conditions (∼25◦C,
pH∼5.5), discrete Turing patterns can only occur in specific
media or using specific membranes, where q >> 1. The
complexity of discrete Turing patterns at q = 100 [the transport
rate coefficient of the inhibitor (ATP) is 100 times higher
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FIGURE 8 | Schematic diagram of an advanced cellular assemblage with chemical computing block, memory block, and central knockout system. Red

line—knockout channel with signal 1, blue line—knockout channel with signal 0, brown line—data channel conducting signals 1/0, violet structure -knockout switch,

counter device –counts 20 times the period 50.3 s, then sends the pulse into tautology/contradiction device. Full circle on data or knockout channels represents a

splitting node.

than the transport rate coefficient of the activator (ADP)], is
qualitatively similar to discrete Turing patterns at q = 1, the
difference is in spontaneous vs. non-spontaneous occurrence of

patterns, when parameters are varied and also in the range of
parameters for which the patterns exist. Another observation
we made is that cyclic arrays of cells offer richer selection
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of Turing patterns, which might benefit the morphogenesis
(Turing, 1952).

Analysis of solutions diagrams of all studied arrays of
coupled cells shows parameter ranges of coexistence of multiple
discrete Turing patterns. Careful transitions between discrete
Turing patterns and uniform oscillations using precisely targeted
perturbations can be used to design chemical computing devices
(Muzika and Schreiber, 2013; Muzika et al., 2014). Using
ATP as a signaling species might seem unconventional, as
there is ATP in most of the living cells and it might cause
interference. Nevertheless, some parts of human brain utilize
ATP as a neurotransmitter (Verderioa and Matteolia, 2011) and
there are channels with selective permeability to ATP (Locovei
et al., 2006), therefore it makes the use of ATP plausible. Our
previous technique for the knockout perturbation was focused
on oscillations occurring in a specific array. In this work, we
propose a modified technique, which creates knockout signal
and sends it periodically to each array of cells in an advanced
cellular assemblage. Also, it is only applied when the array is
currently oscillating. Using this type of knockout technique, the
user can switch between functions, which each array utilizes for
chemical computing even during the process. Since it controls the
computing rate of the advanced cellular assemblage, we call it the
central knockout perturbation system.

In a number of papers Katz et al. proposed techniques
based on working with enzymes in microfluidic cells using ATP
and NAD+/NADH as input/output signals and measuring their
response in cuvettes using a UV-Vis spectrophotometer. The
basic reactor technique is the AND gate using ATP (Privman
et al., 2013a) followed by a network of AND gates working
both with ATP and NADH (Privman et al., 2013b). NADH
also allows enzymatic 1-bit memory units (one bit per cell),
which can be arranged to groups by 8 to store ASCII table
characters (Pita et al., 2009) similarly as shown in our advanced
cellular assemblage scheme, where we use two cells to store
one bit. Their technique also allows the release of NADH from
the enzymatic computing device to trigger DNA computing
(Mailloux et al., 2015). More complicated gates [switch gate,
Fredkin gate, half bit adder, half bit subtractor (Fratto and Katz,
2016; Fratto et al., 2016)] can be constructed using three or more
interconnectedmicrofluidic devices, where the result is read from
cuvette as collected solution from the microfluidic devices as a
concentration of NADH and ABTS or ferricyanide/ferrocyanide.
These techniques are somewhat closer to measuring metabolites,
mainly NADH metabolically connected to ATP/ADP through
glycolytic reaction chain as in our experimental system (Muzika
et al., 2016), where the level of NADH concentrations is not
the result of triggering one cascade of enzymes in microfluidic
devices over another cascade of enzymes, but it is the result of
transitions between non-uniform spatiotemporal patterns caused
by synergy of enzymatic reactions and diffusion.

Gorecki et al. proposed a technique based on inorganic
excitable channels utilizing various patterns of pathways
of excitable channels. They constructed diodes (Gorecka
and Gorecki, 2005; Gorecka et al., 2007; Igarashi et al.,
2008), memory units (Górecki et al., 2009), clock generators

(Gorecka and Gorecki, 2005), distance detectors (Bagyan et al.,
2005; Górecki et al., 2009), band filter (Górecka and Górecki,
2003), logic gates (Sielewiesiuk and Górecki, 2001), and neuron-
like structures (Górecka and Górecki, 2006). Such techniques
have a great potential especially due to their universality. We
expect that the excitable channel technique by Gorecki et al.
can be combined with our chemical computing technique and
some devices supplemented with it, provided that an excitable
glycolytic reaction medium is available (Goldbeter and Moran,
1984; Bagyan et al., 2005; Bolyó et al., 2010). The main difference
between excitable vs. Turing pattern techniques is that their
memory unit requires a spatial disc reactor, where the waves are
constantly traveling, while our memory unit holds its pattern
as long as the cells are properly fed and temperature and pH
conditions are maintained.

Our current logic gate technique can also be compared with
techniques by Holley et al. (2011) and Górecki et al. (2014). By
operating the BZ reaction in two oscillatory regimes, the signal is
transported through connections between adjacent droplets (gel
disks) and, based on the signal type in the output gel droplet it
is either digital 0 or digital 1. Using this technique, Adamatzky
et al. were able to construct a diode, NAND and XOR logic gate
and 1-bit adder. Their technique requires a larger number of
droplets for a single basic logic function compared to the number
of coupled cell used in our parallel thread chemical computing
technique. On the other hand, their technique does not require
knockout perturbation system.

Our future research will focus on experiments with transitions
between oscillations and non-uniform stationary states in two
cuvettes coupled by peristaltic reciprocal pumping (Muzika et al.,
2016) and on a chemical computing technique that does not
require knockout perturbations.
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