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Current understandings of individual disease etiology and therapeutics are limited despite great need. To fill the gap, we

propose a novel computational pipeline that collects potent disease gene cooperative pathways to envision individualized

disease etiology and therapies. Our algorithm constructs individualized disease modules de novo, which enables us to elu-

cidate the importance of mutated genes in specific patients and to understand the synthetic penetrance of these genes across

patients. We reveal that importance of the notorious cancer drivers TP53 and PIK3CA fluctuate widely across breast cancers

and peak in tumors with distinct numbers of mutations and that rarely mutated genes such as XPO1 and PLEKHA1 have high

disease module importance in specific individuals. Furthermore, individualized module disruption enables us to devise cus-

tomized singular and combinatorial target therapies that were highly varied across patients, showing the need for precision

therapeutics pipelines. As the first analysis of de novo individualized disease modules, we illustrate the power of individu-

alized disease modules for precision medicine by providing deep novel insights on the activity of diseased genes in

individuals.

[Supplemental material is available for this article.]

Pooled -omic data frompatient samples have enabled construction
of cellular interactionmodules that provides a system-level under-
standing of disease etiology. This new conceptualization of disease
has led to discoveries of previously unknownmechanisms and has
significantly expanded opportunities for therapeutic targeting
(Iborra-Egea et al. 2017; Sharma et al. 2018). Specifically, system
and network science has pinpointed novel pharmacological tar-
gets and opportunities for drug repurposing or drug–drug syner-
gies (Zhao and Iyengar 2012). Advancements owing to system
biology have been evenmore pronounced in oncology. The recon-
struction of complex cancer disease modules describes tumor biol-
ogy at the system level, which is particularly important for such a
polygenic and dynamic disease (Zielinski et al. 2017; Lin et al.
2019).

Despite these recent advancements, a truly individualized
system approach has yet to be applied to individualized medicine.
Oncology patients in particular experience highly variable disease
phenotypes and drug responses. The need for precision approach-
es in oncology has therefore been well established, with numerous
scientists and clinicians calling for innovation (Aronson and
Rehm 2015; Relling and Evans 2015; Carrasco-Ramiro et al.
2017;Werner et al. 2017). Patient-derived xenograft (PDX)models
and clinical studies have highlighted the heterogeneity of tumor
mechanistic properties and therapeutic responses (Chiron et al.
2014; Dagogo-Jack and Shaw 2018; Xu et al. 2019). Some of this
variability can be captured with patient stratification through dis-
ease subtype classification or biomarker testing, but themajority of
inter-patient variability remains unexplained (Dagogo-Jack and
Shaw 2018). The lack of broadly applicable biomarkers indicates

that unique system-level interactions are at play within single pa-
tients. System and network biology is poised to capture these phe-
nomena well, but new theoretical frameworks and computational
approachesmust be implemented tomake such precision network
biology a reality.

Existing methodologies extract disease modules (or “disease
networks”), which are highly perturbed subnetworks of the
larger cellular interactome where disease gene interactions occur
(Menche et al. 2015). Previous approaches have attempted to
detect and prioritize individualized cancer drivers, but these algo-
rithms infer their individualized analyses fromcohort-level disease
modules (Bashashati et al. 2012; Cho et al. 2016; Reyna et al.
2018). For example, the LIONESS algorithm uses aggregate disease
modules generated by existing approaches to linearly interpolate
individual sample modules (Kuijjer et al. 2019). We hypothesize
that although some individual patient disease activity is recapitu-
lated in the cohort disease modules, there are additional unex-
plored interactions detectable only at the individual patient
level, which dictate patient-specific mechanisms, phenotypes,
and therapeutic responses. We additionally suspect that at the
gene level, there are patient-specific variations in pathogenicity.
This is because patients possess highly varied basal cellular envi-
ronments and mutations (The Cancer Genome Atlas Network
2012; Dagogo-Jack and Shaw 2018). Given that current approach-
es rely heavily or exclusively on cohort-inferred disease modules,
we suspect that inter-patient variability and precision have been
underrepresented.

Although practical, using features inferred across the cohort
fail to capture patient individualized features by disregarding rare
unique factors within a patient. A new approach is needed to truly
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infer individualized disease modules
that accurately recapitulate individual-
ized disease. In this study, we examined
on the collective actions of mutated
genes to try to understand individualized
disease at a deeper level. We hypothe-
sized that cohort disease modules are
poorly representative of individualized
disease and that new insights in preci-
sion medicine would reveal themselves
once we zoomed in on individual pa-
tients. Thus, we set out, first, to create a
robust pipeline for individualized disease
module construction and, second, to use
these disease modules to characterize in-
dividualize disease pathobiology and
therapeutics.

Results

Shortest-path analysis of individual

patient mutated genes encapsulates

disease activity into individualized

disease modules

Rather thanoccupying an average disease
module, we predicted that individual
disease modules likely occupy their own
distinct foci within the larger protein–
protein interactome (Fig. 1A; Menche
et al. 2015). We thus set out to develop a
pipeline for the constructionof single-pa-
tient disease modules. Disease modules
have historically been inferred at the co-
hort level using correlative, random
walk, or shortest-path approaches (Cod-
ling et al. 2008; Managbanag et al. 2008;
Cerami et al. 2010; Chen and Zhang
2013; Cahan et al. 2014; Jia and Zhao
2014; Da Rocha et al. 2016). Because dis-
ease modules are generally dense and
scale-free collections of interacting dis-
ease genes, (Wuchty 2001) shortest-path
analysis has proven to be a robust tool
for network analysis in biological settings
(Yu et al. 2007; Managbanag et al. 2008;
Chen et al. 2016). Shortest-path analysis
also offers technical advantages over the
other approaches. Correlative approaches require numerous sam-
ples for each patient, which is very rare, particularly in the multi-
omic setting. On the other hand, random walk analysis is
extremely computationally intensive, requires several iterations
to reach a consensus, and is only a locallyoptimized search strategy
(Xia et al. 2020). Furthermore, shortest pathshavebeen found tobe
the strongest andmost likely interactionpathways inotherapplica-
tions of network topology (Katzav et al. 2015). We therefore began
to build individual disease modules with a shortest-path approach
on a protein–protein interaction (PPI) network (Fig. 1B). For our
individualized analysis, a shortest-path approach allowed us to
connect sparse unique sets of diseased genes.Weused thewell-doc-
umented PPI iRefIndex containing numerous categories of well-
validated protein–protein interactions to find these pathways

(Razick et al. 2008). For this reason, we favored iRefIndex over ex-
perimental databases that typicallyonly capture onemodeof inter-
action (Luck et al. 2020) and are a fraction of the size. The other
database we considered was the STRING database, which is larger
than iRefIndex but contains numerous interactions that are not
limited to physical interactions and is less stringently validated.

We began with 90 breast cancer (BC) patients from the TCGA
BRCA Project as a proof-of-concept cohort for our precision system
biology pipeline (Supplemental Table S1; The Cancer Genome
Atlas Network 2012). These patients were of diverse mutational
burden and PAM50 subtype, thus capturing the biological hetero-
geneity of the BC (Supplemental Fig. S1A).We designatedmutated
genes identified by TCGA mutation annotations as “diseased
genes.” These included missense, nonsense, insertion, and
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Figure 1. Individualized disease module concept and construction pipeline. (A) Schematic illustrating
how individualized disease modules are related to cohort-inferred disease modules. (B) Our construction
pipeline begins with annotation of a generic protein–protein interaction (PPI) network with disease-con-
text and individualized omics data. Following annotation, all shortest paths between diseased genes are
detected and evaluated for disease activity. These paths are compared with randomly generated path-
ways via empirical P-value. Pathways that are less than empirical P-values of 0.01 are added to the indi-
vidualized disease modules. (C) Density plots displaying the distribution of P-values for each patient’s real
paths. (D,E) Scatter plot of the number of mutated genes (D) and nodes (E) in the individualized disease
modules versus the number of mutated genes in the tumor.
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deletion mutations, which were detected using Sniper, MUTECT,
VarScan, and Muse (Koboldt et al. 2012; Larson et al. 2012;
Cibulskis et al. 2013; Fan et al. 2016). We then found all shortest
paths between all pairs of diseased genes for each individual pa-
tient (Fig. 1B; Supplemental Fig. S1B). We then enriched for paths
likely to contain disease activity with three parameters. First, we
measured gene expression fold change of each gene within a
path because proteins with pathogenic mutations are known to
frequently cause transcriptomic changes in interacting partners
(Zhong et al. 2009). Second, in order to capture multigene interac-
tions, the shortest paths that crossed a third diseased genewere pri-
oritized. Finally, paths that contained established cancer drivers
were also prioritized because minor or rarer disease actors have
been found to encourage pathogenic activity through known can-
cer drivers (Castro-Giner et al. 2015; Sondka et al. 2018).

The probability density function of patient paths compared
with 1000 random paths of equivalent length indicated a highly
significant subset of paths as measured by empirical P-value (see
Methods). These significant paths were aggregated together to
form disease modules for each patient (Fig. 1B; Supplemental
Fig. S1B). To understand how differing P-value cutoffs affect the
pipeline, we selected five patients of varying mutational burdens
and recorded network parameters as we varied the P-value cutoff.
As expected, the number of significant paths and network size in-
creased with increasing P-values (Supplemental Fig. S2A–C). The
increases seemed to be exponential, indicating that stringent
P-values are needed to keep modules small and enriched in the
most important diseased genes. Given these results, wemoved for-
ward with a P-value cutoff of 0.01, which provided a good balance
of network size and stringency. In our entire cohort, we saw a sub-
set of highly enriched paths for each patient out of the numerous
paths that were detected (Fig. 1C; Supplemental Fig. S2D–F).
Approximately 5%–15% of detected paths were ruled significant
using the cutoff of 0.01 (Supplemental Fig. S2F). Using this pro-
cess, we were able to generate individualized disease modules for
each of the 90 patients without cohort-inferred features.

The properties of patient disease modules (Supplemental
Table S2) were analyzed to understand the implications of the
number of disease genes (mutational burden) on the resultant net-
work. Almost all mutations were carried forward to the individual-
ized disease modules (Fig. 1D; Supplemental Table S3). This
indicates that even mutations that would normally be considered
“passengers” can have impactful effects when cooperating with
co-occurring “drivers.” This result is explained by the “mini-driver
model,” which postulates that, in cancer, disease genes lie on a
spectrum from driver to passenger (Castro-Giner et al. 2015).
Under this model, individualized patient context (mutated genes,
underlying genetics, transcriptome) dictates where on this spec-
trum a disease gene lies. Our work supports this model because
we observe that minor mutations can be implicated in disease
module activity through their interactions with more substantial
cancer drivers. Patients with an increased mutational burden had
larger individualized disease modules as measured by edge and
node number (Fig. 1E; Supplemental Fig. S3A; Supplemental
Table S3). With the addition of each mutation, more nondiseased
genes are brought into the disease module.

We next compared individualized disease modules to a co-
hort-based module to confirm our hypothesis that the cohort
module poorly recapitulates individualized disease (Fig. 1A). A co-
hort disease module was generated using the GRNBoost algorithm
and all patient transcriptomic profiles (Moerman et al. 2019). We
found that formost patients only half of their individualizedmod-

ule nodes were represented in the cohort module (Supplemental
Fig. S3B). Furthermore, we saw that only 60%–20% of individual
patientmutationswere included the cohortmodule and that there
were thousands of extra nodes in the cohort module (Supplemen-
tal Fig. S3C,D). To understand if there was a bias of cohortmodules
toward frequently mutated genes, we inspected the percentage of
rare versus frequent mutations carried over to the cohort module
in each patient (Supplemental Fig. S3E). A discernable bias was
not detected when looking at the percentage of excluded rare
and frequent mutations, but numerically many more rare muta-
tions were left out of the cohort diseasemodule per patient, which
is not unexpected because rare mutations are more frequent (Sup-
plemental Fig. S3F). Cumulatively, these results confirm that co-
hort disease modules are not representative of many features of
individualized disease.

In silico disruption of individualized disease module identifies

personalized mutated driver genes

With individualized diseasemodules established, we sought to un-
derstand the varying importance of disease genes for each patient.
To quantify disease gene importance, wemeasured the changes in
the network parameters hubs, bottlenecks, network components,
and edges when a disease gene and its cooperative paths are re-
moved from the individual disease module (Fig. 2A; Supplemental
Fig. S4A–E). Here we hypothesize that changes in network param-
eters upon gene removal can give insights into how crucial a given
gene is to the overall diseasemodule and ultimately the overall dis-
ease phenotype. Thus, the network components were aggregated
into a quantitative score of individualized disease module disrup-
tion that we termed individualized disease gene importance
(IDGI) (Fig. 2A).

Because this score was generated to assess disease genes in in-
dividual patients, we first validated IDGI by comparing real and
randomized individualized patient diseasemodules. Randomizing
trials were completed 10 times in 10 patients for a total of 100 sep-
arate trials. High-scoring disease genes in real disease modules
scored significantly above shuffled diseasemodules, thus confirm-
ing the IDGI methodology (Supplemental Fig. S5A–J). Further-
more, IDGI was able to recover genes listed by the Cancer Gene
Census (CGC) as implicated in cancer pathobiology with an
AUC of 0.821 and 0.879 for all cancers and breast cancer, respec-
tively (Supplemental Fig. S6A; Sondka et al. 2018). Using the
same five test patients and CGC recovery from Supplemental Fig-
ure S2, A through C, we completed an ablation experiment to un-
derstand eachnetwork components’ effect on the IDGI score. Edge
number was the most important component as shown by the
strongest decrease in AUC (Supplemental Fig. S6B–D). The other
IDGI components did notmarkedly decrease AUCwhen removed,
but together they were able to maintain a reasonable AUC when
edges were removed, indicating that these collectively contributed
to an AUC increase (Supplemental Fig. S6B–D). With the IDGI
score well validated, we returned to the path selection scheme to
understand how each component contributes to individualized
disease module construction. Again, using the five test patients
and the CGC recovery validation scheme, we found that disease
information contributed themost to AUC followed by patientmu-
tations (Supplemental Fig. S6E,F). This is not unexpected because
this validation scheme only tests the pipeline’s ability to recover
known disease drivers, and thus, it is an imperfect test of our pipe-
line because we seek to identify rare and frequent drivers in an in-
dividualized manner. We retained the individualized omic
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features of fold change and mutation status because of this in our
final pipeline. Nevertheless, these validation in silico experiments
together confirmed that our method provided individualized and
disease relevant quantitation.

Looking at the IDGI scoring for each patient, several high-
scoring outlier disease genes were noted inmost patients. Each pa-
tient’s outliers were a mix of rarely (<5% in the TCGA BRCA co-
hort) and commonly (>5% in the TCGA BRCA cohort) mutated
genes (Fig. 2B; The Cancer Genome Atlas Network 2012). This
finding affirms the need for an individualized approach as many
of the rarely mutated genes would likely not be detected in statis-
tical or cohort-based analyses.We next integrated gene scores with
patient disease modules to visualize disease gene importance. In

some patients, well-known drivers such as PIK3CA carried high
importance (Fig. 3A; Supplemental Fig. S7A,B), and other patient
disease modules were instead driven by rare mutations. In one ex-
ample, PIK3CA and TP53 play a secondary role to the rarely mutat-
ed genes XPO1 and PLEKHA1 (Fig. 3B; Supplemental Fig. S8A,B).
XPO1was of particular interest because anXPO1 inhibitor induced
complete remission in a limited number of patients during solid
tumor clinical trials (Azizian and Li 2020). Furthermore, PLEKHA1,
a largely uncharacterized membrane signaling protein, has not
been described in BC thus far (Dowler et al. 2000). Both genes
are mutated in <1% of BC cases (The Cancer Genome Atlas Net-
work 2012). To display all 90 patients’ data, we created an interac-
tive data portal (Supplemental Table S4; https://syspharm

B
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Figure 2. Disease gene importance scoring process and scoring results across patients. (A) The individualized disease gene importance (IDGI) scoring
pipeline begins with the accessing the baseline parameters of the individualized disease modules. Next the disease gene is scored, and the shortest paths
associated with the disease genes are removed from the individualized disease module. The change in parameters is then quantified into the IDGI score. (B)
Boxplots showing the distribution of IDGI scores for each patient. High IDGI scoring genes (outliers) are colored to show rare (<5% mutated in TCGA BC)
and frequent mutations (>5% mutated in TCGA BC).

BA

Figure 3. Individualized disease modules displaying varied gene importance in two representative patients. (A,B) Individualized disease modules for two
representative patients. Edge color intensity is determined by the distance between the mutated genes. Node size corresponds to IDGI score, and node
color reflects mutation frequency within the entire TCGA BRCA cohort.
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.shinyapps.io/PERMUTOR/). Each of these patients exemplify the
unique potential of precision system analysis that allows for the
highlighting of rare important mutations that we predict drive pa-
tient-specific disease.

Synthetic penetrance describes the varying importance of disease

genes across patients

We further appreciated the varying influence of known disease
genes when we examined them across our entire cohort. Here we
found that, irrespective of cancer subtype, scores varied drastically
across patients. TP53, PIK3CA, CDH1, GATA3, and MAPK subunit
genes scored the highest on average; TP53 and PIK3CA showed a
broad range of importance across the cohort (Fig. 4A,B). TTN mu-
tations, which are common but largely inconsequential, were the
third most frequent in our cohort (Oh et al. 2020). IDGI scores for
TTN revealed low scoring across all patients, which indicates that
our IDGI scoring scheme can detect “passenger” genes (Fig. 4B).

We next examined the scores of PIK3CA and TP53 to charac-
terize how IDGI varied with tumor properties. Seven patients had
mutations in both of these genes, and in five of the seven, both
genes had a low IDGI, indicating a diffusion of disease activity to
lesser-knownmutated genes. PIK3CA, the second most frequently
mutated gene in breast cancer, had the highest level of importance
in patients with a lower mutational burden (fewer than 30 mutat-
ed genes) (Supplemental Fig. S9A). Conversely, themost common-
ly mutated gene, TP53, was more important in patients with a
highermutation burden (30 to 100mutated genes) (Supplemental
Fig. S9B). TP53 IDGP showed more variable activity in missense
mutations compared with splice site mutations (Supplemental
Fig. S9C). Classifying missense mutations as in or outside of
known mutational hotspots reveals that mutations within hot-

spots contribute more to the disease module on average (Supple-
mental Fig. S9D; Baugh et al. 2018).

The presence of unique cancer drivers is often hypothesized,
and our gene importance scoring reveals an additional aspect of
this postulate. As we have shown, commonly mutated genes
vary in importance in different patients. We term this variable im-
pact of disease genes across patients “synthetic penetrance” (Fig.
5). Synthetic lethality was conceptualized following the observa-
tion that, in some model organisms and cancer cell lines, specific
combinations of genetic perturbation result in cell death (O’Neil
et al. 2017). As in synthetic lethality, here “synthetic” describes
the requirement of specific settings and partners to enable disease
gene activity, and “penetrance” encapsulates the variability in
gene importance among individuals. Our examination of com-
monly mutated genes within BC illustrates that synthetic pene-
trance is influenced by known biological contexts and is an
important factor in precision medicine.

Simulation and prioritization of personalized therapeutic targets

via disease module disruption

We next used disease module disruption to prioritize therapeutic
targets. Target therapies are an emerging class of pharmaceuticals
that are aimed at specific genes that cancer cells use for invasion
or survival. We examined the disease module importance of
FDA-approved target-therapy genes (Supplemental Table S5) in in-
dividual patients using an adapted gene importance score termed
individualized target gene importance (ITGI). BC target-therapy
genes showed significantly elevated importance over those used
in other cancers (Fig. 6A; Supplemental Table S6). When examin-
ing each gene specifically, we found that BC target-therapy genes
ranged in disease module disruption efficacy among individuals
(Fig. 6B). Surprisingly, some target-therapy genes from other can-

cers had high disruptive potential for cer-
tain patients (Fig. 6C; Supplemental Fig.
S10). For example, BTK (zanubrutinib ap-
proved for mantle cell lymphoma) and
MAPK1 (trametinib approved for mela-
noma) were low scoring on average but
scored with high disease module impor-
tance in one patient each despite not be-
ing clinically approved BC targets (Fig.
6C; Wishart et al. 2008). Neither gene
was mutated in these patients, which
confirms the need for an individualized
system approach because such targets
could not be identified with genomics
alone.

As with IDGI scores (Fig. 2B), each
patient had high-scoring ITGI outliers,
but the identity of top target-therapy
genes was highly variable from patient
to patient (Supplemental Fig. S11A–D).
BC target genes can be further classified
by FDAapproval for specific BC subtypes.
When the patient cohort was divided by
BC subtype, the target-therapy genes
scored higher on average for their ap-
proved subset of patients (Supplemental
Fig. S11E–I).We added the target analysis
to the data portal for further exploration
of individual patients (Supplemental

B
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Figure 4. Heterogeneity of disease gene importance across patients and disease genes. (A) Heatmap
showing the IDGI scores for themost commonlymutated genes. Side histograms show the percentage of
patients with that gene mutated in our cohort (green) and the TCGA-BRCA project as a whole (gray). (B)
Boxplots for IDGI scores by most commonly mutated genes.
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Table S6; https://syspharm.shinyapps.io/PERMUTOR/). Across
these analyses, group behavior fell in line with conventional
drug approvals, but individualized examination of ITGI scores re-
vealed that there are important patient-specific variations that
should be accounted for in precision medicine approaches.

Oncology drugs are often used in combination during cancer
patient treatment (Zagidullin et al. 2019). Predicting efficacious
combinations of approved drugs is a persistent clinical need, and
devising patient-specific combinatorial regimens is an additional
challenge that must be addressed for next generation therapeutics
(DiNardo and Perl 2019). We reason that ITGI scoring could be ap-
plied to reveal potential combinatorial treatment regimens for sin-
gle patients. All but one patient showed an increase in maximum
ITGI score with an optimal target pair compared with the highest-
scoring single target (Fig. 6D; Supplemental Table S7). Combi-
natorial gene scores fell into three categories: less than additive
(overlapping) single-target scoring, equal to additive scoring, and
higher than additive scoring (synergistic). We identified improved
synergistic pairs for patients who had low single-target scores (Fig.
6E,F; Supplemental Fig. S12A,B). In other cases, target-therapy
combinations showed far less than additive disease module
disruption, indicating redundancy in targeting (Supplemental
Fig. S12C–F). Such redundancy in therapeutic coverage may be
favorable depending on biological context. Our results show the
success and feasibility of using disease module disruption for indi-
vidualized therapeutic regimens and drug repurposing.

Discussion

Disease modules have become a vital tool for disease-understand-
ing cohort studies. Here we show that disease modules reveal even
deeper meaning when applied at single-patient resolution.
Numerous calls for new approaches in precision medicine have
been put forward by the oncology community, but marginal pro-
gress has been made (Relling and Evans 2015; Werner et al. 2017;
Zhu et al. 2019; Yadav et al. 2020). This work adds to the toolset of
clinicians and scientists in precision medicine by enabling the
construction and functionalization of patient-specific disease
modules. We anticipate that this approach will be generalizable
to other cancers and even to other categories of polygenic disease
such as metabolic and neurodegenerative disorders. Furthermore,
our approach can easily accommodate updated whole-cell net-

works in accordance with rapid advancements in the protein–pro-
tein interactome and domain–domain interactions. Yet, current
interactomes are still incomplete, but as suggested by Menche
et al. (2015), despite this incompleteness, highly valuable disease
modules were able to be constructed. Interactomes are also subject
to biases from experimental methods and the degree to which a
gene has been studied, but aggregative databases with high stan-
dards for inclusion help mitigate these biases (Razick et al. 2008).
Personalized protein–protein interactomes that document chang-
es owing to SNPs or somatic mutations could additionally increase
the precision of individualized disease modules (Bhattacharyya
et al. 2020). Other groups have mapped individual genetic profiles
to protein–protein interactomes when understanding complex
disease (Loscalzo 2019), but a genetics-only approach neglects to
examine the downstream consequences of mutations and com-
pensatory changes in normal genes. By including patient tran-
scriptomics, we were able to examine how nonmutated genes are
pulled into the disease module and which of these genes can be
a potential therapeutic target. Individualized interactomes have
been proposed, but a high-throughput method for individualized
interactome assessment has yet to emerge (F Dehne and J Green,
unpubl.). Such personalized advancements will further increase
the accuracy and depth with which we are able to characterize in-
dividualized disease modules.

Through building this precision system biology pipeline, we
uncovered key insights about patient-to-patient variability in can-
cer disease genes. First, we found strong evidence for the mini-
drivermodel, which postulates that there are subtle context-specif-
ic driver genes that enable individualized disease (Castro-Giner
et al. 2015). Rare mutations have long been suspected to be impli-
cated in tumor growth, but showing this at the single-patient level
has previously been difficult. Clinically, extended genetic screens
for tumors with atypical genetic alterations have addressed the ob-
stacle of rare mutations (Zhu et al. 2019), but these assays neglect
the context of a patient’s baseline cellular environment and co-
occurringmutations. To appreciate this broader context, we incor-
porated normal tissue transcriptomes and interacting mutation
paths while building the individualized disease module. We quan-
tify the sum cooperativity and importance of a disease gene by
measuring several diseasemodule parameters. Network parameters
have been used successfully in cohort-based algorithms to priori-
tize drug targets and gene pathogenicity (Dunn et al. 2005;

Figure 5. Synthetic penetrance of disease genes within individualized disease modules. Schematic showing the concept of synthetic penetrance in three
individualized disease modules (red, blue, and yellow). Synthetic penetrance is shown for two representative genes (pink and green) by showing the varied
importance of disease genes in different patients.
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Zhong et al. 2009; Boezio et al. 2017). As ground truth for mini-
drivers has yet to be established, the highest-accuracy diseasemod-
ule disruption parameters remain unknown. Despite this, we were
able to perform two-step in silico validation confirming that IDGI
scores recover relevant putative mini-drivers for individual pa-
tients. This is a crucial first step toward understanding pathogenic
mechanisms in a patient- and tumor-specific manner.

Similarly, we revealed the interacting unmutated genes that
contributed to individualized disease. Disease module studies
have found that increasing numbers of diseased genes bring in
more seemingly normal actors into the disease module, but until
now, this has not been confirmed to apply to individual patients
(Menche et al. 2015). A recent meta-analysis of patients treated
with targeted or chemotherapies found that many cancers with a
high mutational burden had a decreased overall survival, and
this effect could only be mitigated by immunotherapies (Valero
et al. 2021). In light of our findings, the negative association be-

tween mutational burden and survival may reflect an increase in
module size, which allows for disease resilience against traditional
pharmacotherapies in combination with other factors.

Through this work, we shed light on unique disease determi-
nates and characterize the dynamic nature of more familiar path-
ogenic factors. Omic studies have found distinct driver genes for
BC subtypes andmetastatic tumors, but deeper precisionmedicine
contexts have been unexplored (Rajendran and Deng 2017; Bailey
et al. 2018; Annunziato et al. 2019). With the unparalleled resolu-
tion shown here, we characterize the range of influence a gene can
exert on an individual disease module. We describe this context-
specific variability as synthetic penetrance. Gene penetrance has
traditionally been described as the percentage of individuals
with a given gene variant that display a trait (Zlotogora 2003).
Here, in synthetic penetrance, the “trait” is how influential a
gene is in the diseasemodule.We found that synthetic penetrance
varied widely across patients, which is not surprising given the

E

F
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C

D

Figure 6. Individualized disease modules for formulating singular and combinatorial individualized therapies. (A) Dot plot showing the target scoring for
breast cancer versus nonbreast targets. (B) Heatmap of the highest-scoring gene targets. (C) Dot plots of targeting score for each target. (D) Paired boxplots
showing the maximum single-target and maximum combinatorial target score. (E) Drug synergy differential (synergistic− additive) for this patient’s ther-
apeutic combinations. Red bars indicate positively synergistic combination; blue bars, negatively synergistic combination. (F) A single patient’s top 10 com-
binatorial therapies scored simultaneously (synergistic) and additively removal.
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diversity of mutations and disease presentations that make up the
analyzed cohort. For our twomost prevalent disease genes, PIK3CA
and TP53, we observed distinct peaks in IDGI scores at specific lev-
els of mutational burden. Precision system analysis with our ap-
proach can further clarify how disease module dynamics act in
individuals and how synthetic penetrance can evolve over time
within a tumor.

Given the persistent treatment resistance and variable re-
sponse rates of many cancers, we leveraged our individualized dis-
ease modules and gene importance pipelines to extend our
analysis into precision pharmacology. Targeted therapies have
provided durable response rates and survival benefits in many tu-
mors, but for others, indications for use are unclear (Murdoch and
Sager 2008; De Palma et al. 2017; Xie et al. 2020). Fully using tar-
geted therapies and other drugs for repurposing efforts requires a
mechanistically informed predictive approach. We begin this ef-
fort in precisionmedicine bymeasuring the effect of targeted ther-
apy on an individualized disease module. Additionally, we
performed a combinatorial screening to identify synergistic tar-
get-therapy genes in individual patients. These results show that
disease module disruption evaluation is a viable strategy for com-
binatorial therapy prioritization. Tuning of diseasemodule param-
eter scoring from large-scale in vitro drug screening on patient-
derived xenographs will be required to translate this pipeline to
clinical settings. To date, such data have been limited, but the in
silico work presented here shows that system-informed precision
oncology has immense promise.

In summary, we show a novel theoretical basis and corre-
sponding computational pipeline for understanding individual-
ized disease modules. Through this, we were able to show that
there is an underlying phenomenon termed synthetic penetrance,
which is only appreciable when we examine a disease gene across
several individually characterized BC patients. Furthermore, these
individualized disease modules can be functionalized to prioritize
precision medicine targets. We anticipate that the principles and
pipeline presented here will be able to prioritize disease genes
and therapeutic targets in other complex diseases such asmetabol-
ic syndrome or neurodegenerative conditions in future work. We
believe that even within monogenic diseases, this framework can
reveal new insights by understanding the pathogenic variant’s in-
teractionswith background patient SNPs. Because of this, we antic-
ipate that individualized disease modules have a strong future in
the field of precision medicine and pharmacology.

Methods

Data acquisition and processing

Data processing andmethod creation were performed in R (R Core
Team 2021). Matched genomic and transcriptomic data corre-
sponding to 90 BC patients were downloaded from the TCGA-
BRCA project (The Cancer Genome Atlas Network 2012; https
://portal.gdc.cancer.gov/projects/TCGA-BRCA). The selected pa-
tient profiles had RNA-seq data for both tumor and normal tissues
and mutations annotations for tumor tissues. Patient IDs are in
Supplemental Table S2. Tumor mutation annotations were avail-
able in four MAF files, with each containingmutational identifica-
tion analysis from Sniper, MUTECT, VarScan, andMuse, and these
datawere processed using themaftools package in R (Koboldt et al.
2012; Larson et al. 2012; Cibulskis et al. 2013; Fan et al. 2016;
Mayakonda et al. 2018). Mutations annotations from these four
MAF fileswere aggregated for each patient and used in downstream
analyses. RNA-seq data for tumor and normal BC samples were fil-

tered for low-variance genes and normalized. Differential gene ex-
pression analysis was performed using the package DESeq2 (Love
et al. 2014).

Target-therapy data acquisition

Target-therapy drugs were pulled from the NIH NCI Target-
Therapy Fact Sheet. The gene targets of these drugs were obtained
from DrugBank (Wishart et al. 2008). Drugs whose targets were
not available in DrugBank, immunotherapies, and broad targeting
agents were excluded. Details on these targets are in Supplemental
Table S1.

The PERMUTOR algorithm

We combined the described individualized disease module con-
struction, gene importance scoring, and target-therapy gene scor-
ing into a complete pipeline called PERsonalized MUtation
evaluaTOR (PERMUTOR). The PERMUTOR algorithm aims to pri-
oritize themost importantmutations and therapeutic targetswith-
in an individual patient’s tumor according to their disruptive
effects on the patient’s individual disease module. Initially, an in-
dividualized disease module is created by extracting the most im-
portant shortest paths between pairs of mutations from the PPI.
This is performed to distill the entire interactome down to the co-
operative interactions that contain disease activity. The impact of
each disease gene on the individual disease module is then evalu-
ated by measuring the change the removal of that gene and its co-
operative paths cause in key network parameters. Target therapies
were also examined in this manner to find existing drugs that
could be efficacious in a specific patient. The individual disease
module themselves also offer biological insights.

PPI preprocessing: including only expressed proteins in the

generalized network

The PPI network used in this work was generated from the irefin-
dex database (Razick et al. 2008; http://irefindex.org/wiki/index
.php?title=iRefIndex). Connections (edges/nodes) were filtered as
described by Da Rocha et al. (2016). The resultant network con-
tained 249,852 connections (edges) and 16,375 proteins (nodes).
Before annotating the network with individualized -omics, genes
that did not have significant expression in the patient’s normal tis-
sue sample or tumor sample were removed from the generalized
network. The individual patient data from mutational profiles
and RNA-seq differential expression were annotated on each pa-
tient’s PPI for use in future scoring. Information from the CGC
was also annotated on each patient’s PPI network (Sondka et al.
2018).

Stage 1: computing the shortest PPI paths that link two mutated genes

in the PPI network

Because mutated genes exert their functional effects on cancer
cells via interactions with their partners in the PPI network, we hy-
pothesized that shortest paths between two mutated genes con-
tain disease activity. The all_shortest_paths function in the
igraph package was used to compute shortest paths for each pair
of mutated genes found in a single patient.

Stage 2: assessment of shortest PPI paths that link two mutated genes

in the PPI network

Not all mutations or cooperative paths were important in the dis-
ease etiology of a single patient, and thus, a path-scoring scheme
was created to distill themost important interactions. The shortest
paths connecting pairs of mutated genes were deemed potentially
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important in individualized disease etiology if one or more of the
following criteria are met: (1) the shortest paths are enriched with
differentially expressed genes; (2) the paths are enriched with dis-
ease-context genes; and (3) the paths contain one ormoremutated
genes from that patient. As such, the Path Score was devised to as-
sess and identify shortest paths that are potentially important.

Each gene within the path was scored, and the path score was
calculated to be the sum of the components averaged across the
lengthof the path. This formula takes into account: (1) fold change
RNA-seq between tumor and tissue normal of that patient (r), (2) if
the path contained nonterminal nodes that were mutated in that
patient (m), and (3) a constant associated with the gene tier in the
CGC (https://cancer.sanger.ac.uk/census). The CGC is a database
of genes found to be highly implicated in tumorigenesis. Tier 1
genes have very strong literature support for being impactful to
cancer biology, and tier 2 genes have less evidence but are still sus-
pected to be important. A constant was added for tier 1, and a
smaller constant was added for tier 2. No constant was added if
the gene was not in the CGC gene census.

Path Score:p =
∑n

i=1

∣
∣ri
∣
∣+ ti +mi

n
,

where r = Fold change RNA-seq; t =CGC tier score (tier 1 = 10, tier 2
=2); m=mutation score = 5; and n=path length.

To benchmark our method, paths scores were compared with
the scores of 1000 randompaths of the same length to calculate an
empirical P-value for a given real path. Randomized paths were
scored using the same patient’s fold change and mutational data
so each patient had unique sets of randomized paths scored with
their omic data. The empirical P-value is calculated as the percent-
age of random paths that score higher than the real path. In this
way, a significant path will have a lower empirical P-value and
be higher thanmost randomized paths. All paths that have a P-val-
ue over a certain threshold (P-value <0.01 in thiswork)weremoved
into a unique individualized disease module.

Stage 3: construction of personalized disease modules and evaluation of the

importance of disease genes via IDGI scoring

To understand the impact of each mutated gene in the individual
disease module, module parameters were measured before and af-
ter removal of a gene and its cooperative relationships. All cooper-
ative paths that began or ended with the gene under investigation
were removed from the disease module. The separated disease
module components, edge number, bottlenecks, hubs, and highly
trafficked hubs were measured for the altered individual disease
module. The difference in each parameter between the altered
and the original individual disease module was recorded for each
gene. These changes in parameter values were used to calculate
an IDGI score that quantified the gene’s importance to the individ-
ualized disease module.

Parameter definitions

Parameter definitions are as follows:

Highly trafficked hubs: Highly trafficked hubs were defined as nodes
that had edge connectivity and betweenness as measured by the
betweenness function in igraph in the top fifth percentile of that
disease module.

Hubs: Hubs were defined as nodes that met the edge connectivity
cutoff of the fifth percentile but not the betweenness
connectivity.

Bottlenecks: Bottlenecks were defined as nodes that had edge con-
nectivity in the bottom fifth percentile of that disease module.

Separated network components: Separated network componentswere
defined as completely disconnected subgroups within the entire
disease module architecture. The count_components function
from igraph was used to find the number of disconnected sub-
modules:

IDGI Score = 10(Dsubnetworks)+ 3(Dbottlenecks)+ 5(Dhubs)

+ 6(Dhighly traffickedhubs).

These topological parameters were weighted (10,3,5,6) to reflect
their importance in network science connectivity and function-
ality based on previous work in the field (Al-aamri et al. 2019;
Zhao and Liu 2019). Theseweights are also indicative of their fre-
quency in biological networks. For example, disconnected sub-
networks are rare occurrences that completely sever linkages
between genes that once interacted, and because of this, discon-
nected subnetworks are weighted the largest because they are
rare and have the most drastic effect on the network topology.

Stage 4: individualized drug target analysis

In the next phase, genes targeted by cancer target therapies were
investigated. Approved targeted therapies were found via the
NIH NCI Targeted Cancer Therapies website and DrugBank
(Supplemental Table S1). All genes within the individualized dis-
ease module were compared to this list of targets. All targets that
were represented in the disease module were removed one at a
time, and the disease module was rescored after each exclusion.
Next, pairs of drug targets were removed, and the disease module
was rescored to find potent combinations that displayed network
disruption above single-target disruption:

ITGI Score = 10(Dsubnetworks)+ 3(Dbottlenecks)+ 5(Dhubs)

+ 6(Dhighly traffickedhubs).

Assessment of the performance of the PERMUTOR algorithm

To validate and explore our pipeline, we constructed five testing
schemes:

Test scheme 1: P-value pruning characterization. For five test patients
of varying mutational burden, we constructed individualized
disease modules using empirical P-value cutoffs of 0.005, 0.01,
and 0.05. The resulting disease modules were analyzed for their
number of nodes, edges, and percentage of significant paths.

Test scheme 2: Generation of cohort diseasemodule. Here, a cohort dis-
ease module was constructed using the well-known algorithm
GRNBoost2 (Moerman et al. 2019) from the Arboreto Python
package. All patient transcriptomic profiles were used as input
for GRNBoost2. This disease module was pruned to include edg-
es weightedwith values greater than 25. This cohortmodulewas
then compared to all individualized disease modules.

Test scheme 3: Individualized disease module randomization. For 10
representative patients, their individualized disease module
was tested by randomly shuffling node labels 10 times and re-
scoring the mutated genes. These randomly shuffled scores
were compared to the original score for each gene in that patient.

Test scheme 4: CGC receiver operator curve (ROC) analysis and ablation
studies. ROC analysis was completed by testing the recovery of
CGC genes using all patients’ IDGI scores. This was repeated
for CGC genes that were indicated as impactful to BC specifi-
cally. For path and IDGI score ablation studies, the five test pa-
tients were used. For each run, components of the scores were
removed, and the ROC analysis was repeated.
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Test scheme 5: Target-therapy-approved indication comparisons.
Clinical information for each patient was extracted from the
TCGA-BRCA project. Approved indications for each target ther-
apy were found from DrugBank and the NIH NCI Target-
Therapy Fact Sheet. First, BC-approved targets were compared
against non-BC targets to showour ITGI score’s ability to recapit-
ulate cancer-specific approvals. Second, the BC-approved targets
were investigated for specific subtype approvals, and patients
who fit the approval criteria were compared against those who
did not meet the approval indications.

Figures, analysis, and website

Schematic figures were created in BioRender (https://biorender
.com/). All other figures were created in R and combined in
Adobe Illustrator. The PERMUTOR Data Portal was created using
R Shiny.

Software availability

The software generated in this study are available at GitHub
(https://github.com/HuLiLab) and as Supplemental Code S1. The
data generated in this study are available in the Supplemental
Material and at the PERMUTOR Data Portal (https://syspharm
.shinyapps.io/PERMUTOR/).
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