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Abstract

The aim of this study was to assess if the dose and exposure duration of the anabolic andro-

genic steroids (AAS) boldenone (BOL) and stanazolol (ST) affected memory, anxiety, and

social interaction, as well as acetylcholinesterase (AChE) activity and oxidative stress in the

cerebral cortex (CC) and hippocampus (HC). Male Wistar rats (90 animals) were randomly

assigned to three treatment protocols: (I) 5 mg/kg BOL or ST, once a week for 4 weeks; (II)

2.5 mg/kg BOL or ST, once a week for 8 weeks; and (III) 1.25 mg/kg BOL or ST, once a

week for 12 weeks. Each treatment protocol included a control group that received an olive

oil injection (vehicle control) and AAS were administered intramuscularly (a total volume of

0.2 ml) once a week in all three treatment protocols. In the BOL and ST groups, a higher

anxiety level was observed only for Protocol I. BOL and ST significantly affected social inter-

action in all protocols. Memory deficits and increased AChE activity in the CC and HC were

found in the BOL groups treated according to Protocol III only. In addition, BOL and ST sig-

nificantly increased oxidative stress in both the CC and HC in the groups treated according

to Protocol I and III. In conclusion, our findings show that the impact of BOL and ST on mem-

ory, anxiety, and social interaction depends on the dose and exposure duration of these

AAS.

Introduction

Anabolic androgenic steroids (AAS) form a large class of synthetic androgens that mimic the

effects of male sex hormones such as testosterone and dihydrotestosterone. AAS are widely

used by athletes to increase muscle mass and enhance physical performance, and by non-ath-

letes for esthetic reasons. Both young athletes and non-athletes may take 10–100-fold the phys-

iological dose of AAS [1]. Further, several studies have investigated the potentially severe side-
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effects of AAS abuse [2, 3]. In fact, the number of adolescents using AAS has grown signifi-

cantly over the past 10 years, with estimates of use ranging between 4–12% among adolescents.

AAS in supraphysiological doses affect several central nervous system- (CNS) related

behaviors such as memory, aggression, anxiety, and depression [2, 4]. Studies investigating the

mechanisms underlying AAS demonstrated that AAS influence neurotransmission in the CNS

by directly affecting the cellular membrane, modulating synthesis and degradation of neuro-

transmitters, and altering neurotransmitter metabolism [5, 6]. In addition, androgen receptors

are expressed in brain structures such as the hippocampus (HC), amygdala, and cerebral cor-

tex (CC). Further, the use of AAS interferes with important signaling and neurotransmission

systems, such as glutamatergic [7], cholinergic [8], and opioid systems, that modulate animal

behavior [9].

Behavioral responses to AAS depend on several factors, including the chemical structure of

the steroid administered, whether a single compound or cocktail is administered, the recipi-

ent’s age, and treatment duration [10]. While several controlled studies have described the

behavioral changes induced by AAS, these studies primarily used hormone cocktails. There-

fore, the aim of this study was to comparatively and separately assess the effects of the AAS bol-

denone (BOL) and stanazolol (ST) on behavioral tasks to determine if one or both altered

learning, memory, anxiolytic-like behavior, and dominant or submissive social behavior. In

addition, in an attempt to simulate different user groups, we analyzed the effects of three dif-

ferent treatment protocols that varied in dose and treatment duration to determine their

impact on user outcomes.

Materials and methods

Animals

Male Wistar rats (45 days of age) weighing +/-200 g were used in the study. The animals were

maintained in the Central Animal House of the Federal University of Santa Maria in colony

cages at an ambient temperature of 23 ± 2˚C and a relative humidity of 45–55% under a 12-h

light/dark cycle. The animals had access to a standard rodent pellet diet and water ad libitum.

Experimental treatment protocols

Stanazolol (EstrombolTM, Fundación Lab, Argentina) and boldenone undecylenate (Equipoi-

seTM, Fort Dodge Lab, USA) treatments were administered according to Protocol I, II and III.

Both the vehicle (olive oil) and AAS were administered intramuscularly (a total volume of 0.2

ml) once a week in all three treatment protocols. A total of 90 animals were used to protocol I,

II, or III, with rats being randomly allocated to 3 groups: vehicle (VE, n = 10), Boldenone

(BOL, n = 10) and stanazolol (ST, n = 10).

Protocol I: 5 mg/kg of ST or BOL for 4 weeks. Protocol II: 2.5 mg/kg of ST or BOL for 8

weeks. Protocol III: 1.25 mg/kg of ST or BOL for 12 weeks. A representative treatment scheme

is shown in Fig 1. The animals were anesthetized using halothane before being euthanized by

total exsanguination. The CC and HC of each rat were dissected and homogenized in a Tris–

HCl 10 mM solution, pH 7.4, on ice [11].

Behavioral tests

Elevated plus maze task. On the first day of the evaluation of the behavioral parameters,

anxiolytic-like behavior was evaluated using the elevated plus maze (DAY 1) as previously

described [12]. The apparatus consisted of a wooden structure raised to 50 cm from the floor,

and was composed of four equally sized arms (two closed arms [walls 40 cm] and two open
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arms). The rats were placed on the central platform of the maze facing an open arm, and were

allowed 5 min to explore the apparatus. The time spent and the number of entries in the open

and closed arms were recorded. The apparatus was thoroughly cleaned with 30% ethanol

between each session.

Open field test. Locomotor and exploratory activities were evaluated in the apparatus

used for the object recognition task as previously described [13]. The number of crossings and

rearings was assessed on the first day of exposure to the apparatus (habituation day, DAY 2).

The animals were transferred to an apparatus with an open field of 100 cm × 100 cm (floor;

divided into 16 squares of 6.25 cm2 each) × 50 cm (walls). During the 5-min open-field session,

the number of crossings and rearings was recorded.

Object recognition test. The object recognition task makes use of the spontaneous ten-

dency of a rat to explore its environment and does not require punishment or reward [14].

Here, it consisted of three sessions: habituation (DAY 2), training (DAY 3), and testing (DAY

3), and was conducted as previously described [15]. Briefly, the rats were left to freely explore a

square arena (length: 100 cm × 100 cm, height: 50 × 50 cm) for 10 min in the absence of any

objects. Twenty-four hours after habituation, the training session was conducted by placing

one rat into the arena in which two identical objects (objects A1 and A2) were positioned at

two adjacent sides of the arena. The rat was allowed to explore the arena and objects for 10

min. Generally, during the training session, a rat should explore each object for 40–60% of the

time spent in the arena, or otherwise be excluded from the experiments. Here, during the test

session performed 24 h after the training session, the rats were allowed 10 min to explore the

arena in which one of the familiar objects used during the training session was replaced by a

novel object (object B). The discrimination index was then calculated, taking into account the

difference of time spent exploring the novel (B) and the familiar (A) object x 100 divided by

the sum of time spent exploring the novel (B) and the familiar (A), and used as a cognitive

parameter ([(Tnovel–Tfamiliar)/(Tnovel X Tfamiliar)]/100) [20]. The objects were made of

odorless plastic and were similar in size. Between each trial, the objects and the arena were

cleaned with a 30% ethanol solution. The total time spent sniffing or touching each object with

the nose and/or forepaws and the number of rearings were analyzed.

Agonistic behavior test. The rats were tested for agonistic behavior using the resident–

intruder paradigm described by Salas-Ramires et al. [10]. After a 5-min acclimation period,

an age- and weight-matched male intruder was placed among the rats in the vehicle, BOL, and

Fig 1. Experimental Protocols: Protocol I: Intramuscular injection of vehicle (olive oil, 0.2 ml), stanazolol (ST,

5 mg/kg), or boldenone (BOL, 5 mg/kg) once a week for 4 weeks. Protocol II: Intramuscular injection of

vehicle (olive oil, 0.2 ml), stanazolol (ST, 2.5 mg/kg), or boldenone (BOL, 2.5 mg/kg) once a week for 8 weeks.

Protocol III: Intramuscular injection of vehicle (olive oil, 0.2 ml), stanazolol (ST, 1.25 mg/kg) or boldenone

(BOL, 1.25 mg/kg) once a week for 12 weeks. Day 1: elevated plus maze task (EPM). Day 2: object

recognition task, habituation. Day 3: object recognition task, training. Day 4: object recognition task, testing.

Day 5: agonist behavior (resident–intruder paradigm), (n = 10).

https://doi.org/10.1371/journal.pone.0177623.g001
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ST home cage. The task was recorded and the recordings were analyzed. The duration and

number of occurrences of dominant behavior over the intruder (contact team and offensive

posturing) and dominant behavior over the territory (number of flank marks) were recorded.

Aggressive behavior was determined by the number of attacks and bites over the intruder. Sub-

missive behavior was determined by the frequency of defensive posturing, walking with tail

upward, and escape dashes. The intruders were used for more than one behavioral test. All rats

were tested during the first 4 h of the dark cycle under dimmed red light conditions to control

for circadian influences on behavioral responses [16].

Sample preparation for biochemical parameters. The CC and HC were dissected and

placed in a 10-mM Tris–HCl solution and 0.1 mM EDTA, pH 7.4, on ice, followed by homoge-

nization in a glass potter in Tris–HCl solution [17]. Aliquots of the homogenate were separated.

After centrifugation at 1’500 × g at 4˚C for 15 min, aliquots of the supernatant were stored at

−80˚C until use.

Measurement of intracellular ROS production. 20-70-Dichlorofluorescein diacetate

(DCFH-DA) levels were determined as markers of intracellular ROS production. Aliquots

(50 μl) of the supernatants of the CC and HC were added to a medium containing Tris–HCl

buffer (10 mM, pH 7.4) and 1 mM DCFH-DA. After the addition of DCFH-DA, the medium

was incubated in the dark for 1 h until fluorescence was measured (excitation at 488 nm and

emission at 525 nm, with slit widths of 1.5 nm). DCFH-DA levels were determined using a

standard curve consisting of DCF; the results were normalized to the total protein content

[18].

MDA levels. MDA levels in the CC and HC homogenates were measured using the thio-

barbituric acid reactive species (TBARS) method as previously described [19], with minor

modifications [20]. Briefly, the reaction mixture contained 200 μl of homogenate or standard

(MDA, 0.03 mM), 200 μl of 8.1% sodium dodecylsulfate (SDS), 750 μl of acetic acid solution

(2.5 M HCl, pH 3.5), and 750 μl of 0.8% thiobarbituric acid (TBA). The mixtures were heated

at 95˚C for 90 min. After centrifugation at 1’700 × g for 5 min, the absorbance was measured

at 532 nm. The MDA tissue levels were expressed as µmol MDA/mg of protein.

GSH levels. GSH levels were determined in the CC and HC as previously described [21].

Aliquots of the supernatant (100 μl) adjusted to 1 mg/ml of protein content were added to

85 μl of a phosphate buffer (300 mM, pH 7.4), 50 μl of a 10-mM 5,50-dithiobisnitrobenzoic

acid (DTNB) solution were added, and the reaction was read at 412 nm. The results were

expressed as μmol of GSH/mg of protein.

NPSH levels. Tissue NPSH levels were determined in the CC and HC as previously

described [21]. Briefly, the supernatant was diluted (1:1) with 10% trichloroacetic acid (TCA),

homogenized, and centrifuged at 2’000 × g for 10 min. Subsequently, the supernatant was

incubated with 10 mM DTNB in a final volume of 2 ml, and the absorbance was read at 412

nm. A cysteine solution was used as the reference standard. The NPSH levels were expressed

as µmol SH/mg of tissue.

Determination of cerebral AChE activity. AChE activity was determined as previously

described [22], with a modification of the spectrophotometric method [23]. The reaction mix-

ture (2 ml final volume) contained 100 mM K+-phosphate buffer, pH 7.5, and 1 mM DTNB.

This method is based on the formation of the yellow anion 5,50-dithio-bis-acid-nitrobenzoic as

measured by its absorbance at 412 nm during a 2-min incubation at 25˚C. The enzyme (40–

50 μg of protein) was pre-incubated for 2 min. The reaction was initiated by adding 0.8 mM

acetylthiocholine iodide (AcSCh). All samples were run in triplicate and enzyme activity was

expressed in μmol AcSCh/h/mg of protein. The protein concentration was determined before-

hand in a piece of the respective brain tissue: CC, 0.7 mg/ml and HC, 0.8 mg/ml as previously

described [24].

Androgenic anabolic steroid exposure on behavior in rats
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Protein concentration determination. Protein concentrations were measured by the

Coomassie Blue method [25] using bovine serum albumin as the standard.

Statistical analysis. The Shapiro-Wilk test was included in the statistical analysis for the

determination of the normal distribution of data (SPSS Statistics 22.0). One-way ANOVA fol-

lowed by Tukey’s test was used for the analysis of behavioral results, stress parameters, and

enzyme activity tests. P<0.05 was considered significant in all experiments (GraphPad Prism
5.0). All data were expressed as the mean ± SEM.

Ethical approval. All procedures were performed according to the NIH Guide for the

Care and Use of Laboratory Animals and the Brazilian Society for Neuroscience and Behavior

(SBNeC) recommendations for animal care. This work was approved by the ethical committee

of the Federal University of Santa Maria, Brazil (protocol number 032/2014).

Results

Anxiogenic-like behavior of rats treated with BOL and ST according to

Protocol I, II, and III

Fig 2 shows the anxiogenic-like behavior of rats in the elevated plus maze. Rats receiving

BOL and ST according to Protocol I showed a decrease in the time spent in the open arms

[F(2,29) = 30.53, p<0.001, graph A], while those receiving BOL and ST according to Proto-

cols II and III did not show differences in the time spent in the open-arms [F(2,29) = 0.301,

graph B and F(2,29) = 0.027, graph C, respectively]. Rats receiving BOL according to Protocol

I showed a decrease in the number of open-arm entries [F(2,29) = 11.14, p<0.01, graph D].

However, rats receiving ST according to Protocol I and those receiving BOL and ST accord-

ing to Protocol II [F(2,29) = 0.0612, graph E] and III [F(2,29) = 0.517, graph F] did not show

a change in the number of open-arm entries. Rats receiving BOL according to Protocol I

spent more time in the closed-arm [F(2,29) = 10.86, p<0.01, graph G]. BOL and ST adminis-

tered according to Protocol II did not affect the time spent in the closed arm [F(2,29) = 0.057,

graph H] and III [F(2,29) = 0.557, graph I]. Further, treatment with BOL and ST according to

Protocol I, II, or III did not affect crossing numbers [F(2,29) = 1.855, P1; F(2,29) = 0.824, P2

and F(2,29) = 0.025, P3, graph J].

Dominant behavior over an intruder of rats treated with BOL and ST

according to Protocol I, II, and III

Fig 3 shows the time (A, B, and C) and events (D, E, and F) of dominant behavior over an

intruder after treatment with BOL or ST according to Protocol I, II, and III. The duration of

dominant behavior was increased for rats treated with BOL and ST according to Protocol I, II,

and III [F(2,29) = 14.74, p<0.001, graph A; F(2,29) = 36.22, p<0.001, graph B; and F(2,29) = 9.623,

p<0.01, graph C, respectively]. Similarly, rats treated with BOL and ST according to Protocol

I, II, and III, showed an increase in dominant behavior events [F(2,29) = 10.04, p<0.01, graph

D; F(2,29) = 25.49, p<0.001, graph E; F(2,29) = 8.263, p<0.01, graph F, respectively].

Territorial dominant behavior of rats treated with BOL and ST according

to Protocol I, II, and III

Fig 4 shows the time spent to mark territory (A, B, and C) and the number of these events (D,

E, and F) after treatment with BOL or ST according to Protocol I, II, and III. Rats treated with

ST according to Protocol I, II, and III spent an increased amount of time marking their terri-

tory [F(2,29) = 8.815, p<0.01, graph A; F(2,29) = 20.38, p<0.001, graph B; and F(2,29) = 14.73,

p<0.001, graph C, respectively], which was not observed for rats treated with BOL according
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Fig 2. Anxiogenic-like behavior of rats (n = 10) treated intramuscularly with vehicle (olive oil, 0.2 ml), boldenone (BOL),

or stanazolol (ST) once a week according to Protocol I (4 weeks, 5 mg/kg), Protocol II (8 weeks, 2.5 mg/kg), or Protocol

Androgenic anabolic steroid exposure on behavior in rats
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to Protocol I. In addition, rats treated with BOL according to Protocol II and III spent signifi-

cantly more time marking their territory [F(2,29) = 20.38, p<0.001, graph B; and F(2,29) = 14.73,

p<0.01, graph C, respectively].

Rats treated with ST according to Protocol I, II, and III displayed a significant increase in

the number of territorial-marking events [F(2,29) = 16.37, p<0.001, graph D; F(2,29) = 74.68,

p<0.001, graph E; and F(2,29) = 42.89, p<0.001, graph F, respectively], which was not observed

for rats treated with BOL according to Protocol I [graph D]. However, these numbers were sig-

nificantly increased in rats receiving BOL according to Protocol II and III [F(2,29) = 74.68,

p<0.001, graph E; and F(2,29) = 42.89, p<0.001, graph F, respectively].

Submissive behavior of rats treated with BOL and ST according to

Protocol I, II, and III

Fig 5 shows the time (A, B, and C) and events (D, E, and F) of submissive behavior after treat-

ment with BOL or ST according to Protocol I, II, and III. Rats treated with ST according to

Protocol I did not show a change in submissive behavior time [graphs A, B, and C]. Treatment

III (12 weeks, 1.25 mg/kg) as assessed in the elevated plus maze task. Time spent in the open-arms (A, B, and C), entry

to open-arms (D, E, and F), time spent in closed-arms (G, H, and I), and crossing numbers (J; P1, P2 and P3). *Denotes

significant difference from the vehicle group. # Denotes significant difference between BOL and ST groups.

https://doi.org/10.1371/journal.pone.0177623.g002

Fig 3. Dominant behavior over the intruder of rats (n = 10) reated intramuscularly with vehicle (olive oil, 0.2 ml), boldenone (BOL), or stanazolol

(ST) once a week according to Protocol I (4 weeks, 5 mg/kg), Protocol II (8 weeks, 2.5 mg/kg), or Protocol III (12 weeks, 1.25 mg/kg). Dominant

behavior time for Protocol I (A), II (B), and III (C) and dominant behavior events for Protocol I (D), II (E), and III (F). *Denotes significant difference

from the vehicle group. # Denotes significant difference between BOL and ST groups.

https://doi.org/10.1371/journal.pone.0177623.g003
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with BOL decreased submissive behavior time only when administered according to Protocol

II [F(2,29) = 5.164, p<0.05, graph B], while treatment with ST reduced the number of submis-

sive behavior events only when administered according to Protocol I [F(2,29) = 5.045, p<0.05,

graph D].

Aggressive behavior of rats treated with BOL and ST according to

Protocol I, II, and III

Fig 6 shows aggressive behavior events after treatment with BOL or ST according to Protocol

I, II, and III. Rats receiving ST according to Protocol I, II, and III did not show changes in

aggressive behavior (graph A, graph B, and graph C, respectively). However, an increase in

aggressive behavior was observed for rats treated with BOL according to Protocol II and III

[F(2,29) = 23.38, p<0.001, graph B; and F(2,29) = 21.92, p<0.001, graph C, respectively].

Object recognition task indices and acetylcholinesterase (AChE) activity

in the brain of rats treated with BOL and ST according to Protocol I, II,

and III

Fig 7 shows the index value of the object recognition task of the rats, as well as the AChE activity

in the CC and HC of rats treated with BOL and ST according to Protocol I, II, and III. Rats

Fig 4. Dominant behavior over territory in rats treated intramuscularly with vehicle (olive oil, 0.2 ml), boldenone (BOL), or stanazolol (ST) once a

week according to Protocol I (4 weeks, 5 mg/kg), Protocol II (8 weeks, 2.5 mg/kg), or Protocol III (12 weeks, 1.25 mg/kg). Time spent marking

territory for Protocol I (A), II (B), and III (C) and territory-marking events for Protocol I (D), II (E), and III (F). *Denotes significant difference from the

vehicle group. # Denotes significant difference between BOL and ST groups.

https://doi.org/10.1371/journal.pone.0177623.g004
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treated with BOL and ST according to Protocol I and II showed no significant differences in the

object recognition task index or AChE activity in the CC and HC [graphs A and B, D and E, and

G and H, respectively). However, rats treated with BOL according to Protocol III had reduced

index scores in the object recognition task [F(2,29) = 3.601, p<0.05, graph C] and increased

AChE activity in the CC [F(2,29) = 8.321, p<0.01, graph F] and hippocampus [F(2,29) = 4.968,

p<0.05, graph I].

Oxidative stress parameters in the CC of rats treated with BOL or ST

according to Protocol I, II, and III

Increased levels of reactive oxygen species (ROS) were observed in rats treated with BOL

according to Protocol I [F(2,29) = 7.547, p<0.01, graph A] and III [F(2,29) = 7.910, p<0.01,

graph C] (Fig 8). In contrast, treatment with ST resulted in increased ROS levels only when

administered according to Protocol III [F(2,29) = 7.910, p<0.05, graph C]. No significant differ-

ences in ROS levels were observed in rats receiving BOL and ST according to Protocol II [F(2,29)

= 1.550, graph B]. A significant increase in malondialdehyde (MDA) levels was observed in rats

treated with BOL according to Protocol III [F(2,29) = 6.561, p<0.01, graph F]; however, no sig-

nificant differences in MDA levels were observed in rats treated with BOL and ST according to

Protocol I [F(2,29) = 0.490, graph D] and II [F(2,29) = 1.106, graph E]. Reduced glutathione (GSH)

Fig 5. Submissive behavior of rats (n = 10) treated intramuscularly with vehicle (olive oil, 0.2 ml), boldenone (BOL), or stanazolol (ST) once a

week according to Protocol I (4 weeks, 5 mg/kg), Protocol II (8 weeks, 2.5 mg/kg), or Protocol III (12 weeks, 1.25 mg/kg). Submissive behavior

time for Protocol I (A), II (B), and III (C) and submissive behavior events for Protocol I (D), II (E), and III (F). *Denotes significant difference from

the vehicle group. # Denotes significant difference between BOL and ST groups.

https://doi.org/10.1371/journal.pone.0177623.g005
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levels were only observed in rats treated with ST according to Protocol I [F(2,29) = 6.495, p<0.01,

graph G]. No significant differences were observed in the GSH levels of rats receiving BOL and

ST according to Protocol II [F(2,29) = 0.945, graph H] and III [F(2,29) = 1.537, graph I]. Non-pro-

tein thiols (NPSH) levels decreased in rats receiving BOL and ST according to Protocol I

[F(2,29) = 10.09, p<0.001, graph J]. No significant differences were observed in rats receiving

these two drugs according to Protocol II [F(2,29) = 0.968, graph K] and III [F(2,29) = 1.126,

graph L].

Oxidative stress parameters in the HC of rats treated with BOL or ST

according to Protocol I, II, and III

Fig 9 shows that ROS levels increased in rats treated with BOL according to Protocol I [F(2,29) =

12.21, p<0.001, graph A] and III [F(2,29) = 12.67, p<0.05, graph C]. In contrast, ROS levels

increased in rats treated with ST according to Protocol III only [F(2,29) = 12.67, p<0.001, graph

C]. No significant differences in ROS levels were observed in rats treated with ST according to

Protocol II [F(2,29) = 0.176, graph B]. Increased levels of MDA were observed in rats treated with

ST according to Protocol I [F(2,29) = 6.610, p<0.01, graph D]. There were no significant differ-

ences in MDA levels in rats treated with BOL and ST according to Protocol II [F(2,29) = 1.113,

graph E] and III [F(2,29) = 1.1973, graph F]. GSH levels were unchanged in rats treated with

BOL and ST according to Protocol I [F(2,29) = 0.863, graph G], II [F(2,29) = 2.347,graph H], and

III [F(2,29) = 0.675, graph I]. NPSH levels decreased in rats treated with BOL and ST according

to Protocol I [F(2,29) = 7.682, p<0.01, graph J] and III [F(2,29) = 6.902, p<0.01, graph L]. In con-

trast, no significant differences in these levels were observed in rats treated with BOL and ST

according to Protocol II [F(2,29) = 1.202, graph K].

Discussion

In the present study, we measured the physiological effects of BOL and ST using three different

treatment protocols. Protocol I consisted of a dose higher than the recommended dose admin-

istered over a shorter time interval. Protocol II consisted of a moderate dose administered over

Fig 6. Aggressive behavior of rats (n = 10) treated intramuscularly with vehicle (olive oil, 0.2 ml), boldenone (BOL), or stanazolol (ST) once a week

according to Protocol I (4 weeks, 5 mg/kg, graph A), Protocol II (8 weeks, 2.5 mg/kg, graph B), or Protocol III (12 weeks, 1.25 mg/kg, graph C).

*Denotes significant difference from the vehicle group. # Denotes significant difference between BOL and ST groups.

https://doi.org/10.1371/journal.pone.0177623.g006
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Fig 7. Object recognition task index and acetylcholinesterase (AChE) activity in the brain of rats (n = 10) treated intramuscularly with vehicle (olive oil,

0.2 ml), boldenone (BOL), or stanazolol (ST) once a week (intramuscular) according to Protocol I (4 weeks, 5 mg/kg, graph A), Protocol II (8 weeks,

2.5 mg/kg, graph B), or Protocol III (12 weeks, 1.25 mg/kg, graph C). Object recognition task index for Protocol I (A), II (B), and III (C). AChE activity in

the cerebral cortex for Protocol I (D), II (E), and III (F) and hippocampus for Protocol I (G), II (H), and III (I). *Denotes significant difference from the

vehicle group. # Denotes significant difference between BOL and ST groups.

https://doi.org/10.1371/journal.pone.0177623.g007
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an intermediate period, and Protocol III consisted of a reduced dose administered over an

extended period [26]. These protocols were based on steroid user groups known to use widely

ranging steroid doses and treatment durations [1, 27].

Our research focused on comparing the behavioral changes in rats receiving BOL and ST

according to the three protocols described. Locomotion parameters were unchanged in the

Fig 8. Parameters of oxidative stress in the cerebral cortex of rats (n = 10) treated intramuscularly with vehicle (olive oil, 0.2 ml), boldenone (BOL),

or stanazolol (ST) once a week according to Protocol I (4 weeks, 5 mg/kg, graph A), Protocol II (8 weeks, 2.5 mg/kg, graph B), or Protocol III (12

weeks, 1.25 mg/kg, graph C). Reactive oxygen species (ROS) production for Protocol I (A), II (B), and II (C); malondialdehyde (MDA) levels for

Protocol I (D), II (E), and III (F); reduced glutathione (GSH) levels for Protocol I (G), II (H), and III (I); non-protein thiol (NPSH) levels for Protocol I (J),

II (K), and III (L). *Denotes significant difference from the vehicle group. # Denotes significant difference between BOL and ST groups.

https://doi.org/10.1371/journal.pone.0177623.g008
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rats receiving BOL and ST, regardless of the treatment protocol used. In contrast, Bronson and

Bronson [28] and colleagues [29] have reported that female mice treated with a combination

of AAS at low and high doses for either 9 weeks or 6 months (high dose only) exhibited signifi-

cantly reduced spontaneous activity in a running wheel relative to that observed for the

Fig 9. Parameters of oxidative stress in the hippocampus of rats (n = 10) treated intramuscularly with vehicle (olive oil, 0.2 ml), boldenone (BOL),

or stanazolol (ST) once a week according to Protocol I (4 weeks, 5 mg/kg, graph A), Protocol II (8 weeks, 2.5 mg/kg, graph B), or Protocol III (12

weeks, 1.25 mg/kg, graph C). Reactive oxygen species (ROS) production for Protocol I (A), II (B), and II (C); malondialdehyde (MDA) levels for

Protocol I (D), II (E), and III (F); reduced glutathione (GSH) levels for Protocol I (G), II (H), and III (I); non-protein thiol (NPSH) levels for Protocol I

(J), II (K), and III (L). *Denotes significant difference from the vehicle group. # Denotes significant difference between BOL and ST groups.

https://doi.org/10.1371/journal.pone.0177623.g009

Androgenic anabolic steroid exposure on behavior in rats

PLOS ONE | https://doi.org/10.1371/journal.pone.0177623 June 8, 2017 13 / 19

https://doi.org/10.1371/journal.pone.0177623.g009
https://doi.org/10.1371/journal.pone.0177623


controls. Further, these authors hypothesized that female-specific effects of AAS on locomo-

tion might reflect AAS antagonism of estrogen-induced spontaneous activity [28, 29].

Here, we showed that the anxiety levels were significantly increased in the rats receiving

BOL and ST according to Protocol I since these rats spent less time in the open arms of the

elevated plus maze. Bitran and colleagues performed the first study of the effects of AAS on

anxiety [30]. Another study showed that high doses of testosterone propionate induced an

anxiogenic effect after 6 days of treatment; however, after 14 days of treatment the animals did

not behave differently from those in the control group [31]. These results are indicative of a

transitional character treatment, which might explain the fact that the relatively longer treat-

ments at a relatively low dose used in our study did not increase anxious behavior. Neverthe-

less, Minkin and colleagues showed that nandrolone administered for 8 weeks increased

anxious behavior, contradicting the findings of anxiolytic activity of some steroids [32].

Dominant behavior over the intruder and territorial dominance increased in all protocols

tested, while submissive behavior was not affected by the BOL and ST treatments according to

Protocol I and III. However, submissive behavior events decreased only when the animals were

exposed to the higher dose of ST (PI). Further, the treatment with BOL according to Protocol II

and III affected aggressiveness. The findings of Kalinine et al. show that a neural circuit com-

posed of several regions including the prefrontal cortex, amygdala, HC, hypothalamus, anterior

cingulated cortex, and other interconnected structures is implicated in the regulation of emo-

tions [33]. Furthermore, it is plausible that functional or structural abnormalities in these

regions can increase the susceptibility to impulsive aggression and violence [34]. AAS also affect

aggressive behavior in rodents [35]. Single compounds such as testosterone and testosterone

propionate increase dominance and aggression in healthy adult male rats and mice [36, 37].

Further, adolescent male Syrian hamsters exposed to a cocktail of AAS for 2 or 4 weeks showed

increased aggressive behavior [10]. Consequently, the choice of a specific protocol for drug

administration (both time and dose dependent), as well as the type of AAS used can affect the

brain differently, resulting in a greater or lesser degree of dominance and aggressiveness.

The array of physiological and behavioral effects of these chemically disparate drugs is

vastly compounded not only by complexity in the patterns of self-administration, but also by

the heterogeneity of the subjects that take these drugs [38, 39]. Symptoms resulting from the

chronic use of supra-therapeutic doses of AAS include mania, increased anxiety, irritability,

extreme mood swings, and abnormal levels of aggression, depression, and even suicide. In

particular, individuals self-administering the highest doses of AAS have elevated scores on

the “Symptom Check List-90”, a self-report system that includes a number of different dimen-

sions of anxiety [40]. These findings support our data that clearly show different behavioral

responses of the rats treated with BOL and ST depending on the exposure duration and the

dose. However, to investigate the effect of BOL and ST on cognitive processes, additional

experimental techniques can be used. Since gonadal hormones are known to play a crucial role

in cognitive processes such as spatial learning performance [41] and extinction responses in a

passive avoidance task [42], it is conceivable that BOL and ST also influence cognitive func-

tions. In particular, the current literature contains several controversial data regarding the

absence of cognitive disorders in animals treated with AAS [43, 44], while other studies have

clearly shown that individuals abusing AAS have a high risk of developing cognitive disorders

and important morphological changes in the amygdala, HC, and forebrain [45, 46]. Thus, the

present study evaluated memory performance of rats treated with BOL and ST in the object

recognition task. Only rats receiving BOL according to Protocol III had a significant memory

deficit compared to that of rats in the control and ST groups. Therefore, the use of BOL at a

reduced dose but for a relatively long duration had a higher impact on learning and memory

compared to that observed for ST treatment.
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The biochemical mechanisms underlying the effects of AAS are still poorly understood.

The mesocorticolimbic dopaminergic pathway is considered to play an important role in the

reinforcement circuitry of the brain [47], and a connection between AAS and central dopa-

minergic and serotoninergic activity has been found in animal studies [48, 49]. However, only

little information is available to explain the potential role of the cholinergic system in the bio-

chemical mechanisms underlying the CNS effects of AAS. Such information is, however, espe-

cially important given that the cholinergic system plays an essential role in memory formation

and learning [50, 51], and perhaps also in the behavioral changes we observed according to the

type, treatment duration, and dose of the AAS used. Because acetylcholine coordinates the

neuronal network response, modulation of the cholinergic system is an essential mechanism

underlying complex behaviors; stimulation of presynaptic nicotinic acetylcholine receptors

can increase the release of glutamate, ˠ-aminobutyric acid (GABA), dopamine, acetylcholine,

norepinephrine, and serotonin [52, 53]. AChE is an important enzyme that regulates the con-

centration of acetylcholine in the synaptic cleft. We observed an increase in AChE activity in

the CC and HC of animals treated with BOL (protocol III). These results are supported by

those of other studies that have shown that the anabolic androgenic steroid methandrosteno-

lone changes the expression of neuronal growth factor (NGF) and its receptors while reducing

the activity of choline acetyltransferase (ChAT). Methandrostenolone also induces the synthe-

sis of acetylcholine in the basal forebrain and impairs behavioral performance in the Morris

water maze task [46].

Experimental studies in animals suggest that the redox status may be involved in AAS-

induced neurotoxicity [54]. To the best of our knowledge, our results are the first to demon-

strate that both BOL and ST change ROS, MDA, GSH, and NPSH levels in the CC and HC of

rats. However, we found no significant changes in the CC and HC of rats that had received

BOL and ST according to Protocol II. We hypothesize that both BOL and ST cause a physio-

logical adaptation via changing of the redox status homeostasis.

The main limitations of this preliminary study were that we did not explore the underlying

molecular mechanisms of the effects observed, and that we did not assess the expression of

superoxide dismutase and glutathione peroxidase and reductase in the brain. Measuring anti-

oxidant enzymes in brain tissue may aid in finding a potential correlation between the ROS,

GSH, and NPSH levels in the treatment protocols we used. However, we found that a high

dose or chronic use of BOL or ST changed oxidative stress parameters, resulting in deleterious

effects on the HC and CC. Similar results were reported by Tugyan and colleagues who dem-

onstrated that nandrolone increased MDA levels and reduced GPX activity, thereby negatively

affecting the consequences of brain injury [55]. Holmes and colleagues suggested that andro-

gens are neuroprotective at minimal oxidative stress levels, but that they exacerbate oxidative

stress damage at elevated oxidative stress levels [56]. Additionally, Cunningham et al. demon-

strated that in a preexisting oxidative stress environment, androgens could further exacerbate

oxidative stress damage [57, 58].

In summary, our findings highlight that the impact of BOL and ST on cognition, anxiety,

and social interaction depends on their dose and exposure duration. Furthermore, it is plausi-

ble that there is a correlation between the use of anabolic steroids and increased oxidative

stress in the brain. More studies are necessary to understand the mechanisms by which BOL

and ST affect brain function.
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