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Abstract: 3D printing of assistive devices requires optimization of material selection, raw materials
formulas, and complex printing processes that have to balance a high number of variable but highly
correlated variables. The performance of patient-specific 3D printed solutions is still limited by both
the increasing number of available materials with different properties (including multi-material
printing) and the large number of process features that need to be optimized. The main purpose of
this study is to compare the optimization of 3D printing properties toward the maximum tensile
force of an exoskeleton sample based on two different approaches: traditional artificial neural
networks (ANNs) and a deep learning (DL) approach based on convolutional neural networks
(CNNs). Compared with the results from the traditional ANN approach, optimization based on DL
decreased the speed of the calculations by up to 1.5 times with the same print quality, improved
the quality, decreased the MSE, and a set of printing parameters not previously determined by trial
and error was also identified. The above-mentioned results show that DL is an effective tool with
significant potential for wide application in the planning and optimization of material properties
in the 3D printing process. Further research is needed to apply low-cost but more computationally
efficient solutions to multi-tasking and multi-material additive manufacturing.

Keywords: 3D printing; material; process optimization; artificial neural network; deep learning

1. Introduction

Additive manufacturing (3D printing) has been widely used in clinical practice since
the 1980s, including, for example, for preoperative simulation, training, and manufacturing
of implants and rehabilitation supplies. Process design methodologies and models can be
implemented more efficiently and faster using artificial intelligence (AI), including machine
learning (ML). The following AI methods and tools are used:

• Determining the structure of the technological process (sequences of technological
operations and procedures): decision rules

• Building models of selecting materials, semi-finished products, tooling and their
parameters, and settings: artificial neural networks (ANN) and decision trees (DT)

• Pre-processing (normalization, coding) of selected data used to build models: fuzzy
logic, including ordered fuzzy numbers (OFN)

• Implementation of models for the selection of materials, semi-finished products, tools,
devices, and parameters of their processing as a prototype expert system used to
design the technological process: ANN

• Attempts to eliminate disturbances in the course of the planned technological process
affecting product quality by means of the developed methodology and models of
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technological process supervision: process instability, exceeding warning and alarm
values of monitored parameters by means of ANN and DT

• Predictive models, including for control and compensation of deformations (including
thermal ones): ANN

• Ageing processes: ANN.

An artificially intelligent system is designed to support technologists, both experienced
(as an opinion system) and inexperienced (as a system that complements their knowledge
and experience, and teaches) in process design. Methodologies, models, and prototype
expert systems are developed based on copying the activity of a human who is an expert in
a given field, with the ability to gather experience and knowledge, analyze data, and draw
conclusions to solve problems. Research conducted within the project will demonstrate
their usefulness and effectiveness in the design and supervision of the technological process
of 3D printing. In addition, application of AI methods will increase the use of data included
in technological databases. Types, structures, and parameters of the learning and testing
processes have been optimized to make efficient use of knowledge, including that extracted
in real time from sensors. We expect interesting research conclusions and the emergence of
models that are more effective than existing ones.

The main purpose of this study was to compare the optimization of 3D printing
properties toward the maximum tensile force of an exoskeleton sample based on two
different approaches: traditional ANN and a DL approach based on convolutional neu-
ral networks (CNNs). The plan is to solve the same technological problems using two
completely different tools and compare the results obtained and the effectiveness of both
approaches: traditional ANNs and DL. In particular, the idea is to avoid, as far as possible,
generating results on a “black box” basis (i.e., without an explanation of how the result
was obtained)—in this context, decision trees are more intuitive and simpler than ANNs.
This is particularly important in the production of individualized, one-off production, with
a large number of product variants, and therefore a low degree of standardization. In this
way, knowledge gained from experienced technologists and from already designed and
tested technological processes, proven in production, can be effectively used to design new
technological processes for new products. This labor-intensive process, requiring many
consultations with technologists, can be performed more efficiently, quickly, and accurately,
bringing a new quality to CAPP (Computer Aided Process Planning) systems, based in part
on technologists’ intuition, which is difficult to describe. The acquisition of new knowledge
will also be realized through periodic learning of solutions, i.e., according to incoming new
data [1–3].

This translates into automatic updates, based on actual data and not just catalogue
data, subject to changes over many years. This avoids errors in process design and thus
minimizes company losses. The new knowledge gained in the project will significantly
improve the implementation of production processes, the optimization of existing technolo-
gies and the emergence of new technologies, and is the authors’ contribution to research
on artificial intelligence and its applications [1–3].

The structure of the article is as follows: we start with theoretical background regard-
ing DL and optimization, then we present the material (analyzed data sets) and research
methods/tools (ANN, DL) used in the work. We successively present the results of both
approaches, discuss their advantages and disadvantages compared to the solutions of
competing teams, and indicate the directions of further research. The work ends with
detailed conclusions.

2. Theoretical Background
2.1. Deep Learning

DL is a ML technique in artificial intelligence that is a rapidly developing area of
research and engineering practice. DL far surpasses many of its predecessors in its ability
to recognize speech, computer vision, and natural language processing, as well as to imple-
ment ML or intelligent machine design. In this paper, we use the deep ML paradigm and
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different types of neural networks to optimize 3D printing [1–3]. In contrast to traditional
learning methods, DL refers to ML techniques that use supervised or unsupervised strate-
gies to automatically learn hierarchical representations in deep architectures for the purpose
of classifying intelligent patterns. Multilayer information processing in hierarchical archi-
tectures is used here for features learning and further learned patterns classification. DL
has been combined even more effectively in industrial components that use vast amounts
of advanced information. It is at the intersection of the research areas of neural networks,
models optimization, pattern recognition, and signal processing. Two main reasons for the
popularity of DL are:

• A significant reduction in hardware costs
• Drastically increased computing capabilities of processors (e.g., graphic processing

units (GPUs)).

Since 2006, researchers have demonstrated the success of DL in many applications such
as computer vision, speech recognition, image feature encoding, semantic classification,
handwriting recognition, information retrieval, and robotics [1–3].

Four key attributes are used to classify a ML paradigm and place it in the context of a
specific application: input representation, source and target distribution, training data, and
loss function (Figure 1) [1–3].
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DL can help push the boundaries of what has previously been possible in the field
of 3D printing optimization. However, this does not automatically mean that traditional
techniques that were gradually developed in the years before DL have become obsolete. It
may be that in some applications, legacy solutions will prove to be more effective, and a
hybrid approach, combining old and new methods and techniques, will have to be used to
solve some problems—these issues still require further research, and this paper is one of
the first to address this complex problem [2–8] Tables S1–S3.

A multilayer perceptron (MLP) is a feed-forward ANN that has a minimum of
three layers:

• Input layer
• Hidden layer
• The output layer.

The neurons in MLP use a non-linear activation function (Figure 2). The main disad-
vantage of the MLP is that it has many parameters due to its full internal connection. This
can result in redundancy and inefficiency.

CNN is also a feed forward neural network. The core element of CNN’s architecture
is the convolution layer, consisting of a set of learning filters. In CNN hidden layers, the
convolution, and linking functions are usually used instead of using the normal activation
functions (Figures 2 and 3).
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Adaptive process control and sensor fusion can be an important part of smart manu-
facturing [9]. ML can be divided into:

1. reinforcement learning:

• Q-learning
• Deep Q-network

2. Supervised learning:

• Regression (neural networks, decision trees, ensembles methods, linear, non-
linear (GLM logistic)

• Classification (naive Bayes, k-nearest neighbors–kNN, discriminant analysis,
support vector machines—SVM)

3. Unsupervised learning:

• Autoencoders
• Clustering (k-means, hierarchical, neural, Gaussian, hidden) [4].

Main ANN, CNN, DBNN architectures are presented below (Figure 4).
The many methods use various algorithms for implementation, but ANN and SVM

are the most popular techniques to implement the ML paradigm. DL is an extended version
of supervised learning. CNN and Deep Belief Network are two powerful techniques that
can be used to solve various complex problems using DL. DL platforms can also leverage
engineering features when learning more complex representations that engineering systems
typically do not have. It is absolutely clear that there has been insufficient progress in the
development of deep ML systems. One of the most common decision-making tasks in
human activity is classification. This classification problem arises when an object must be
assigned to a predefined class based on a number of observed attributes associated with
that object. Many problems in business, science, industry, and medicine can be treated
as such classification problems. Examples include bankruptcy prediction, credit scoring,
medical diagnosis, quality control, handwriting recognition, and speech recognition.
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2.2. Optimization of Solutions

3D printing material features, limitations in the fabrication of complex geometries,
and processing parameters have significant effects on the performance of 3D-printed parts
(and possibly their therapeutic effect), so it is necessary to optimize these parameters which
constitute a difficult task. The idea of optimizing 3D printing and its control systems is key
for the development of this group of technologies by relying on new 3D printing technolo-
gies, the acquisition and processing of control signals, their classification and interpretation,
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novel mechanical properties of materials (including programmable strength in different
directions and ease of disinfection), and automation of their use in 3D printing (includ-
ing multi-material printing). AI/ML-based tools can be utilized in different simulation
environments. The so-called batch production systems allow for quick product creation
and easy modification through recipe amendments—the modifications are made by a tech-
nologist without the involvement of programmers. Batch production systems are suitable
for all applications where there is mixing and thermal, pressure or chemical processing
of many components to obtain a finished product, e.g., for the chemical, pharmaceutical,
and food industries. The system itself takes care of the availability of equipment and raw
materials needed for production by checking the possibility of fulfilling orders, and if this
is not possible, it informs the employees. The production process simulator is a complete,
virtual model of a factory with an accurately reproduced production process (a so-called
digital twin)—a practical implementation of the idea of Industry 4.0. The digital process
simulator makes it possible to check the correct functioning of the entire system before
it is implemented in the facility. This makes it possible to control barriers, dependencies,
and production processes step-by-step without the risk of losses resulting from wasted
material, poor product quality or installation damage. This reduces start-up time: even
from several weeks to a few days.

3. Materials and Methods
3.1. Data Analysis and Computational Model

The main objective of this study was to compare the optimization of 3D printing
properties toward the maximum tensile force of an exoskeleton sample based on two
different approaches: traditional ANNs and DL based on convolutional neural networks
(CNNs). We want to have a discussion on whether the familiarity with classical ANN
optimization techniques should be retained and whether and how it is worthwhile to
combine the two sides of optimization (traditional ANN and DL).

3.2. Analyzed Data Sets

For testing of the two computational approaches presented below, five 3D-printed
structures (a set of exoskeleton parts of different sizes) were prepared using the FDM
technique and checked by the expert for mastering the correctness of the technology and
the absence of defects. Examples of the 3D-printed parts are presented in Figure 5.
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Figure 5. Tested parts of exoskeleton.

The Cura 0.1.5 and SLICER software (3D Ultimaker, Utrecht, The Netherlands), and
fused filament fabrication (FFF) technology were used in this research to create and 3D
print the aforementioned parts of the exoskeleton. Slicing software determined a way to
decompose the digital 3D model into layers for printing by an FFF printer. This FFF printer
uses a particular sequence of operations to print:

• First, depending on the type of printer, the nozzle, the print bed or both move while
the plastic is being extruded

• Simultaneously, the heated nozzle ejects molten plastic, and deposits it in thin layers,
one on top of another, layer-by-layer, forming the shape of the whole 3D printed object

• The aforementioned filament layers fuse together due to the thermal fusion bonding
occurring between the individual layers, to create a solid part (after cooling down).
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To measure the maximum tensile force of the exoskeleton samples, the tests consisted
of subjecting each sample mounted in the grips of an INSTRON 5966 testing machine
(Instron, High Wycombe, UK) to a monotonically increasing tensile load with a travel
speed of the piston of the testing machine of 0.2 mm/s. The tests were carried out at a
temperature of 21–23 ◦C and 55% air humidity. During the test, the instantaneous values
of the loading force and displacement of the grip of the testing machine were measured
until the sample cracked and completely detached.

Balancing the technical requirements with user safety constraints requires analysis to
move from the initial stages of the project.

List of optimized parameters for 3D printing is shown in Table 1.

Table 1. Optimized parameters for 3D printing.

Parameter Unit

Material choice (PLA/PLA+) -
Layer height mm

Shell thickness mm
Bottom thickness mm

Top thickness mm
Fill density %
Print speed mm/s

Bed temperature ◦C
Printing temperature ◦C

Second nozzle temperature ◦C

3.3. Testing Procedure

First, the obtained data were analyzed using the ordinary ANN algorithm, and then
using DL (CNN), whose task was to enhance the contrast between changes in the 3D print
as a result of the material features and identification of selected optimized parameters.

It should be mentioned that a key condition for the replication of our study may be
appropriate selection of the used PLA material, its storage, preparation, and then the same
procedures with the 3D-printed objects. We are aware that the influence of microstructure
and atomic defects on the properties of the materials used and printed objects is assessed
as strong.

The data served as the source of the variables for training ANN and CNN, respectively.
The above-mentioned data has been divided into two sets: training and testing as follows:

• The training set was used to identify systematic errors and network weights during
their learning

• The testing set was used to calibrate, prevent network overtraining, and measure and
compare the ANN and CNN performance.

3.4. Traditional Approach

To optimize the 3D printing parameters in the traditional way, we used a three-layer
feed-forward artificial neural network (ANN) built and trained in the MATLAB environ-
ment with Neural Networks Toolbox (version R2021b, MathWorks, Natick, MA, USA).
Multi-layer perceptron (MLP) proved to be beneficial to optimize the process parameters
in the FFF technique [2].

We used:

• Back-propagation (BP) algorithm—a popular gradient-based local search
optimization technique

• Naive initialization technique
• Neural network weights preset instead of setting the aforementioned scales to small

random numbers to avoid a slow error convergence rate, being trapped at local
minima, etc.
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• Optimization of the connection weights of the MLP set to minimize the error function
(i.e., average mean square error (MSE) between the target and actual outputs averaged
over all training examples).

The structure of the used ANN is shown in Figure 6 and Table 2.
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Table 2. MLP network model for diagnostic measures.

NS AH AO

5-20-10 Sigmoid Sigmoid
where: NS—structure of ANN; AH—activation function in the hidden layer; AO—activation function in the
output layer.

All of the layers of the ANN contained neurons with the same sigmoid activation
function (Table 2).

3.5. Deep Learning Approach

To optimize the 3D printing parameters in a deep learning way, we used a four-layer
convolutional neural network (CNN) built and trained in the MATLAB environment with
Deep Learning Toolbox (version R2021b, MathWorks, Natick, MA, USA).

DL is used in the field of digital data processing to solve problems that are impossible
or difficult to solve by traditional CI methods (e.g., detection, classification, segmentation,
etc.,), usually with super-human accuracy. We provided here a comparison of simulations
on a traditional and deep ANN using the same data in an attempt to answer: from what
level of complexity of the system and its description increased calculation effort in deep
ANN turns. That is to say: when do we use DL and why? As DL methods, we have used
convolutional neural networks (CNNs), which improve the prediction efficiency in most
cases by using large amounts of data and abundant computational resources, and push
the boundaries of what was possible before, both by humans and traditional CI systems.
This is due to the fact that questions have arisen in recent years: does greater use of DL
make traditional CI techniques obsolete, or is there still a need to research and develop
the study of traditional CI techniques or perhaps even to combine them with DL in the
form of hybrid systems? There are still some tasks where traditional CI techniques with
global properties are a better solution, especially when considering computing power, time,
accuracy, and the characteristics and quantity of the inputs, as far as their application in
the Internet of Things (IoT) and mobile solutions is concerned. We compared traditional
and deep simulations on the same 3D printing data in an attempt to answer the question:
what level of system complexity and its description returns DL’s increased computational
effort? The result of the study is to be a suggestion: when should we switch to DL in the
optimization of 3D printing and with what calculation processes parameters? The structure
of the above-mentioned network is shown in Figure 7 and Table 3.
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Table 3. CNN network model for diagnostic measures.

NS AH1 AH2 AO

5-20-20-10 Sigmoid Sigmoid Linear
where: NS—CNN structure; AH1—activation function in hidden layer 1; AH2—activation function in hidden
layer 2; AO—activation function in the output layer.

Almost all layers of the network contained neurons with the same sigmoid activation
function, but the Output layer contains linear neurons that provide the easy-to-compare
cost function: Gaussian cross-entropy (MSE) (Table 3).

Selection of the functions performed by the hidden layers in the CNN is key for
the course of the learning process. The following are possible problems with restricted
functions (sigmoidal and hyperbolic tangent) in the hidden layer: unstable gradient, thus
learning can get stuck when the feature is saturated.

4. Results

After training and testing the ANN and CNN networks, the results, i.e., the classifica-
tion accuracy and (R)MSE coefficients, showed that traditional ANN was able to minimize
the MSE for the data in the training set to very small values (0.01), made it quicker than
CNN, but with lower exactness (Figures 8 and 9, Tables 4 and 5).
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Table 4. Selected ANNs quality assessment.

Network Name Quality
(Learning)

QUALITY
(Testing)

MLP 5-20-10 0.9471 0.9676
CNN 5-20-20-10 0.9577 0.9721

Table 5. (R)MSE values for used neural networks.

Network Name (R)MSE

MLP 5-18-10 0.01
CNN 5-20-20-10 0.001

The (R)MSE value as a function of the number of epochs decreased faster in the
conventional ANN network (Figure 8).

Compared with the results from the traditional ANN approach, optimization based on
DL decreased the speed of the calculations by up to 1.5 times with the same print quality,
increased quality (both learning and testing), and decreased MSE, and unique formulas and
printing parameters not found previously through trial-and-error approaches were also
identified. The longer computation time is the result of the more complex CNN structure
(Tables 4 and 5). Our results indicate that DL is an effective tool with the potential for
broad application for planning and optimizing of materials features in 3D printing. CNN
has the potential to solve more complex computational tasks; thus, the DL algorithm. It
can more quickly predict the behavior of complex physical systems using sparse data
sets through integration of physical modeling. The aforementioned shorter time and
properties may be increasingly important in the future when it will be necessary to apply
the most powerful computational solutions to the most complicated 3D printing projects for
their optimization.

Higher values of the quality (learning) and quality (testing) observed in CNN
(Table 4) reflected CNN’s better ability to infer from the collected data for the training and
testing sets.

The resultant optimized 3D of the ten printing features established owing to the
CNN-based analysis are presented in Table 6, and the optimal tensile force of the selected
exoskeleton part can be seen in Figure 10.
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Table 6. Optimal parameters for 3D printing.

Parameter Optimal Value

Layer height [mm] 0.2
Shell thickness [mm] 1.2

Bottom thickness [mm] 2
Top thickness [mm] 2

Fill density [%] 40
Print speed [mm/s] 70

Bed temperature [◦C] 55
Printing temperature [◦C] 215

Second nozzle temperature [◦C] 220
Maximum tensile force [N] 2112.2
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Optimal tensile forces estimated at 2122.2 N can practically be compared only to the
hand grip strength in the exoskeleton, estimated at 20–60 N, while the grip strength of the
ill person may be 50% lower.

In the 3D-printed exoskeleton, material considerations are very important to the
design, safety, and usability of the exoskeleton. Optimization requires balancing the many
features of the exoskeleton, but AI support can play a key role in this, making the process
easier and faster, increasing production efficiency, and the convenience and safety of the
end product.

5. Discussion

Our results indicate that the proposed data analysis method is highly effective for
optimizing sample parameters, regardless of their shape and size (including depth). Appli-
cations of 3D printing have significantly increased in recent years, its broad application
in health care is still in progress, especially accompanied by novel AI-based optimization.
The use of DL in medical 3D printing parameter selection systems is not obvious, and in
rehabilitation engineering, it is not common. Applications of DL in medical science and
clinical practice using 3D printing are cited below for comparison.

Our results confirmed that 3D printing with FFF technology based on the existing
PLA/PLA+ material can be optimized for the effective printing of the usable/functional
part of the exoskeleton and its strength parameters. 3D printing of exoskeleton elements,
and in general, 3D printing for biomedical purposes, is already a complicated issue, because
the materials and ready-made elements used, in addition to the specified mechanical
and chemical properties, should be biocompatible. It seems that the direction of further
research has already confirmed the concept of artificial and intelligent material optimization
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of 3D printing for biomedical purposes by developing specialized filaments adapted
to professional biomedical applications, and then filaments with designed properties
corresponding to the needs of the body, its use in combination with living tissue, body
fluids, etc.

In addition, the coexistence of technologies and materials in 3D printing makes it
possible to relatively quickly and cheaply produce polymer, metal, ceramic, and even
composite/multi-material objects, which are often impossible or too expensive to produce
using conventional manufacturing technologies, with unique mechanical, thermal, and
dimensional properties.

The advantage of the proposed research is a holistic approach, not only regarding
the selection of the material for 3D printing, but also the choice of technology and taking
into account the requirements of a medical device (patient, therapy, therapist). This
approach can be a good starting point for building the entire environment connecting
software for designing medical devices (MDR, ISO 13485), selecting parameters based on
pre-programmable templates and analysis of artificially intelligent requirements, and then
optimization of printing, fitting or even necessary corrections.

The main limitation of the study is its focus on a specific exoskeleton solution, which
is high technology in itself, perhaps unattainable for some scientists trying to replicate. It
seems, however, that the proposed solutions can be easily adapted to simpler 3D printed
medical solutions, e.g., orthoses.

The gap in the contemporary scientific and professional literature concerns not only
the optimization of artificial intelligence in the selection of material properties for 3D
printing, but also the entire process of diagnostics, selection, and adjustment of 3D printed
rehabilitation equipment as part of personalized medicine. This does not mean a higher
effectiveness of healthcare, but this is because any individual approach is difficult to apply
on a mass scale, especially to non-homogeneous groups of patients.

This paper contributes to the existing body of literature because this article is only the
beginning of a whole series of works devoted to changing the approach to the rehabilitation
supply industry as part of Industry 4.0, and maybe even Clinic 4.0, based on the wider use
of artificial intelligence, preventive medicine, and personalized medicine. The challenge
is multi-screen printing and the programming of the life cycle of medical devices to best
serve patients.

Many different variants of processes, technologies, and materials and their improve-
ments must be considered, creating many novel subtechnologies and possibilities in order
to select those that provide new, demanding product features while maintaining the accu-
racy and speed of production, and the quality of the printed object (final product). Materials
whose parameters/functions change with the structural parameters, e.g., with depth, i.e.,
like in living tissue, constitute an additional challenge.

Hybrid methodologies can help improve 3D printing performance and solve problems
that are not suitable for DL. Combining traditional techniques with profound learning
may be popular in new areas for which profound learning models have not yet been
fully optimized.

The ability of AI-based systems to monitor the state of knowledge and engineering
practice, search/generate new solutions (including alternatives to existing ones), assess
progress, dynamically modify the characteristics/parameters of design, planning, pro-
duction, and recycling (including cycle planning) is becoming increasingly important.
Sustainable development requires not only taking into consideration monitoring of life cy-
cle of products but also problem solving approach based on accurate sensors for collecting
data, aggregation, inference, and prediction for greater accuracy.

DL is quite often used in 3D printing optimization, including medical applications.
3D printing enables the construction of affordable, patient-specific, anatomically accurate
physical models which are more convenient and realistic during simulations of complex
(neuro)surgical approaches in a safe didactic environment. All stages of the surgical pro-
cedure can be simulated: from positioning and exposure to deep microdissection, taking
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into account the complex anatomy, working angles, and pathoanatomical relationships.
Thermoplastic polymers with different properties can be used to reflect the visual and
tactile responses of bones, neurological, and vascular tissues [10]. A personalized 3D
model can characterize e.g., a patient’s individual thyroid lesions, not only for medical
professionals, but also for the patients and their families. This model can be an effective
tool to improve patient understanding and satisfaction. A U-Net-based DL architecture and
a 3D mesh modeling technique were used to produce a personalized 3D model of a thyroid
gland. The average 3D printing time was long: over 4 h for each patient), but the average
production price was only USD 4.23 for each patient. The size, location, and anatomical re-
lationships of the tumor and thyroid gland could be represented better and more accurately,
and the group of patients receiving personalized 3D printed models showed significant
improvements in all four categories: general knowledge, benefits and risks of surgery, and
satisfaction. All patients who received their 3D model found it helpful in understanding
the disease, surgery, and possible complications, as well as generally satisfying [11]. DL
was used to automatically measure the left ventricular (LV) ejection fraction and also to
automatically measure the LVEF using two-dimensional echocardiography (2DE) images
for different clinical centers, ultrasound machines, and heart disease phenotypes. A U-
Net-based DL algorithm (DPS-Net) was used based on 36,890 frames of 2DE taken from
340 patients, and the two-plane Simpson method was applied to calculate the LVEF. The
high performance of the DPS-Net in LV detection and LVEF measurement in heart failure
with several phenotypes is shown. This was observed in a large dataset, i.e., DPS-Net is
highly adaptive across different echocardiographic systems [12]. Computed tomography
(CT) image reconstruction of a life-sized 3D-printed chest phantom placement of tissue
mimicking inserts was performed using a commercial reconstruction algorithm (HDFoV)
and a novel DL-based approach (HDeepFoV). Reconstruction of images outside the field
of view of the CT scanner (e.g., in patients with obesity) requires use of extrapolated data.
The DL-based algorithm showed much better performance in quantitative assessments
based on 3D-printed phantom data, and in qualitative assessments of patient data [13].

Using low-powered AI acceleration chips, CNN also works interactively on mobile
devices (even an iPhone 11 Pro), offering real-time performance in mobile headsets, virtual
and augmented reality [14].

3D printing has emerged as a potential way to produce general and personalized
IUDs. To ensure controlled release of contraceptive hormones, Monte Carlo simulation
and DL models based on ANN, could prove effective in developing precise contraceptive
delivery systems, improving the quality of life for women worldwide [15]. Automated face
recognition technology based on DL has achieved high accuracy in diagnosing various
endocrine diseases and genetic syndromes. A CNN-based facial diagnostic system achieved
a high accuracy of 97%, and the results of a prospective study demonstrated the application
value of this system in Turner syndrome screening are promising [16].

The recent development of 3D printing has taken hold in healthcare and has led
to clinical applications from anatomical models, through devices supporting diagnosis,
treatment, rehabilitation, and care, to bioink 3D printing. Although much research to
date has focused on materials, designs, processes, and products, little attention has been
paid to efforts to enable their commercialization and rapid implementation into clinical
practice, including addressing important issues such as reproducibility, quality control,
and meeting regulatory requirements. Increasing process uniformity, consistent design,
development, and manufacturing will require automation and the use of flexible artificial
intelligent information systems, standardization of facilities, equipment, and processes
in therapeutic and non-therapeutic applications [17]. Automated pathology detection
and 3D vertebral reconstructions based on DL-based labeling and vertebral segmentation
methods for biomechanical simulation and 3D printing facilitate clinical decision-making,
surgical planning, and tissue engineering [18]. The integrated approach addresses ma-
terials processing, fabrication of engineering components and structures including: 3D
printing, thin-film and multi-layer structures to obtain coupled mechanical and functional
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properties. DL solutions are trained to extract the elastoplastic properties of metals and
alloys from indentation results using multiple datasets to achieve desired levels of accuracy
improvement [19]. High levels of engagement in content-intensive subjects can be difficult
to achieve. The majority of students considered 3D-printed models of the skeleton and its
parts to be a resource that helped them to improve their study habits, achieve greater confi-
dence, and improve their academic performance [20]. Simulation methods are increasingly
used to improve medical skills, allowing trainees/practitioners to practice in a risk-free,
reproducible environment. To this end, after segmentation of anatomical features using a
3D printer, several realistic 1:1 scale anatomical models can be produced containing all of
the relevant structures, including vascular [21].

Careful surgical planning can determine the success or failure of a whole surgical pro-
cedure. A full understanding of the complex spatial relationship between the boundaries of
a tumor and the surrounding healthy tissues enables accurate surgical planning. The use of
3D printing to produce anatomical models can be introduced into standard clinical practice,
but requires incorporation of best practice and description of a workflow and methodol-
ogy used to standardize affordable, realistic preoperative virtual and physical simulation
that is cost-effective [22]. The study group found the 3D-printed model of a cranial fossa
significantly more useful compared to the half skull used by the control group [23]. This
approach can be accelerated by optical neural networks, combining wavelet optics with
DL methods, demonstrating all-optical inference and generalization to subclasses of data.
Combining native or designed dispersion of different material systems with a DL-based
design strategy, broadband diffractive neural networks will help to design light-matter
interactions in 3D, allowing the creation of task-specific optical components (optically
deterministic tasks or statistical inference) [24].

The process of using CAD (Computer Aided Design), Pro/Engineer (Pro/E) software,
and 3D printing to construct physical products follows three consecutive required steps:

1. 2D drawing
2. 3D construction of the implant
3. 3D printout for physical printing.

Thanks to the integration of clinical imaging, digital templates and 3D printing, the
final prints of, for example, implants can be adapted to the needs of an individual patient,
both in terms of shape and material properties [25].

AI should be considered as part of a comprehensive set of solutions, linked to com-
prehensive specialist education, diagnosis, treatment, rehabilitation and care, 3D printing
and virtual/augmented reality technologies and telemedicine, including as part of a co-
herent therapeutic and business model that can be brought to the healthcare market in the
future [26].

Even middle school students are already able to tinker in a virtual world using 3D
design software and then tinker in the real world using printed parts, fostering staff
development in new specialties [27]. 3D printing allows the creation of typical cyber-
physical systems for mass customization, not only in rehabilitation, but also, for example,
in dentistry. Short “series” and complex shapes make it necessary to compensate for errors,
and doing this manually is neither easy nor economical, hence the need for automatic error
compensation. For these reasons:

1. We obtain the shape using technologies such as 3D scanning
2. We use 3D DL to train a deep neural network for a specific task (printing an orthosis

or a dental crown)—the CNN can learn the deformation function owing to the large
amount of data used for training.

3. We verify the performance of the neural network:

• Translation
• Scaling up
• Scaling down
• Rotation.
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The accuracy achieved is sufficient with low hardware and software costs [28].
Endoscopic navigation systems look for integration of big data with multimodal

information (i.e., from CT scans, magnetic resonance imaging, ultrasound images, and
even external trackers) with respect to anatomy/physiology, patient pathology, controlling
the movement of medical endoscopes and surgical instruments, and guiding the surgeon’s
actions during intervention (including haptic coupling i.e., transferring tissue properties
to the endoscope’s cusps). This allows the introduction of new techniques and promising
directions for endoscopic navigation, including 3D printing reconstruction and the creation
of teaching aids to support medical simulation [29]. These solutions can be integrated, e.g.,
with microfluidic devices as a new, low-cost, and convenient platform for, e.g., bacterial
cell culture, antibiotic sensitivity, using DL-based vision data regression for robust data
reporting [30].

Guidelines and ideas for future research constitute an important impact. In our
opinion, optimization of the materials used should be a key part of future medical 3D
printing. Novel materials and their pre-projected features may be better tailored to the
patient’s needs. The most promising direction for further research is computational analysis
and optimization of material and energy suitability (taking into account both efficiency and
environmental-friendliness criteria) combined with defect detection and classification as
part of quality control in line with the Industry 4.0 paradigm. A signal analysis algorithm
and a multi-label classifier based on a deep convolutional neural network (DCNN) trained
on the results from active infrared thermography (IRT) has already been applied to evaluate
the condition of 3D-printed structures [31]. It should be noted that cracks and pores are also
common defects in metal parts produced by 3D printing, hence the need for mass defect
detection and classification by segmenting images (still and moving—as in a production
line for monitoring the 3D printing process in situ) with defects. This is achieved with
almost 100% accuracy using a simple CNN model [32]. A review of DL methods in defect
detection highlighted:

• The use of ultrasonic testing, filtering, DL, machine vision, and other technologies
used to detect defects

• Classification of product defects into categories in different products
• Functions and characteristics of existing equipment used for defect detection, related

to high precision, high positioning, fast detection, small objects, complex backgrounds,
hidden object detection and object association

• And only then can DL methods be used to optimize production processes to avoid
these defects [33].

Research on a data-driven ML model for predicting the performance of polyhydrox-
yalkanoates (PHAs) yielded an ML model using a deep neural network (DNN) to predict
the glass transition temperature (Tg) of PHA homo- and copolymers. The DNN model
performed better here than a support vector machine (SVD), the nonlinear ML model and
the least absolute shrinkage and selection operator (LASSO), a sparse linear regression
model. Compared to the commonly used ML models using quantitative structure-property
relationships, this model does not require an explicit descriptor selection step but shows
comparable performance [34]. High defect recognition accuracies by deep networks are
not uncommon: an image recognition technique based on convolutional neural networks
for multiple concrete defect recognition (CMDnet, 1981 types of concrete surface defects)
showed a defect detection accuracy of 98.9% [35]. Verifying the usefulness of DNN and
statistical modeling in predicting the strength of bone cements with defects resulting from
the introduction of contaminants (blood, saline) into the cement at the stage of its prepa-
ration may play an important role in the initial, qualitative assessment of the effects of
surgery and in limiting errors resulting in the failure to maintain the required mechanical
parameters and, consequently, patient dissatisfaction [36]. A concurrent neural network
(ConCNN) with different image scales performs better than other approaches, offering
98.89% classification accuracy with a latency of only about 5.58 ms [37]. Deep ML models
allow for material- and energy-efficient designs with a lower environmental impact, e.g.,
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for different strength classes, including optimal recycled content with the lowest cost and
environmental footprint [38]. DL-based models also perform well for nanocomposites
despite their non-linear nature of processing parameters and the difficulty in predicting the
desired features using the conventional regression approach [39]. No doubt it is possible to
generalize the DL methodology to a more advanced, multi-material analysis [40], thus we
encourage other scientists to develop this area of research and industrial practice. Increas-
ingly many new challenges toward the support of 3D printing by AI are posed not only by
predictive operations [41–43] and process control [44] under the Industry 4.0 paradigm,
but also in terms of eco-design [45] related to the policy of sustainable development and
protection of our planet’s potential.

According to the newest research and publications, we can see that the current research
is leading in the proper direction compared to the newest studies [46,47].

6. Conclusions

Additive manufacturing of medical devices, including soft materials, requires opti-
mization of the materials themselves, sometimes printable inks, raw materials formulas,
and 3D printing processes that must balance a large number of variable but highly corre-
lated factors. New 3D printing materials and processes may be as important in rehabili-
tation as technologies such as biosensors, robotic devices, myoelectric control methods,
and advances in brain-machine interaction. New 3D printing materials could be the next
breakthrough in patient-tailored devices, but should be cost-effective and useful with
semi-automated, AI-assisted matching and decision support.

1. Experimental practices are time- and cost-intensive so the application of AI-based
optimization may be a quicker and cheaper solution.

2. PLA-based 3D printing can be optimized to successfully print a utility/functional
part of an exoskeleton. Optimization powered by AI/ML can play a key role in
the 3D printing process, increasing the efficiency and safety of the printed object
(end product).

3. The DL-based approach will become the leader in 3D printing optimization as the
complexity of the printed objects increases.

4. Compared with the results from the traditional ANN approach, optimization based
on DL decreased the calculating speed by up to 1.5 times with the same print quality,
increased quality (both learning: 0.9577 and testing: 0.9721), decreased MSE (0.001),
and a set of printing parameters not previously determined by trial and error was
also identified.

5. With the current complexity and type of computation, there is no need to combine
two optimization solutions (traditional ANN and DL).
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36. Machrowska, A.; Szabelski, J.; Karpiński, R.; Krakowski, P.; Jonak, J.; Jonak, K. Use of deep learning networks and statistical
modeling to predict changes in mechanical parameters of contaminated bone cements. Materials 2020, 13, 5419. [CrossRef]

37. Liu, Y.; Yuan, Y.; Balta, C.; Liu, J. A light-weight deep-learning model with multi-scale features for steel surface defect classification.
Materials 2020, 13, 4629. [CrossRef]

38. Nunez, I.; Marani, A.; Nehdi, M.L. Mixture optimization of recycled aggregate concrete using hybrid machine learning model.
Materials 2020, 13, 4331. [CrossRef]

39. Zazoum, B.; Triki, E.; Bachri, A. Modeling of mechanical properties of clay-reinforced polymer nanocomposites using deep neural
network. Materials 2020, 13, 4266. [CrossRef]

40. Thomas, A.; Durmaz, A.R.; Straub, T.; Eberl, C. Automated quantitative analyses of fatigue-induced surface damage by deep
learning. Materials 2020, 13, 3298. [CrossRef]
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