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Though cancer therapeutics can successfully eradicate cancerous cells, the effectiveness
of these medications is mostly restricted to several deleterious side effects. Therefore, to
alleviate these side effects, antioxidant supplementation is often warranted, reducing
reactive species levels and mitigating persistent oxidative damage. Thus, it can impede the
growth of cancer cells while protecting the normal cells simultaneously. Moreover,
antioxidant supplementation alone or in combination with chemotherapeutics hinders
further tumor development, prevents chemoresistance by improving the response to
chemotherapy drugs, and enhances cancer patients’ quality of life by alleviating side
effects. Preclinical and clinical studies have been revealed the efficacy of using
phytochemical and dietary antioxidants from different sources in treating chemo and
radiation therapy-induced toxicities and enhancing treatment effectiveness. In this context,
algae, both micro and macro, can be considered as alternative natural sources of
antioxidants. Algae possess antioxidants from diverse groups, which can be exploited
in the pharmaceutical industry. Despite having nutritional benefits, investigation and
utilization of algal antioxidants are still in their infancy. This review article summarizes
the prospective anticancer effect of twenty-three antioxidants from microalgae and their
potential mechanism of action in cancer cells, as well as usage in cancer therapy. In
addition, antioxidants from seaweeds, especially from edible species, are outlined, as well.
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INTRODUCTION

Oxygen is essential to aerobic life conditions and represents the main driving force for the
maintenance of cell metabolism and viability. Simultaneously, oxygen also has a potential
hazard due to its paramagnetic characteristics stimulating the formation of partially oxidized
high reactive components, known as reactive oxygen species (ROS) (Francenia Santos-Sánchez
et al., 2019). Though the metabolism of oxygen produces ROS in living organisms as by-
products, they have a significant influence on cell signaling and redox homeostasis. Sometimes,
ROS levels can be increased upon contacting with exogenous or endogenous sources, rendering
a stress condition in the cell that is called oxidative stress. In such a state, the ROS level reaches a
toxic threshold, and it manages to overcome the antioxidant system of the cell, thus escapes to
elimination and remain in the cell. (Raza et al., 2017). These ROS give rise to negative oxidative
stress that engenders some drastic changes in cellular function and metabolism through
altering cellular signaling pathways, initiating genomic instability, or activating
immunosuppression, which leads to carcinogenesis (Morry et al., 2017). Cancer cells are
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more sensitive to therapeutic drugs that produce excessive
amounts of ROS or impair ROS scavenging capacity of cells,
which provokes apoptosis (Mut-Salud et al., 2015).

Among a variety of treatments, chemotherapy remains the
first choice of cancer treatment. Though drugs used in
chemotherapy can successfully eliminate fast-growing
cancerous tissues, these drugs can affect the mucous
membranes of various organs. As a consequence, several side
effects are noticed in cancer patients, such as anaphylaxis, a
different type of cytopenia, toxicity to liver, heart, nephron, ear,
and also nausea, vomiting, pain, diarrhea, alopecia, anorexia,
cachexia, inflammation in mucous membranes, and asthenia
(Oun et al.,2018). To compensate for these adverse effects,
antioxidant supplements are often prescribed, which can help
to ameliorate side effects while not affecting treatment efficacy
(Ambrosone et al., 2019). Cancer survivors often consume
vitamins or minerals supplements, natural plant-based
products, or herbal medicines to alleviate the therapy-related
side effects. The most common recommended antioxidants are
vitamins, polyphenols, and carotenoids. Edible vegetables and
fruits are an excellent reservoir of different antioxidant
phytochemicals with varied antioxidant capacity and it has
been recommended that intake of >400 g fruits and vegetables
can prevent certain types of cancer (Miller and Snyder, 2012;
Chester et al., 2019; Wall-Medrano and Olivas-Aguirre, 2020).

Besides these plant products, microalgae can be an excellent
alternative producer of antioxidant compounds. Microalgae are
often considered a mother lode of high value pharmaceutically
important metabolites, like carotenoids, polyphenols, fatty acids,
phycobiliproteins, vitamins, which are the outcomes of defense
strategies of microalgae against stress factors (Chu, 2013). These
bioactive compounds have proven antioxidant capability as well as
in vitro and in vivo anticancer property as well. For example,
microalgal tetraterpenoids are a good source of antioxidants and
also have shown promising antitumor activity in different cell lines
(Ferdous and Yusof, 2021). The activity of microalgal antioxidants is
commensurate with or sometimes higher than that of plant or animal
origin, which makes them a good supply of nutraceuticals for human
health (Sansone and Brunet, 2019). Microalgae are getting more
attention to exploit in pharmaceutical usage due to having a diverse
and wide array of metabolites, accelerated growth rate, ability to grow
to disregard the seasonal variation or extremity, not requiring
cultivable land and supply of fresh water, and most importantly,
not affect food crops (Khan et al., 2018). Microalgae and their
metabolites, like astaxanthin, DHA are used popularly as a
supplement. Chlorella and Spirulina are the two most commonly
consumed healthy foods in the forms of powder, tablets, or capsules.
Currently, Tetraselmis is joining the race, which is consumed as an
antioxidant supplement. Microalgae-enriched food products are also
a good source of nutraceuticals (Koyande et al., 2019). Additionally,
seaweeds are also a good source of antioxidant molecules. Among
these bioactive, fucoidans, phlorotannin, laminarin, and terpenoids
are widely studied for their antioxidant activity (Gupta and Abu-
Ghannam, 2011). Moreover, many Asian countries, like China,
Indonesia, Japan, Korea, Malaysia, Thailand, and the Philippines,
are the leading producers and consumers of edible seaweeds that
contain these antioxidants in high amounts (Ferdouse et al., 2018).

However, antioxidant phytochemicals found in these algae have
been claimed to exhibit chemo-preventive role in normal cells by
suppressing radiation or chemotherapy-induced oxidative stress via
activation of the antioxidant defense system in cells, prevention of
ROS mediated genomic instability, and inhibition aberrant cell
proliferation, metastasis, and angiogenesis. On top of these roles,
in combinationwith chemotherapeutic agents, antioxidants can act as
therapeutic agents. They can boost oxidative stress in tumor cells,
disable transcription factors, switch on apoptosis-related signaling
pathways, and impede signaling pathways involved in cell
proliferation (Chikara et al., 2018). Nevertheless, there are still
some controversies in the utilization of antioxidants in cancer
therapy. This review clarifies reactive species as well as oxidative
stress, and their roles in cancer development. Then, the classification
and mode of action of antioxidants have been explained briefly.
Finally, some well-known microalgal and seaweed antioxidants and
their potential roles in cancer therapy are described.

REACTIVE SPECIES AND OXIDATIVE
STRESS

Free radicals contain one or more unpaired electrons in their atoms’
outermost shell, which makes them strikingly reactive and more
unstable. They are formed in our body naturally as byproducts during
biological processes or from exogenous sources and can potentially
harm cells. (Shrivastava et al., 2019). Free radicals are related to
reactive oxygen species (ROS), reactive nitrogen species (RNS),
reactive sulfur species (RSS), reactive carbonyl species (RCS), and
reactive selenium species (RSeS) (Sies et al., 2017). These reactive
species are continuously formed from endogenous and exogenous
sources in our body. Endogenous sources comprise intracellular
organelles, like peroxisomes, mitochondria, and extracellular
components like inflammatory cells (macrophages, eosinophils,
and neutrophils). On the other hand, exogenous sources include
high ionizing radiation, environmental toxins (pollution, allergens,
toxic metals like cadmium, lead, mercury, iron, arsenic, and
pesticides, microorganisms, some drugs, cigarette smoke, alcohol,
and dietary xenobiotics (Pizzino et al., 2017).

Among these reactive species, ROS are widely studied. ROS is
generated in the cytosol by soluble cell components and cytosolic
enzymes, on membranes of mitochondria, in the peroxisomes, in
the endoplasmic reticulum, on the plasma membrane of the
dysfunctional cells, and in the lysosomes (Di Meo et al., 2016).
However, ROS is of two classes; one type consists of radicals with
an unpaired electron in their outermost shell (superoxide anion,
nitric oxide, hydroperoxyl, and peroxyl radicals, and hydroxyl
radical); another class comprises non-radical ROS, and these ROS
are without unpaired electron but still has the chemical reactivity,
even can be changed to radical ROS, e.g., singlet oxygen, ozone,
hydrogen peroxide, and hypochlorous acid (Chahal et al., 2018).
In cell signaling, ROS can serve as secondary messengers, playing
an essential role in a range of cellular processes by stimulating
different signal transduction pathways that involve gene
activation or cellular growth (Klaunig and Wang, 2018).

ROS reacting with nitric oxide gives rise to RNS and RSS, with
thiols (Corpas and Barroso, 2015; Mut-Salud et al., 2015; Sies
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et al., 2017). RNS, nitrogen-containing oxidants, consist of nitric
oxide (NO•) and nitrogen dioxide radical (NO2•), peroxynitrite
(HNO3

−), as well as other oxides of nitrogen. Similarly, reactive
sulfur species (RSS) are sulfur-containing molecules, which
include hydrogen sulfide (H2S), thiols (RSH), persulfides
(RSSH), polysulfides, S-nitrosothiols (RSNO), hydrogen
polysulfides, and sulfenic acids (RSOH), that have essential
roles in the regulation of cellular systems (Xu et al., 2019).

As a notion in redox biology, the term oxidative stress has been
mentioned for the first time in the book entitled “Oxidative
Stress” in 1985. Oxidative stress (OS) occurs when there is a
disproportion between generation and detoxification of RS by the
biological system in cells (Di Meo et al., 2016). According to
Helmut Sie, oxidative stress is “an imbalance between oxidants
and antioxidants in favor of the oxidants, leading to a disruption
of redox signaling and control and/or molecular damage.”
Oxidative stress can exert two-sided actions, classified
according to intensity, as oxidative eustress and oxidative
distress. Low oxidant or reactive species exposure permits
addressing particular targets for redox signaling, essential for
maintaining normal physiology, which is called oxidative
eustress. The basal level of OS augments the defense system
through the expression of antioxidant compounds and proteins,
yielding health benefits. Contrarily, excessive oxidant or RS
challenge leads to disrupted redox signaling, causing
deleterious effect, like macromolecular damage in intracellular

organelles, inactivation of redox regulatory enzymes, or abnormal
cellular proliferation and death, which is termed as oxidative
distress (Niki, 2016; Go and Jones, 2017; Sies, 2020) (Figure 1).
There are different types of oxidative stress which depend mainly
on the generation source, such as nutritional, postprandial,
photooxidative, radiation-induced, reductive, and nitroxidative,
nitrosative, nitrative oxidative stress (Sies, 2019).

EFFECT OF REACTIVE SPECIES AND
OXIDATIVE STRESS ON CANCER CELLS

OS can play an important role in all phases of the oncogenic
process (initiation, promotion, and progression), by activating
different transcription factors, including nuclear factor (NF-κB),
Nuclear factor erythroid 2-related factor 2 (Nrf2), hypoxia-
inducible factor (HIF-1α), activator protein (AP), tumor
protein (p53), β-catenin/Wnt signaling pathway, which helps
in modulating the expression of immune and inflammatory-
related genes and thus triggers carcinogenesis (Saed et al.,
2017). Besides, ROS functions bidirectionally in cancer. It can
be pro- and antitumorigenic. ROS can contribute to cancer
development via a range of cancer signaling pathways, such as
MAPK/AP-1/NF-κB, associated with cancer metastasis and
angiogenesis. ROS can also trigger inflammation by activating
NF-κB, AP-1, HIF-1a, growth factors, inflammatory cytokines,
and chemokine. Conversely, elevated ROS level promotes
oxidative stress-induced cancer cell death by triggering
antitumorigenic signaling (Reczek and Chandel, 2017; Kashyap
et al., 2019). Cancer cells always need to keep an elevated ROS
level allowing the pro-tumorigenic cell signaling without
inducing cell death. Moreover, the ROS scavenging mechanism
is stimulated by tumor cells to maintain ROS levels below the
cytotoxic level (Ilghami et al., 2020).

Role of Reactive Oxygen Species in Cell
Proliferation and Survival
An increase in ROS has been implicated in enhanced cell growth,
proliferation, survival and in the progression of carcinogenesis by
regulating mitogen activated-protein kinase, protein kinase D
(PKD) signaling pathways, transcription factors such as AP, NF-
κB, HIF-1α and also through the negative regulation of
phosphatases and protein tyrosine phosphatase 1B (PTP1B),
epigenetic alterations in transcription factors and tumor
suppressors, Nrf2 and p53, as well as by down-regulating the
expression of E-cadherin tumor suppressor (Galadari et al., 2017;
Moloney and Cotter, 2018).

Role of Reactive Oxygen Species in Genetic
Instability
ROS often act as mediators of DNA damage. When ROS
accumulate cells through its overproduction, they are often
associated with DNA interaction, producing ROS-interacting
modification, such as inter-and intra-strand bindings or
creating DNA-protein crosslinks, yielding altered gene

FIGURE 1 | Oxidative stress and its relation to cancer (Sies, 2019).
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expression. ROS cause DNA damage through oxidizing
nucleoside bases and form DNA lesions, such as the formation
of 8-oxo guanine, that generate DNA double-strand breaks
(DSBs), if unrepaired. ROS accumulation creates
mitochondrial DNA lesions, strand breaks, and finally,
degradation. In addition, increased ROS through the activation
of oncogenes influences the replication stress. ROS can oxidize
dNTPs that can modify polymerase activity, breakdown of
replication forks, and the formation of DSBs, which all
together lead to genomic instability. Moreover, ROS induce
activation of proteins associated with cell cycle checkpoint,
leading to cell cycle arrest. Above all, these alterations of
chromosomes give rise to genetic instability and ultimately
lead to carcinogenesis (De Sá Junior et al., 2017; Srinivas et al.,
2019).

Role of Reactive Oxygen Species in Cell
Death
Increased ROS engender cell cycle arrest, senescence, and
apoptosis. Elevated intracellular ROS production promotes
apoptosis via extrinsic or intrinsic pathways. Moreover, ROS
trigger apoptosis by inactivating or enhancing the ubiquitination
of anti-apoptotic protein, Bcl-2, and by reducing the levels of
apoptosis regulator, Bax, and Bad. On the other hand, ROS can
kill cancer cells through autophagy, an effective defense against
OS damage. ROS cause inactivation of autophagy-related genes
and can inhibit the negative regulator of autophagy (TORC1).
ROS generated in the mitochondrial electron transport chain or
by NADPH oxidases (NOXs), enhance necroptosis. Furthermore,
tumor suppressor protein p53 causes cell death through
ferroptosis (depends on intracellular iron) which is induced by
increased ROS level (Perillo et al., 2020).

Role of Reactive Oxygen Species in
Angiogenesis and Metastasis
In metastasis, tumor cells are circulated from the primary site to
other places in the body via blood and lymph. ROS can cause
metastasis by inducing hypoxia-mediated MMPs (matrix
metalloproteinases) and cathepsin expression. Increased ROS
level may activate the MMP enzymes with the stimulation or
modulation of a myriad number of tumor progression pathways
or metastasis signaling pathways, respectively. Tumor migration
can be caused by ROS providing that they are produced by
activated growth factor receptors and integrin assembly and
with the modulation of signaling kinases. ROS mediate FAK
(cell motility controlling protein) activation, leading to cellular
invasion. Moreover, ROS can activate the actin-binding protein,
cofilin, and thus, help in cell migration.

However, metastasis can be induced by ROS by other
mechanisms also, like proteolytic degradation of
glycosaminoglycan (GAG) and other ECM components. An
increased level of ROS can stabilize HIFα by impeding prolyl
hydroxylases (PHDs) and, thus, VEGF (primary pro-angiogenic
factor) activation, ultimately rendering angiogenesis and tumor
progression (Galadari et al., 2017; Kashyap et al., 2019).

Role of Reactive Oxygen Species in
Chemoresistance
Chemoresistance is a primary cause of treatment ineffectiveness
in cancer. P-glycoprotein (a transporter protein) is a multidrug
resistance protein that involves the removal or efflux of several
anticancer drugs from cancer cells. ROS can upregulate this
protein, leading to chemoresistance and inhibiting cell death
(Galadari et al., 2017).

ANTIOXIDANTS

Antioxidant was first defined by Halliwell et al., in 1989 as “any
substance that, present in low concentrations compared to
oxidizable substrates (carbohydrates, lipids, proteins or nucleic
acids), significantly delays or inhibits the oxidation of the
mentioned substrates” (Halliwell et al., 1992). The term
‘Antioxidant’ denotes that antioxidants are molecules that
work against the activity of oxidants. Antioxidants can be
defined as, chemicals that can inhibit or quench free radicals,
that are formed as natural byproducts in the body during the
biological process, and thus retarding oxidative damage (Chahal
et al., 2018; Khurana et al., 2018).

Antioxidants, which are produced in our body through the
metabolic process, are called endogenous antioxidants.
Antioxidants can also be incorporated exogenously through
foods and dietary supplements, which are called exogenous
antioxidants. Besides, there is also another group of
antioxidants that can be produced synthetically, which are
widely used in the food industry (Mut-Salud et al., 2015).

CLASSIFICATION OF ANTIOXIDANTS

Antioxidants can be classified based on their origin, activity, size,
solubility, and mode of action (Figure 2).

ANTIOXIDANT DEFENSE SYSTEM IN CELL

Antioxidants give protection to the cells through three lines of
defense. The first line of defense includes antioxidants
hindering the formation of new free radicals. Enzymatic
antioxidants such as SOD, CAT, GPx, and reduced
glutathione; metal-binding proteins (ferritin and
ceruloplasmin) and antioxidant minerals such as selenium,
copper, and zinc. The second line comprises antioxidants,
which are involved in scavenging free radicals, and thus
preventing OS. Endogenous and exogenous antioxidants
such as glutathione, albumin, CoQ, flavonoids, carotenoids,
uric acid, and vitamins (A, C, and E) are involved in this group.
Finally, different enzymatic antioxidants are the main player in
the third line of defense, that repair the damaged DNA,
intracellular protein, and other biomolecules. For example,
DNA repair enzymes, proteases, peptidase, lipases,
transferases, etc. (Surai et al., 2003; Mut-Salud et al., 2015).
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EFFECT OF ANTIOXIDANTS IN CANCER
THERAPIES

Cancer is a term used for a cluster of analogous diseases that
causes cells anywhere in the body commence to divide out of
control and start proliferating in the surrounding or even distant
tissues. It is the second-highest cause of mortality globally and
accounts for approximately 9.6 million deaths in 2018 (WHO,
2020). Depending on the type of cancer and the malignancy, there
is a range of cancer treatments, such as surgery, chemo-,
radiation-, immuno-, targeted- and hormone therapy, stem
cell transplant, or a combination of these therapies. Among
them, chemotherapy remains the treatment of choice,
integrated with surgery or other therapies. Commonly used
chemotherapy drugs are the alkylating agents, anthracyclines
(doxorubicin, daunorubicin, epirubicin, idarubicin, aclarubicin,
and pirarubicin), epipodophyllotoxines, platinum-based drugs
(cisplatin, carboplatin, and oxaliplatin), camptothecins, vinca
alkaloids, taxanes, and antimetabolites, which are used for the
treatment of a variety of cancers, such as breast, liver, ovarian,
testicular, bladder, head and neck, lung cancer (He et al., 2018;
Moiseeva, 2019; Ilghami et al., 2020). These drugs can cause more
than 40 specific side effects and are broadly categorized into seven
types, namely cardiotoxicity, hepatotoxicity, nephrotoxicity,
ototoxicity, neurotoxicity, hematological toxicity, and
gastrointestinal toxicity. (Oun et al., 2018). On the other hand,
radiation therapy uses ionizing radiation to kill cells, by
generating ROS, other organic radicals, and lipid peroxidation.
Therefore, radiation induces an increase of free radicals which
damage DNA and ultimately leads to cell death. This elevated
ROS can affect the cellular antioxidant status as well (Mut-Salud
et al., 2015; Ko and Formenti, 2019).

The goal of cancer treatment should be to kill cancer cells
successfully and be attenuating therapy-induced genotoxicity in
normal tissues and detoxifying harmful effects after treatment
should be an additional goal of cancer treatment (Vilimanovich

and Jevremovic, 2019). Therefore, antioxidant supplementation is
often recommended to neutralize the effects of these
chemotherapy drugs.

The usage of antioxidant supplements during cancer therapy
can reduce oxidative damage in the surrounding healthy tissues,
reduce side effects, and boost overall patient health and survival
rate. (Calvani and Favre, 2019). These supplements can decrease
cell growth, inhibit cell proliferation, and induce apoptosis in
tumor cells. However, it has been estimated that 20–85% of
cancer patients use antioxidant supplements, where the
majority of consumers are breast cancer survivors. Also,
patients with prostate, colorectal, and lung cancers prefer to
take these supplements. When combined with certain types of
chemotherapy, these nutraceuticals become more beneficial in
treating cancer (Calvani et al., 2020).

POTENTIAL MICROALGAL ANTIOXIDANTS
FOR USE IN CANCER THERAPIES

Microalgal antioxidants are primarily composed of carotenoids,
phenolics, flavonoids, polyunsaturated fatty acids, vitamins,
sulfated polysaccharides, sterols, minerals, amino acids,
phycobiliproteins as well as some other compounds like MAA,
sulfolipids, Coenzyme Q, and peptides (Figure 3). From blue-
green algae, antioxidant components like scytonemin,
C-phycocyanin are also known as strong cytotoxic agents
(Abd El-Hack et al., 2019). These phytochemicals have anti-
cancerous properties as well (Table 1).

Vitamins
Vitamin A
Vit A comprises retinol and its derivatives (retinoids). It is a
collective term for many analogous compounds that can be
classified into two groups based on the source. Vit A is
derived from animal-based foods, such as beef liver, eggs, cod

FIGURE 2 | Classification of antioxidants (Nimse and Pal, 2015; Anwar et al., 2018; Chahal et al., 2018; Khurana et al., 2018; Azat Aziz et al., 2019).

Frontiers in Pharmacology | www.frontiersin.org March 2021 | Volume 12 | Article 5931165

Ferdous and Yusof Algal Antioxidants as Cancer Therapy

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


liver oil, butter, and yellow pigmented fruits, vegetables, and
fortified grains, which are called preformed vitamin A. On the
other hand, provitamin A (α- and β-carotene, β-cryptoxanthin)
are available in colored fruits and vegetables, like in tomato,
carrots, leafy greens, yams, and vegetable oils. This retinol is
changed into retinoic acid and retinoids upon entering into the
body (Fritz et al., 2011; Kim J. et al., 2019). Interestingly, some
microalgae species contain Vit A which is much higher in amount
compared to some fruits. For instance, Tetraselmis suecica
contains Vit A (493,750 I.U./kg dry weight) in a higher
amount than orange (14,728 I.U./kg dry weight). Isochrysis
galbana, Dunaliella tertiolecta, Chlorella stigrnatophora,
Chaetoceros calcitrans and Skeletonema costatum are also a
rich source of Vit A and provitamin in comparison with other
foods like cod liver oil, beef liver or parsley (Fabregas and
Herrero, 1990; De Roeck-Holtzhauer et al., 1991).
Cyanobacteria Aphanizomenon flos-aquae and Spirulina spp.
are another reservoir of provitamin A (Kay and Barton, 1991).
Chronopoulou et al., has reported that extraction of vit A from
Tetradesmus Obliquus is in the highest amount through
supercritical fluid extraction method (Chronopoulou et al., 2019).

Higher intake of dietary Vit A can remarkably decrease the
ovarian, lung, gastric, pancreatic, and cervical carcinoma risk

(Sanusi, 2019; Wang and He, 2020). Retinoic acid activates the
extracellular-signal-regulated kinase (ERK) pathway and thus,
promotes angiogenesis and metastasis in lung cancer. Retinoids
in combination with chemotherapeutic drugs and other
antioxidants inhibit cancer cell proliferation and thus increase
the life span of cancer patients (Tripathi et al., 2019). Besides,
natural and synthetic retinoids can prevent colorectal cancer
progression (Abdel-Samad et al., 2019). Furthermore, retinol
has a protective capacity against digestive cancers (Xie et al.,
2019). Additionally, an increased dietary supplement of Vit A and
β-carotene can improve hepatocellular carcinoma prognosis with
an increased survival rate (Zhang et al., 2020).

Vitamin C
Vit C can be obtained naturally in a variety of fruits, vegetables like
green chili, thyme, parsley, guavas, black current, kiwis, lemon, and
algae. It is commonly called ascorbic acid and is aqueous soluble
(Padayatty and Levine, 2016). It is often considered a well-tolerated
micronutrient. Vit C containing eleven microalgae species from
different classes have been reported where Chaetoceros muelleri,
Skeletonema costatum, Nannochloropsis oculata, and Nannochloris
atomus showed higher amount of Vit C than others (Brown et al.,
1997). Vitamin C is also commonly found in Spirulina spp., Chlorella

FIGURE 3 | Production of antioxidants from microalgae.
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spp., T. suecica, I. galbana, D. tertiolecta, Aph. flos-aquae, Pavlova
lutheri, and Rhodomonas salina (Fabregas and Herrero, 1990; Kay
and Barton, 1991; Brown et al., 1997).

However, Vit C can highly sensitize tumor cells compared to
normal cells. Vit C acts as a prodrug by generating ascorbate radicals
and H2O2, causing oxidative stress and ultimately kill cancer cells,
which can be attained by the intravenous injection of Vit C. On the
other hand, cancer cells can be damaged through epigenetic
regulation, like DNA and histone demethylation, and
reestablishing 5-hydroxymethylcytosine with oral administration of
Vit C supplement. Moreover, Vit C supplementation can prevent
tumor metastasis by collagen cross-linking, suppress cancer
progression by HIF-1a degradation (Mustafi and Wang, 2019). It
has been reported that higher doses of ascorbic acid alone or
combinedly with conventional cancer drugs significantly impede
cancer growth, but it should be administered intravenously. Oral
administration of ascorbate causes only a moderate increase in its
plasma concentration (Blaszczak et al., 2019).

In contrast, another study revealed that intravenous
administration of Vit C of a lower dose with longer

administration was better in treating cancer, though a high
dose is still safe (Mikirova et al., 2019). Vit C can modulate
infiltration of the tumor microenvironment by stimulating
immune cells and delay cancer growth in breast, colorectal,
melanoma, and pancreatic murine tumors (Magrì et al., 2020).
Importantly, Vit C can kill cancer cells selectively and its
activity depends on factors like the type of cancer and
signaling pathways involved in the tumor development. In
cancer stem cells, it can enter through sodium-dependent Vit
C transporter 2 (SVCT2) and alter JHDM and TET protein.
Besides it can enter via glucose transporters (GLUTs) and
modify ROS, causing mitochondrial dysfunction and finally
triggers Vit C-induced cell death (Satheesh et al., 2020). Vit C
supplementation shows a protective effect in modulating
inflammatory regulators in the case of esophageal
adenocarcinoma (Abdel-Latif et al., 2019).

Vitamin D
Vit D is also known as the “sunshine” vitamin since it can be
gained through exposure to sunlight. Besides, this fat-soluble

TABLE 1 | List of some antioxidants found in microalgae that showed in vitro antitumor activities.

Algae Antioxidants Targeted cell
line

Active
concentration

Mode of
action

References

Dunaliella salina β-carotene Human prostate cancer
cell line (PC-3)

Inhibition rate: 79%
at 50 µM

Apoptosis associated with mitochondrial
dysfunction and DNA fragmentation

(Jayappriyan
et al., 2013)

Dunaliella tertiolecta Violaxanthin Human breast cancer cell
line (MCF-7)

aIC50: 56.1 µg/ml Apoptosis (Pasquet et al.,
2011)

Porphyridium
purpureum

Zeaxanthin Human melanoma cell line
(A2058)

IC50: 40 µM Gene mutation; activation of pro-apoptotic
factors; cell cycle arrest; caspase activation;
inhibition of NF-κB

(Juin et al., 2018)

Chaetoceros
calcitrans

Fucoxanthin Human liver cancer cell
line (HepG2)

IC50: 18.89 μg/ml Gene modulation of cell signaling, apoptosis,
and oxidative stress

(Foo et al., 2018)

Chlorella ellipsoidea Carotenoids (mainly
violaxanthin)

Human colon cancer cells
(HCT116)

IC50: 40.73 ±
3.71 μg/ml

Apoptosis (Cha et al., 2008)

Chlorella vulgaris Carotenoids (mainly
lutein)

Human colon cancer cells
(HCT116)

IC50: 40.31 ±
4.43 μg/ml

Apoptosis (Cha et al., 2008)

Codium fragile Siphonaxanthin Human leukemia cells
(HL-60)

Inhibition rate: 95%
at 20 µM

Activation of caspase-3; up-regulation of
GADD45a and DR5, downregulation of Bcl-2

(Ganesan et al.,
2011)

Cyanophora
paradoxa

β-Cryptoxanthin Malignant Inhibition rate: 93.0 ±
0.1% at 100 μg/ml

Apoptosis (Baudelet et al.,
2013)Melanoma cells (A-2058)

Haematococcus
pluvialis

Astaxanthin Human hepatoma cancer
cell line (HepG2)

Inhibition rate: 58.55%
at 25 μg/ml

Depletion of glutathione; DNA fragmentation;
cell cycle arrest at G0/G1 phase

(Nagaraj et al.,
2012)

Nannochloropsis
oculata

Sterols Human promyelocytic
leukemia cell line (HL-60)

IC50: 23.58 ±
0.09 μg/ml

Apoptosis (Sanjeewa et al.,
2016)

Nannochloropsis
salina

PUFA Human breast cancer cell
line (MCF-7)

IC50: 0.45 μg/ml - (Sayegh et al.,
2016)

Porphyridium
cruentum

Sulfolipids Human adenocarcinoma
cells

IC50: 20–46 μg/ml Cell cycle arrest; inhibition of DNA polymerase (Bergea et al.,
2002)

Phaeodactylum
tricornutum

Sulfated
polysaccharides

HepG2 Inhibition rate: 60.37%
at 250 μg/ml

Apoptosis (Yang et al.,
2019)

Tribonema sp Sulfated
polysaccharides

HepG2 Inhibition rate: 66.8%
at 250 μg/ml

Apoptosis (Chen et al.,
2019)

Chlorella zofingiensis Exopolysaccharides Human colon cancer cell
lines (HCT8)

IC50: 1.7 mg/ml - (Zhang et al.,
2019)

Spirulina platensis C-Phycocyanin Human breast cancer cell
lines (MDA-MB-231)

IC50 : 189.4 μg/ml Cell cycle arrest at G0/G1 phase; decreased
levels of cyclin D1 and CDK-2 and increased
levels of p21 and p27; down regulation of
cyclooxygenase-2; activation of MAPK
signaling pathways

(Jiang et al.,
2018)

aIC50: the concentration needed for 50% inhibition.
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vitamin is available in foods like fishes rich in fat, egg yolk, dairy
products like cheese, cod liver oil, beef liver, and mushrooms.
Surprisingly, P. lutheri, T. suecica, S. costatum, and I. galbana can
produce Vit D in a higher amount in comparison with cod liver
oil, oyster, mushroom, egg, and liver (De Roeck-Holtzhauer et al.,
1991). It has been reported that Vit D3 is found in the highest
amount in UVB exposed Nannochloropsis oceanica (Ljubic et al.,
2020).

In the liver, Vit D is metabolized into 25(OH)D (25-
hydroxyvitamin D), which is a biomarker for Vit D status
assessment (Marian, 2017). Studies showed that daily
supplementation of Vit D is effective in improving relapse-free
survival among digestive tract cancer patients and also in early-
stage lung adenocarcinoma, with low bioavailable 25(OH)D
levels (Akiba et al., 2018; Urashima et al., 2020). Besides, Vit
D supplementation can reduce cancer-related mortality (Keum
et al., 2019). Additionally, in the kidney, it is conceived that
25(OH)D can be converted to calcitriol by 1-alpha hydroxylase
that can attach to Vit D specific receptors and has a significant
effect on gene expression, and thus control cancer cell survival
(Chatterjee et al., 2019).

Vitamin E
Vit E, a lipid-soluble vitamin, is mainly found in nuts, seeds,
vegetables, plant oils. Marine microalgae are an excellent source
of Vit E and contain a larger amount of Vit D than other plant
and animal sources. Studies showed that C. stigmatophora, C.
calcitrans, P. lutheri, T. suecica, S. costatum, I. galbana, and D.
tertiolecta possess ample amount of Vit D than olive oil, corn,
bean, carrot, wheat or liver (Fabregas and Herrero, 1990; De
Roeck-Holtzhauer et al., 1991). This Vit E can be classified into
eight isoforms, namely α, β, δ, γ-tocopherol, and -tocotrienol
(Peh et al., 2016). T. obliquus contains α and γ-tocopherol
(Chronopoulou et al., 2019). Chlorella spp., Spirulina spp. and
Aph. flos-aquae also have a significant level of Vit E (Kay and
Barton, 1991; Kim et al., 2001).

Intake of vitamin E supplementation up to upper tolerable
intake level (UL) of 300–1,000 mg/day is considered safe and
effective in the reduction of mortality (Köpcke, 2019). Vitamin E
supplementation has significant neuroprotective properties
against cisplatin-induced ototoxicity (Villani et al., 2016) and
also in cisplatin-induced nephrotoxicity, where a significant
reduction in the serum levels of renal injury biomarker
(NGAL) has been observed (Ashrafi et al., 2020). It has been
reported that intake of high Vit E supplementation reduces total
cancer and gastrointestinal cancer risk among patients with high
selenium levels (Wang et al., 2019). Tocotrienols can selectively
suppress cancer cells without harming the normal cells, where γ
and δ tocotrienols have the highest anti-cancer activity. They can
exert anti-cancer activity by inhibiting cell proliferation, arresting
cell cycle, inhibition of angiogenesis by downregulation various
growth factors, metastasis and inducing cell death (apoptosis,
autophagy, and paraptosis) through different mechanisms that
involve death receptor, caspase 9 activation, or Bax/Bcl ratio
(Abraham et al., 2019; Constantinou et al., 2020). Besides, Vit E
consumption reduces the risk of bladder cancer (Lin et al., 2019).

Vitamin K
Vitamin K belongs to lipid-soluble vitamin, also known as
‘Koagulations vitamin,’ which is divided into two classes Vit
K1 and K2, along with synthetic derivatives K3–K5. Vit K1 and
K2 are also called phylloquinone and menaquinone, respectively,
which are found in leafy vegetables, cheese, and curd (Kurosu and
Begari, 2010). Vit K is also available in T. suecica, I. galbana, S.
costatum, P. lutheri, Chlorella ellipsoidea, and T. obliquus where
the level is significantly higher than milk, egg, or vegetables like
spinach, cabbage (De Roeck-Holtzhauer et al., 1991; Kim et al.,
2001; Chronopoulou et al., 2019).

Vit K and derivatives have been reported to exhibit anticancer
property against cancer in the lung, liver, breast, prostate, blood,
colon, and bladder. It can destroy cancer cells through several
mechanisms, such as by increasing oxidative stress, by inducing
apoptosis through the upregulation of Fas/FasL, NF-kB, p53,
downregulating Bcl-2/Bcl-xl, Bax/Bak, and also through caspase-
3 activation pathway, by inhibiting cell cycle through the
inhibition of CDK-1 checkpoint and activation of CDK-1
inhibitors, p21. It can also induce autophagic death in
different cancer cells (Dasari et al., 2017). Along with
autophagy, Vit K2 can cause non-apoptotic cell death in
breast cancer cell lines (Miyazawa et al., 2020). In
combination with sorafenib, Vit K1 can cause apoptosis in
hepatocellular carcinoma cells in vivo and in vitro through the
activation of caspase pathways (Wei et al., 2010). In prostate
cancer, Vit K2 has been reported to hinder metastasis and
inducing apoptotic cell death (Vinjamuri et al., 2019).

Polyphenols
Microalgae is a rich source of polyphenolic compounds that
mainly consist of simple phenols, flavonoids, flavanones,
isoflavone, flavonols, dihydroflavonols, flavones, flavan-3-ols,
dihydrochalcones, proanthocyanidins. Among them, Flavones
(Apigenin) and isoflavone (Genistein) have been reported to
be found in P. tricornutum, Diacronema lutheri, P. purpureum,
H. pluvialis, T. suecica, and C. vulgaris, while D. lutheri and H.
pluvialis contain the most diverse classes of flavonoids (Goiris
et al., 2014). In a study, Bulut et al., (2019), has assumed that
flavonol (quercetin) from Scenedesmus sp., is one of the major
contributors to its antioxidant property (Bulut et al., 2019). On
the other hand, marine microalgae P. tricornutum, isolated from
the Moroccan sea, produce protocatechuic acid which is
considered to have antioxidant activity (Haoujar et al., 2019).

Euglena cantabrica having a high amount of phenolics (gallic
acid and protocatechuic acid) shows the most effective radical
scavenging activity which was even more than the conventional
antioxidants (Jerez-Martel et al., 2017). Phenolic acids from
Spirulina maxima displayed better radical scavenging activity
and protection against microsomal lipid-peroxidation in the liver
than commercial antioxidants (Abd El-Baky et al., 2009).
Phenolic compounds are responsible for antioxidant activity
tested for a myriad of microalgae, for instance,
Nannochloropsis sp., Spirulina sp., D. salina, Navicula clavata,
Chlorella sp., Tetraselmis sp., Porphyridium cruentum, P.
tricornutum, Neochloris oleoabundans, C. calcitrans,

Frontiers in Pharmacology | www.frontiersin.org March 2021 | Volume 12 | Article 5931168

Ferdous and Yusof Algal Antioxidants as Cancer Therapy

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Botryococcus braunii (Goiris et al., 2012; Hemalatha et al., 2013;
Choochote et al., 2014; Zainoddin et al., 2018).

Along with antioxidant activity, these polyphenolic
compounds exhibit anticarcinogenic activity as well. Jayshree
et al., (2016), found that flavonoids, isolated from C. vulgaris
as well as Chlamydomonas reinhardtii, were cytotoxic to breast
cancer cells (Jayshree et al., 2016). Similarly, flavonoids in C.
vulgaris extract can hinder proliferation in lung carcinoma
(Wang et al., 2010). Spirulina maxima produce phenolic
compounds that may stop proliferation and induce apoptosis
in liver cancer cells (Wu et al., 2005). Likewise, phenolic
compounds from C. vulgaris and I. galbana might be
responsible for the anticancer activity against human liver
cancer (Custódio et al., 2014; Raikar et al., 2018).

Polyphenols like quercetin, genistein, ellagic acid have
significant anticancer properties. Genistein has displayed
anticancer effects against breast, colon, lung, thyroid, gastric,
and prostate cancers by modulating a variety of molecular targets,
such as apoptotic markers caspases, Bcl and Bax, nuclear factor-
κB, an inhibitor of NF-κB, mitogen-activated protein kinase
(MAPK), phosphoinositide 3-kinase/Akt (PI3K/Akt),
extracellular signal-regulated kinase 1/2 (ERK 1/2), and
Wingless and integration 1/β-catenin (Wnt/ß-catenin)
signaling pathway (Tuli et al., 2019). It can show pro-
apoptotic, anti-proliferative, and anti-metastatic activities
in vitro on PC3 prostate cancer cells through triggering
apoptosis by activating caspase-3 related pathways, by
reducing cell survival via inhibition of p38MAPK at both gene
expression and protein levels, and by inhibiting metastasis
through the blockage of MMP2 activity (Shafiee et al., 2020).
Genistein is documented as clinically safe and effective when
combined with standard fluoropyrimidine and platinum-based
drug, oxaliplatin, with or without Bevacizumab, in the treatment
of metastatic colon cancer (Pintova et al., 2019). Quercetin exerts
its anti-cancer effects on different cancer cells through the
regulation of PI3K/Akt/mTOR, Wnt-catenin, and MAPK/
ERK1/2 pathways. It can induce tumor cell death by
modulating the apoptotic pathway, enhancing the expression
of pro-apoptotic proteins (Bax, Bad) as well as decreasing the
expression level of anti-apoptotic proteins (Bcl, Mcl), and also
affect the expression of TRAILR, FAS, TNFR1. Moreover, it
hinders metastasis by reducing VEGF secretion, repressing the
expression of the downstream regulatory factor AKT and MMP
levels, and by inhibiting EMT progression. Furthermore,
quercetin promotes protective autophagy in cancer cells by
forming autophagic vacuoles and acidic vesicular organelles
(AVOs), activating autophagic gens, and inhibiting Akt-mTOR
signaling and stabilizing HIF-α expression (Reyes-Farias and
Carrasco-Pozo, 2019; Tang et al., 2020). However,
coadministration of sorafenib (0.1 µM) and quercetin 25 µM
for 1 day has been exhibited a significant reduction in the cell
proliferation rate and inhibition in cell adhesion and migration
properties (Celano et al., 2020).

Another important phenolic compound in microalgae is
ellagic acid (EA). EA can effectively reduce cisplatin (CP)
induced nephrotoxicity and gonadotoxicity, by reducing
peroxidative damage to tissue, when given together with CP to

murine colon cancer model (Goyal et al., 2019). Moreover, EA in
combination with doxorubicin and cisplatin can strongly hinder
cell proliferation and engender mitochondria-mediated cell death
in hepatocellular carcinoma cells in vitro and reduce side effects
significantly (Zhong et al., 2019). In the multidrug-resistant
glioma cells, EA combined with bevacizumab may show both
inhibitory and suppressive role in bevacizumab-induced DNA
repair, when treated for an extended period (Çetin et al., 2019).

Carotenoids
β-Carotene
β-Carotene (BC) is abundantly found in the human diet and
popularly used as a food additive and coloring agent in the food
industry (Bogacz-Radomska and Harasym, 2018). Microalgae
Dunaliella salina possesses a copious amount of BC and is
considered the richest source among other microalgae. BC
from Dunaliella salina has been reported to kill human
prostate cancer cells through apoptosis (Jayappriyan et al.,
2013). Moreover, BC can be found readily in green microalgae
Chlorella vulgaris, Asterarcys quadricellulare, and in
cyanobacteria Spirulina sp. (Seshadri et al., 1991; Damergi
et al., 2017; Singh et al., 2019).

BC suppresses the proliferation and self-renewal capacity of
colon cancer stem cells (CSCs) through epigenetic modulation,
involving expression of miRNAs and miRNA-mediated histone
acetylation, and global DNA methylation (Kim D. et al., 2019).
Though its negative relationship to lung cancer is widely studied,
it can reduce lung cancer when combined with vitamin A (Yu
et al., 2015). It has been documented that oral administration of
beta-carotene-loaded solid lipid nanoparticles (BC-SLNs)
enhances the bioavailability of BC and also the safety as well
as the efficacy of BC. It sustains the release of BC from the lipid
core and prolongs circulation time in the body (Jain et al., 2019).
Besides, in methotrexate (MTX) therapy, BC loaded
nanoparticles of zein (βC-NPs) significantly improve cellular
uptake, reduces MTX-induced liver and kidney toxicity, and
display elevated biopharmaceutical performance of BC orally
(Jain et al., 2019).

Lutein
Lutein is a carotenoid with a yellow-orange hue that is an
important ingredient in the food, feed, and pharmaceutical
industries. It is available in fruits, vegetables, and flowers,
especially in marigold which is considered as a primary source
(Becerra et al., 2020). Surprisingly, microalgae can produce up to
six times higher lutein content compared to marigold and thus, is
claimed to be a better alternative of lutein production (Lin et al.,
2015). Lutein is produced at a higher amount in Chlorella
protothecoides, C. sorokiniana, C. vulgaris, H. pluvialis,
Parachlorella sp., Muriellopsis sp. and Scenedesmus obliquus
(Li et al., 2001b; Shi et al., 2002; Blanco et al., 2007; Chan
et al., 2013; Chen et al., 2016; Di Sanzo et al., 2018; Heo et al.,
2018). Lutein from Botryococcus braunii has been reported to
exhibit both in vitro and in vivo antioxidant activity (Rao et al.,
2006).

Lutein augments the effect of the antiproliferation and
apoptosis capacity of chemotherapy drugs and also can inhibit
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cell cycle progression, alone or combinedly with chemotherapy
drugs, in the prostate cancer cell line. Moreover, lutein
downregulates biomarker genes related to growth and survival
in prostate cancer (Rafi et al., 2015). In another study, lutein has
been shown anti-breast cancer activity by generating intracellular
ROS level and also by inducing apoptotic cell death via
downregulation of Bcl2 genes with the upregulation of pro-
apoptotic genes and by enhancement of p53 signaling
pathway. At the same time, lutein augments the anticancer
activity of taxanes when administered combinedly in breast
cancer cell lines (Gong et al., 2018). A similar result has been
reported by Luan et al., (2018), where lutein plus doxorubicin
hinders the growth of sarcoma cells, induces apoptosis, and also
shows in vivo anti-tumor activity in a mouse model (Luan et al.,
2018). Lutein also displays anti-proliferation activity in breast
cancer cells by triggering the NrF2/ARE pathway and inactivating
the NF-κB signaling pathway (Chang et al., 2018).

Astaxanthin
Astaxanthin (ATX), a red lipid-soluble xanthophyll carotenoid, is
mostly available in microorganisms and has an important role in
aquaculture, food, and pharmaceutical industries (Ambati et al.,
2014). Haematococcus pluvialis is considered the finest
production source of ATX industrially (Shah et al., 2016). This
ATX from H. pluvialis hinders the oxidative stress inside the cells
(Régnier et al., 2015). ATX is also obtained from other microalgae
like C. sorokiniana, C. zofingiensi, Tetraselmis sp., Chlorococcum
sp. andG. sulphuraria (Li et al., 2001a; Ip and Chen, 2005; Raman
and Mohamad, 2012; Graziani et al., 2013).

ATX exhibits anti-proliferation activity against various cancer
cells through blocking cell cycle at G0/G1 phase or G2-M phase,
epigenetic alterations, or chromatin remodeling. It also induces
apoptosis by downregulation of the antiapoptotic proteins while
upregulation of the proapoptotic proteins. It also blocks
angiogenesis and metastasis to distant tissues (Faraone et al.,
2020). On combinatorial treatment with carbendazim, AXT
potentiates the anti-proliferative effect of this drug by arresting
MCF-7 cells at the G2/M phase (Atalay et al., 2019).

Fucoxanthin
Fucoxanthin (FX) is an orange-hued marine carotenoid that is
mainly obtained from algae. Fucoxanthin has many health
benefits, especially antioxidative and antiproliferative capacity
(Muthuirulappan and Francis, 2013). It has exhibited antitumor
activity against a range of cancer types, namely osteosarcoma,
leukemia, lymphoma, and also against colorectal, breast, prostate,
hepatocellular, bladder cancer (Martin, 2015). Antioxidant
activity of FX have been reported from Phaeodactylum
tricornutum, Odontella aurita, I. galbana, C. calcitrans, D.
salina, C. gracilis, Navicula sp., Thalassiosira sp., Pavlova
lutheri, Cylindrotheca closterium (Rijstenbil, 2003; Xia et al.,
2013; Neumann et al., 2019; Peraman and Nachimuthu, 2019).
FX from P. tricornutum and C. calcitrans has been reported to
show anticancer activity as well (Foo et al., 2018; Neumann et al.,
2019). Furthermore, FX obtained from Conticribra weissflogii
showed the anti-inflammatory property in the sepsis mouse
model (Su et al., 2019). However, FX is also available in

Nitzschia laevis, Chaetoceros muelleri, Amphora sp. and
Tisochrysis lutea (Ishika et al., 2019; Sun et al., 2019;
Mohamadnia et al., 2020).

The anticancer mechanism of FX is mainly directed by
blocking the cell cycle at the G0/G1 phase with decreased
cyclin D and also by apoptotic cell death with DNA
degradation, chromatin condensation, or DNA laddering. FX
also inhibits metastasis where a decreased level of MMPs has been
observed. Besides, these mechanisms involved a myriad of pro-
and anti-apoptotic proteins and many signaling pathways like
caspase, PI3K/Akt/mTOR, JAK/STAT, MAPK, SAPK/JNK
pathways (Kumar et al., 2013).

Zeaxanthin
Zeaxanthin (ZX) is a yellow colored carotenoid and also found in
orange or yellow colored fruits, vegetables, like corn, tangerine,
squash, mango, honeydew, papaya, peach, yellow bell pepper,
marigold, egg yolk, and in many microorganisms as well (Sajilata
et al., 2008). On the other hand, ZX can be obtained from
microalgae like in Synechocystis sp., Dunaliella salina, Chlorella
saccharophila, C. ellipsoidea, C. pyrenoidosa, Scenedesmus
almeriensis, S. obliquus, Porphyridium aerugineum, Microcystis
aeruginosa, and Spirulina sp. (Lagarde et al., 2000; Chen et al.,
2005; Inbaraj et al., 2006; Granado-Lorencio et al., 2009; Koo
et al., 2012; Yu et al., 2012; Singh et al., 2013; El-Baz et al., 2019).

ZX from Nannochloropsis oculata, Scenedesmus obliquus,
Porphyridium aerugineum has been reported to show the
antioxidative property (Cho et al., 2011; Banskota et al., 2019).
On the other hand, the anticancer activity of ZX has been
reported in Porphyridium purpureum, where ZX induced
apoptosis in cells of human melanoma through the
augmentation of proapoptotic proteins (Bak, Bax) or pro-
apoptotic factors (Bim, Bid) and the reduction of antiapoptotic
proteins (Bcl-2), as well as through caspase 3 activation and DNA
fragmentation. Moreover, ZX from this P. purpureum potentiates
the efficacy of the chemotherapeutic drug, vemurafenib toward
human melanoma (Juin et al., 2018). A similar apoptosis
mechanism of ZX in melanoma cells was reported in another
study as well (Bi et al., 2013).

Canthaxanthin
Canthaxanthin (CTX), a ketocarotenoid, was found in
Cantharellus cinnabarinus mushroom for the first time and
now is gaining interest in the food and feed industry (De
Miguel et al., 2001). This antioxidative and antitumorigenic
CTX can be found in microalgae also. Microalgal species like
Haematococcus pluvialis, Chlorella emersonii, C. zofingiensis.
Coelastrella sp., Dactylococcus dissociates, Chlorococcum sp.
and also in some cyanobacteria like Nodularia spumigena,
Aphanizomenon flos-aqua, Trichormus variabilis, Anabaena sp.
(Ben-Amotz, 1993; Malis et al., 1993; Li et al., 2006; Nobre et al.,
2006; Hu et al., 2013; Grama et al., 2014; Janchot et al., 2019;
Krajewska et al., 2019).

CTX showed anticancer activity by causing apoptosis in
human colon adenocarcinoma as well as in melanoma cells
(Palozza et al., 1998). Similarly, CTX from Aspergillus
carbonarius has been reported to engender apoptosis in
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human prostate cancer cells (Kumaresan et al., 2008). Dietary
intake of CTX has in vivo chemopreventive role in oral cancer
(Tanaka et al., 1995).

Violaxanthin
Violaxanthin (VLX), an orange-hued carotenoid, is obtained
mainly from fruits of similar color and also from leafy greens
as well as microalgae. VLX has significant antioxidative activity.
Yellow-green microalgae Eustigmatos cf. polyphem has been
reported to produce VLX that has exhibited radical scavenging
activity through DPPH and ABTS assays (Wang et al., 2018).
Moreover, VLX has antiproliferative activity as well. VLX isolated
from Dunaliella tertiolecta and Chlorella ellipsoidea has been
revealed to inhibit breast cancer cells and colon cancer cells,
respectively, and also induce apoptosis (Cha et al., 2008; Pasquet
et al., 2011).

However, VLX from Chlorella vulgaris, N. oceanica, Dunaniella
salina, Tetraselmis spp., Isochrysis galbana, Pavlova lutheri, P. salina,
and Chaetoceros spp. has been reported to show antioxidative and
anti-inflammatory activities (Soontornchaiboon et al., 2012; Ahmed
et al., 2014; Kim H. et al., 2019; Kim et al., 2020).

Neoxanthin
Neoxanthin (NX), a pigment in spinach, is also available in
microalgae. The antioxidative property of NX has been
reported in Scenedesmus sp., Chlorella sp. and Tetraselmis
suecica (Patias et al., 2017; Sansone et al., 2017). However, NX
can also be isolated from Chlorella vulgaris, C. protothecoides,
Ankistrodesmus gracilis, Scenedesmus quadricauda, Neochloris
oleoabundans, Chlorella pyrenoidosa, Botryococcus braunii,
Nephroselmis pyriformis (Tonegawa et al., 1998; Inbaraj et al.,
2006; Magnusson et al., 2008; Chue et al., 2012).

NX has been reported to show anticancer activity against
human prostate carcinoma and also responsible for the apoptosis
in these cancer cells (Terasaki et al., 2007; Kotake-Nara et al.,
2005; Kotake-Nara et al., 2001). In an animal model, NX
exhibited anti-initiation activity and also hindered the
promotion stage in tumor cells which was revealed through a
two-step carcinogenesis study (Lin et al., 1995).

Siphonaxanthin
Ketocarotenoid siphonaxanthin (SPX) has been predominately
found in microalgae and reported to show better anti-
proliferative and anti-angiogenic activity than FX (Sugawara
et al., 2014). For instance, SPX from green microalgae Codium
fragile exhibited apoptosis in human leukemia cells through
TRAIL induction with the augmentation of GADD45a and
DR5 expression and reduced Bcl-2 and thus showed more
effective anticancer property compared to FX (Ganesan et al.,
2011). Similarly, this SPX displayed ex vivo antiangiogenic
activity as well (Ganesan et al., 2010).

Cryptoxanthin
Cryptoxanthin is available in many microalgae like C. vulgaris, S.
obliquus, Aphanothece microscopica Nageli, C. pyrenoidosa, C.
zofingiensi, Chlamydomonas planctogloea, Selenastrum
bibraianum, Coelastrum sphaericum, Parachlorella kessleri,

Mougeotia sp., S. platensis, and P. cruentum (Jaime et al.,
2005; Inbaraj et al., 2006; Patias et al., 2017; Di Lena et al.,
2019; Soares et al., 2019). β-Cryptoxanthin obtained from
Cyanophora paradoxa exerted cytotoxicity against human skin,
breast, and lung cancer cells (Baudelet et al., 2013).

β-Cryptoxanthin blocks gastric cancer cells at the G0/G1
phase and induces apoptosis through caspase activation and
Cyt C release (Gao et al., 2019). It also displayed anticancer
property and apoptosis in HeLa cells (Gansukh et al., 2019).
When combined with oxaliplatin, β-cryptoxanthin increased the
potency of this chemotherapeutic drug and reduced its toxicity in
colon carcinoma (Millán et al., 2015). Moreover,
β-Cryptoxanthin hindered lung carcinoma both in vitro and in
vivo experiments (Lian et al., 2006; Iskandar et al., 2016).

Fatty Acids
Omega-3 polyunsaturated fatty acids, mainly consisting of
EPA, DHA as well as α-linolenic acid, is found
predominately in fish oil, various plant sources (flaxseed,
kiwifruit, chia), and in microalgae, which is effective in the
treatment of a different form of cancers such as, breast,
colorectal, prostate, ovarian, renal, liver, lung and some
other types of cancer (Ashfaq et al., 2019). Microalgal fatty
acids are frequently used as fish feed and also as a dietary
supplement. EPA has been found in larger amounts in Chlorella
minutissima, while α-linolenic acid in H. pluvialis and T.
suecica (Rosa et al., 2005). In a study, DHA has been
reported to be found in a high amount from Australian
microalgae species Heterocapsa niei (Mansour et al., 2005).
However, EPA and DHA are also obtained from Phaeodactylum
sp., Thalassiosira sp., Skeletonema sp., Cryptomonas sp., Tetraselmis
sp., Isochrysis sp.,Nannochloropsis sp., Porphyridium sp., Chaetoceros
sp. (Ryckebosch et al., 2012).

It has been reported that Omega-3 fatty acid
supplementation with standard neoadjuvant
cyclophosphamide, doxorubicin, and fluorouracil (CAF)
chemotherapy and mastectomy improves overall survival and
progression-free survival of locally advanced breast cancer
patients, through decreasing expression levels of Ki-67 and
VEGF leading to inhibition of proliferation and angiogenesis
(Darwito et al., 2019). Higher intake of marine ω-3
polyunsaturated fatty acids (MO3PUFA) intake improves
survival among stage III colon cancer patients with wild-type
KRAS proto-oncogene and deficient DNA mismatch repair,
which are responsible for tumor proliferation and survival
(Song et al., 2019). Besides, co-supplementation of vitamin D
and omega-3 fatty acids significantly reduces inflammatory
biomarkers (TNF-a, IL-1b, IL-6, IL-8) and tumor marker,
carcinoembryonic antigen in colorectal cancer patients
(Haidari et al., 2020). It has been reported that omega-3
supplements can reduce cancer-related fatigue (CRF) in
cancer patients under chemotherapy (Ansari et al., 2019).
Though omega-3 polyunsaturated fatty acids (O3-PUFA) are
widely known for reducing cancer-related fatigue, O6-PUFAs
have been documented to significantly reduce CRF compared
with O3-PUFA among breast cancer survivors (Peppone et al.,
2019).
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Sterols
Microalgal is considered as an alternative source of producing
some valuable commercial sterols like, β-sitosterol, stigmasterol,
ergosterol, campesterol, and brassicasterol which have
pharmaceuticals importance (Randhir et al., 2020). Sterols are
found in Chlorella sp., Chlamydomonas sp., Scenedesmus sp.,
Ankistrodesmus sp., Nannochloropsis limnetica, Stephanodiscus
hantzschii, Gomphonema parvulum, Cyclotella meneghiniana,
Cryptomonas sp., Monoraphidium sp. (Martin-Creuzburg and
Merkel, 2016). Along with antioxidative activity, microalgal
sterols can show antitumor activity. A sterol-containing
fraction of Nannochloropsis oculate exhibited anticancer
property against human blood, lung, liver, and colon cancer
cells (Sanjeewa et al., 2016). Similarly, fatty acid fractions of
Nannochloropsis salina also showed cytotoxicity against breast
cancer cells (Sayegh et al., 2016). Moreover, fatty acids from S.
maxima have also been reported to show anticancer activity
against breast cancer (Elkhateeb et al., 2020).

Sterols can stop tumor growth, metastasis, angiogenesis, and
induce apoptosis through caspase-3 activation, Bax/Bcl2
enhancement, or blood cholesterol reduction (Ramprasath and
Awad, 2015). Dietary intake of phytosterol can minimize the risk
of cancer. For instance, β-sitosterol intake can hinder tumor
growth in the human colon, lung, liver, prostate, and breast
cancer cells (Jiang et al., 2019).

Polysaccharides
Microalgae is an excellent reservoir of polysaccharides that has
different bioactivity, especially anti-inflammatory, antioxidant
and anticancer. For instance, C. stigmatophora and P.
tricornutum can produce polysaccharide extract with anti-
inflammatory activity (Guzmán et al., 2003). Polysaccharides
obtained from Tetraselmis spp., Pavlova viridis, Sarcinochrysis
marina, Porphyridium sp. exhibited significant antioxidant
activity revealed through antioxidant assays (Tannin-Spitz
et al., 2005; Sun et al., 2014; Amna Kashif et al., 2018). In
addition, polysaccharide extract of I. galbana and N. oculata
has the antioxidant capacity and antiproliferative activity against
HeLa cells (Hafsa et al., 2017). Nostoglycan, a polysaccharide
isolated from Nostoc sphaeroides has been reported to give
protection from oxidative stress, and also to stop the growth
of lung cancer cells as well as to promote apoptosis through
activation of the caspase-3 pathway (Li et al., 2018). Moreover,
polysaccharide fraction of P. viridis displayed in vivo antitumor
property (Sun et al., 2016).

An investigation on the exopolysaccharide-producing
microalgae and cyanobacteria revealed that forty-five out of
166 strains were exopolysaccharide producers (Gaignard et al.,
2019). Graesiella sp., isolated from Tunisian hot spring, possess
EPS that have antioxidant activity and show cytotoxicity against
human liver and colon cancer cells (Trabelsi et al., 2016).
Similarly, C. pyrenoidosa, Chlorococcum sp., and Scenedesmus
sp. produce EPS exhibiting antioxidative properties that also have
the potential to kill human colon cancer cells (Zhang et al., 2019).
On the other hand, sulfated polysaccharides (sPS) with
antioxidant activity are extracted from Navicula sp. (Fimbres-
Olivarria et al., 2018). sPS from Tribonema sp. showed

antiproliferative and apoptosis in human hepatic carcinoma
(Chen et al., 2019). P. cruentum having sPS showed in vitro
and in vivo antitumor activity (Gardeva et al., 2009).

Phycobiliproteins and Peptides
Phycobiliproteins, mainly composed of, phycocyanin,
allophycocyanin, phycoerythrin phycoerythrocyanin, are light-
harvesting colored protein found predominately in cyanobacteria
and also in red algae. Phycobiliproteins have different
bioactivities like, antioxidant, anti-inflammatory, anticancer,
and others (Pagels et al., 2019). Phycocyanin (PC) plays a
protective role against oxidative damage and exerts anticancer
activity against different cancers. Arthrospira platensis produces
PC which shows antioxidant activity revealed through DPPH
assay (Pan-utai and Iamtham, 2019). PC isolated from Porphyra
yezoensis exerted anticancer activity against human melanoma
and laryngeal cancer cells in a dose-dependent way (Zhang et al.,
2011). PC can block cell cycle at G0/G1 or G2/M phase and
induce apoptosis through caspase 3 or 9 activations, reduction of
Bcl-2/Bax, COX-2, p-ERK, PEG2, cyclin D1, and CDK4, DNA
fragmentation, Cyt c release, ROS generation, reduction of NF-
κB, Fas, p53, ICAM-1, CD44, Chromatin condensation.
Moreover, PC also downregulates the genes involved in
metastasis and angiogenesis. Besides, PC can promote
autophagy through blocking Akt/mTOR/p70S6K pathways.
Furthermore, PC can enhance the efficacy of chemotherapeutic
drugs like doxorubicin, topotecan, betaine, when administered
combinedly (Jiang et al., 2017).

Apart from these phycobiliproteins, microalgae also produce
protein products, like whole-cell protein, protein hydrolysates,
protein concentrates, and peptides which have different biological
activities (Soto-Sierra et al., 2018). Microalgal peptides isolated
from S. maxima, S. obliquus, and T. suecica have been reported to
exert anti-inflammatory, antioxidant, and antimicrobial activity,
respectively (Vo et al., 2013; Montone et al., 2018; Guzmán et al.,
2019).

Amino Acids
There is evidence that cancer is related to the interference in
amino acid kinetics, which is indicated by an imbalance between
plasma amino acids and a higher rate of whole-body turnover of
protein and muscle protein breakdown, thus leads to muscle
damage. Therefore, increased amino acid supplementation is
recommended to promote the synthesis of muscle protein (van
der Meij et al., 2019). Supplementation with branched-chain
amino acids (BCAA) can control protein synthesis by
triggering the mTORC1 pathway which promotes muscle
protein balance. Amino acids like arginine and glutamine
improve nutritional status in cancer patients undergoing
surgery, chemotherapy, and radiotherapy by minimizing
inflammation (Soares et al., 2020). In NSCLC, AAs suppress
inflammation by increasing the number of CD4+ T cells and thus,
improve immune status among patients receiving chemotherapy
(Liu et al., 2018). However, Brown (1991) stated the presence of
all 20 amino acids in 16 microalgae species, where aspartate and
glutamate were the most abundant amino acids found in those
microalgae. Lim et al., (2018) reported six dinoflagellates having
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18 amino acids and glutamic acid was in the highest amount in all
species. Additionally, leucine, alanine, valine, and glycine are
found to be produced in higher amounts in C. sorokiniana and C.
vulgaris (Ballesteros-Torres et al., 2019).

Mycosporine-like amino acids (MAAs) with the antioxidant
property are also commonly found in microalgae. Xiong et al.,
(1999), reported the presence of five MAAs in Scenedesmus sp.
and C. sorokiniana (Xiong et al., 1999). Llewellyn and Airs (2010)
assessed 33 microalgae species and found six MAAs isolated from
these microalgae. Among these microalgae, Glenodinuim
foliaceum was the most prolific producer of MAAs, while
shinorine was the most common MAA (Llewellyn and Airs,
2010).

Minerals
Marine microalgae P. tricornutum, T. chuii, and N. granulate
have macro minerals (Ca, P, Mg, K, Na, S) and microminerals
(Cu, Fe, Mn, Se, Zn), while Botryococcus braunii and
Porphyridium aerugineum possess all these minerals except Se
(Fox and Zimba, 2018). Additionally, C. ellipsoidea contains
major elements like Na, Mg, Al, K, Ca, Mn, Fe, Cu, and Zn
(Kim et al., 2001). Moreover, cookies made from Spirulina and
Chlorella are found high in Se content along with some other
minerals Na, Mg, and P (Uribe-Wandurraga et al., 2020).

It has been reported that higher intake of calcium, magnesium,
manganese, zinc, selenium, potassium, and iodine intakes,
combined with lower intake of iron, copper, phosphorus, and
sodium intake can reduce the risk of colorectal cancer incident in
postmenopausal women (Swaminath et al., 2019).
Supplementation of antioxidants multivitamin and mineral
(AMM) protect cancer patients from radiotherapy or
chemotherapy-induced oxidative stress, which is indicated by
depletion of oxidative stress markers such as MDA and nitric
oxide, and restores the endogenous and exogenous antioxidants
(SOD, GPx, Vitamin C and Vitamin E) and essential trace
element levels (zinc, copper, and selenium), as well (Patil and
More, 2020). Moreover, a high daily intake of selenium is
protective against cancer, though the effects vary with different
cancers (Kuria et al., 2020).

Coenzyme Q
Coenzyme Q (CoQ10), also known as ubiquinone, is a naturally
occurring ubiquitous compound and also an important cofactor
in oxidative phosphorylation in mitochondria and associated
with cellular energy (ATP) production (Raizner, 2019).
Microalgae Porphyridium purpureum has been claimed to
produce CoQ10, as well as there is also evidence of the
presence of CoQ10 in C. pyrenoidosa (Klein et al., 2011).
Additionally, freeze-dried biomass of I. galbana showed a high
amount of CoQ10 (Matos et al., 2019).

CoQ10 in combination with alpha-lipoic acid (ALA) prevent
cisplatin-induced nephrotoxicity (Khalifa et al., 2020). It has been
claimed that coenzyme Q10 inhibits human colon cancer
(HCT116) cells through increased ROS and nitric oxide
production, while regulating the increased expression of
apoptosis-related genes and decreased expression of the anti-
apoptotic gene, Bcl2 (Jang et al., 2017). A standard dose of

300 mg/day for 3 months of coenzyme Q10 supplementation
has been proposed which can significantly increase antioxidant
enzymes activities (SOD, CAT, and GPx) and decreases the levels
of inflammatory markers in hepatocellular carcinoma patients
after surgery (Liu et al., 2016). On the other hand, it has been
observed that high proportion of patients with oral cancer has low
ubiquinone and this deficiency is related to high risk of central
obesity, hypertriglyceridemia, and metabolic syndrome (Chan
et al., 2020). Similar deficiency is often observed in breast cancer
also, where supplementation with CoQ10 has been suggested to
reduce the adverse effects (Tafazoli, 2017).

SEAWEEDS AS A POTENTIAL SOURCE OF
ANTIOXIDANTS

Seaweeds are an important part of Asian cuisine and are rich in
pharmaceutically important bioactive compounds. Seaweed
antioxidants comprise mainly carotenoids, polyphenols,
phycobilin (phycoerythrin and phycocyanin), sulfated
polysaccharide, vitamin (A, C) (Cornish and Garbary, 2011).
Sulfated polysaccharides and polyphenols from seaweed are not
similar to microalgae. Carrageenans, fucoidans, ulvan, and
porphyran are the most studied seaweed or macroalgal
sulfated polysaccharides that have antioxidant and anticancer
activity. Moreover, macroalgae also have non-sulfated
polysaccharides like alginic acid, laminarin possessing
antioxidative and antitumor properties (Venugopal, 2019). In
the case of polyphenolic compounds, the presence of
phlorotannins, tetraphloretol, fucophlorethol, eckol, difucol,
fucodiphlorethol, phloroglucinol, diphlorethol have been
reported from macroalgae (Mekinić et al., 2019). Among all
the antioxidant-rich phenolic compounds, phlorotannins, are
widely found in macroalgae, especially in brown algae
(Montero et al., 2017). Fatty acids from Laurencia papillosa
(red alga), sulfated polysaccharides from Pterocladia capillacea,
meroterpenoids like sargachromanol, sargahydroquinoic and
sargaquinoic acid from Sargassum serratifolium,
sesquiterpenoids (isozonarol) from Dictyopteris undulata
(brown alga) have been reported to exert high antioxidant
property (Fleita et al., 2015; Kumagai et al., 2018; Omar et al.,
2018; Lim et al., 2019). Besides these, a range of edible seaweeds
with antioxidative properties is consumed globally (Table 2).

LIMITATIONSONUSING ANTIOXIDANTS IN
CANCER THERAPY

Dietary antioxidant supplements can act as a “double-edged sword”
in cancer treatment due to their ability to kill cancer cells or to protect
them (Favre, 2019). A high daily intake of nutraceutical
supplementation may not be safe and may have toxic side effects.
Therefore, it is necessary to differentiate the prophylactic dose from
the therapeutic dose. A prophylactic dose protects healthy cells and
tumor cells, while a therapeutic dose inhibits the growth of only
cancer cells. (Calvani et al., 2020). In some cases, low concentrations
of free radicals because of the high administration of antioxidant
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supplementation may promote the proliferation of neoplastic cells
rather than interrupting it, thus causing cancer development (Valko
et al., 2007). Similarly, herbal supplements are likely to carry a greater
risk of pharmacokinetic (PK) interaction with chemotherapy agents
compared with vitamin, mineral, and other supplements, which may
decrease the efficacy of therapy or create an adverse effect (Luo and
Asher, 2018).

The potential harmful or beneficial effect of an antioxidant often
depends on its concentration, the presence of other antioxidants, and
the concentration of endogenous antioxidants. Many antioxidants
interact with the synergic effect with other antioxidants present in the
formulation, which is known as “sparing effects.”Administration of a
mixture of antioxidants exerts a higher biological effect due to their
synergistic activity in various phases, which is more beneficial than a
high amount of a single antioxidant (van Breda and de Kok, 2018).

CONCLUSION AND FUTURE DIRECTIONS

Over the last few decades, there have been several in vitro and in
vivo studies regarding the antioxidant therapies which have
shown that daily intake of a specific dosage of antioxidant
nutraceuticals is inversely related to cancer risk as well as
enhances the treatment efficacy, nonetheless, randomized
clinical trials have shown mixed results which are considered
as a real conundrum for the extensive use of antioxidant
supplements in cancer therapy. These inconsistent outcomes
can be directed by several factors, such as dose, synergism, the
bioavailability of antioxidants used, patients’ health status, type of
cancer, lifestyle, tendency to supplement intake, and the duration

of studies with other variables involved. Therefore, more
controlled and well-defined clinical trials with newer
approaches need to be conducted to accomplish a safe and
effective antioxidant supplement system in cancer treatment.
Likewise, there is a need for extensive research to explore
novel antioxidant molecules from algae, and their purification
strategies as well as in vivo investigations should be prioritized.
More studies are needed to explore the actual antioxidant
compounds present in several organic and aqueous extracts
that have already shown in vitro antioxidant as well as
anticancer activities, and to investigate their mechanism of
action on the cellular system and their capability to potentiates
chemotherapeutic drugs.
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