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Abstract
Pyramidal neurons (PNs) are the most abundant cells of the neocortex and display a vast dendritic tree, divided into basal 
and apical compartments. Morphological and functional anomalies of PN dendrites are at the basis of virtually all neurologi-
cal and mental disorders, including intellectual disability. Here, we provide evidence that the cognitive deficits observed in 
different types of intellectual disability might be sustained by different parts of the PN dendritic tree, or by a dysregulation 
of their interaction.
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Uno de los hechos mejor 
apreciados entonces fue la 
revelación de la existencia 
constante en la corteza cerebral 
de batracios, reptiles, aves 
y mamíferos, del corpúsculo 
piramidal, que osé llamar, con 
audacia de lenguaje de que hoy 
me avergüenzo un tanto, la célula 
psíquica.
One of the most appreciated facts 
at that time was the revelation 
of the constant existence in the 
cerebral cortex of batrachians, 
reptiles, birds and mammals, 
of the pyramidal cell, which I 
dared to call, with the audacity of 
language of which today I am a bit 
ashamed, the psychic cell.
Santiago Ramón y Cajal

The father of modern Neuroscience, Santiago Ramón y 
Cajal, postulated that neocortical pyramidal neurons (PNs) 
might play an outstanding role for the accomplishment of 
higher cognitive functions. He defined these cells, represent-
ing the vast majority of neocortical neurons, the “psychic 
cells” (Cajal 1917). Despite his feeling of shame, aimed at 

counterbalancing the “audacity of language,” after more 
than a century we have to recognize that, once again, the 
claim of the great Spanish scientist was substantially right. 
In recent years, it has been shown that PNs, despite their 
apparent morphological homogeneity, are specialized for 
different physiological/behavioral functions in different cor-
tical areas and species (see, for review, Jacobs and Scheibel 
2002; Elston 2003; Spruston 2008; Luebke 2017). Moreover, 
cortical areas composed of specialized pyramidal cells are 
characterized by unique connectivity and capacity, with size 
of the dendritic tree and number of spines increasing pro-
gressively from primary to higher order areas (Elston 2007). 
These regional specializations in pyramidal cell structure 
and circuit connectivity are important for hierarchical and/or 
distributed processing (Elston 2003, 2007; Elston and Fujita 
2014). On the same line of reasoning, it can be assumed that 
a functional derangement of PNs is the pathophysiological 
basis of the cognitive deficit observed in intellectual dis-
ability (Granato and De Giorgio 2014).

Intellectual disability (ID), previously referred to as 
mental retardation, is classically defined as a neurodevelop-
mental disorder with IQ below 70, although more complex 
definitions, based on poor adaptive functioning and reduced 
daily life skills, have been provided by the DSM-5 (Ameri-
can Psychiatric Association 2013) and the American Asso-
ciation on Intellectual Developmental Disabilities (Shogren 
and Turnbull 2010).

The present point of view deals with the anomalies 
of neocortical PNs, as observed in experimental studies 
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reproducing known causes of ID, as well as in the brains 
of affected human individuals. Given that dendritic altera-
tions are considered among the most relevant anatomical and 
functional counterparts of ID (Kaufmann and Moser 2000) 
and owing to the great extension and geometric complexity 
of the dendritic arborizations of PNs, we shall focus primar-
ily on dendritic anomalies. Some excellent reviews cover 
exhaustively the relationships between dendritic alterations 
and ID (Kaufmann and Moser 2000; Dierssen and Ramakers 
2006; Quach et al. 2021). Our purpose is to provide mecha-
nistic insights into how the disruption of PN dendritic func-
tion contributes to the genesis of ID, with a special emphasis 
on the role of the different parts of the dendritic tree.

Dendrites of PNs

PNs represent the majority of neocortical neurons and are 
distributed in all cortical layers except layer 1. Among 
PNs, the thick-tufted cells are the most thoroughly studied, 
provide the cortical output directed to subcortical struc-
tures, and can be found in the deep part of layer 5 [layer 5b 
(Spruston 2008; Ramaswamy and Markram 2015)]. Thick-
tufted PNs are characterized by a prominent apical dendrite 
spanning all the way to the pial surface and terminating 
with a branching apical tuft, whose radium often equals (or 
exceeds) that of the basal dendrites (Fig. 1). Other classes of 
PNs are those of layer 2/3 (providing cortico-cortical asso-
ciative and callosal projections) and those bearing a slender 
apical dendrite, mainly located in the superficial part of layer 
5 (Krieger et al. 2017; see also Fig. 1 in Shepherd 2013). 
Modified PNs projecting to the thalamus and claustrum 
reside in layer 6 (Thomson 2010).

The prototypical PNs, the thick-tufted cells of layer 5, 
display geometric differences among the basal, oblique, and 
apical dendritic domains that are clearly recognizable at a 
first glance (see Fig. 1). In a seminal paper published exactly 
thirty years ago, Alan Larkman provided a rigorous formal 
description of such branching pattern differences, pointing 
out, for instance, that basal dendrites branching points are 
close to the cell body, whereas intermediate branches of 
the apical tuft are relatively longer than distal ones (Lark-
man 1991). It is well known that the dendritic geometry 
impinges upon the functional properties of neurons (Mainen 
and Sejnowski 1996). Furthermore, different parts of the 
dendritic tree of layer 5 PNs are potentially involved in the 
microcircuitry of different cortical layers. Therefore, it is 
conceivable that basal and apical dendrites contribute dif-
ferently to the cortical machinery during physiological cog-
nitive tasks.

Regarding the connections, the basal dendrites receive 
feedforward input from the receptor surfaces through the tha-
lamic relay. The ascending input is thought to be conveyed 

indirectly to the dendrites of layer 5 through the canonical 
cortical circuit [thalamus → layer 4 → layer 2/3 → layer 5 
(Thomson and Morris 2002; Lübke and Feldmeyer 2007)]. 
However, layer 5 neurons can be also contacted directly by 
thalamic afferents (Meyer et al. 2010; Constantinople and 
Bruno 2013). Conversely, most of the apical tuft of PNs 
lies in layer 1, where it receives feedback connections from 
higher cortical areas, conveying input related to attention, 
context, and expectations (Coogan and Burkhalter 1990; 
Cauller 1995; Cauller et al. 1998). Together, the basal and 
apical dendritic arborization are in the ideal position to inte-
grate bottom-up and top-down streams of information. The 
refinement of dendritic recording (Davie et al. 2006) made it 
possible to ascertain that action potentials can backpropagate 
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Fig. 1   3D reconstruction of a thick-tufted PN of layer 5. On the left 
of the neuron there is the indication of the different sections of the 
dendritic tree. On the right the main regenerative events occurring in 
that dendritic domain, according to Larkum et  al. 2009. Red: axon. 
The text boxes indicate some of the alterations occurring in FASD, 
FXS, and DS, along with the dendritic domain affected (see the text 
for further explanation)
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through the apical dendrite of PNs (Stuart and Sakmann 
1994) and to shed light on the interplay between basal and 
apical dendrites. Using multiple patch-clamp recordings 
from the soma and the apical dendrite of layer 5 PNs, it 
has been demonstrated that the coincidence of a backpropa-
gated action potential generated at the soma and of an api-
cal dendritic input is able to generate a dendritic calcium 
spike that, in turn, elicits a burst of somatic spikes (Larkum 
et al. 1999). This mechanism, originally called backpropa-
gation-activated calcium spike firing (BAC firing) has been 
considered the electrophysiological basis of the top-down/
bottom-up integration operated by a single PN (Larkum 
2013). This idea was widened by Bill Phillips and Matthew 
Larkum, leading to the concept of “apical amplification,” the 
mean by which the information coming from the external 
world (bottom-up) is modulated by context-sensitive (top-
down) information (Phillips et al. 2016; Phillips 2017). A 
role of the apical dendrite in cognition and consciousness 
has been also postulated by LaBerge (2006). Recently, it has 
been demonstrated that apical dendritic potentials can gate 
sensory perception and that such a modulation depends on 
contextual information (Takahashi et al. 2020). A dysregula-
tion of context-modulated sensory perception and learning 
abilities can represent a prominent feature of ID (Alevriadou 
et al. 2004; Carr et al. 2010; Murray et al. 2019).

As to the distribution of ion channels on the membrane of 
different dendritic compartments, it has been proposed that 
the apical tuft and basal dendrites are dominated by NMDA 
receptors and associated potentials, while a calcium initia-
tion zone, located just beneath the apical tuft, is endowed 
with voltage gated calcium channels (Nevian et al. 2007; 
Larkum et al. 2009); Fig. 1). Moreover, the correct degree 
of coupling between basal and apical compartments would 
be ensured by hyperpolarization-activated HCN channels, 
responsible for the Ih current and densely distributed on 
the apical dendrite of PNs (Nolan et al. 2004; Phillips et al. 
2016). Interestingly, these ion channels are developmentally 
regulated (Atkinson and Williams 2009) and their dysregula-
tion might be involved in the genesis of neurodevelopmental 
disorders (see below).

In the last years, a conspicuous line of research focused 
on the dual basal/apical organization of PNs. Changes in 
the apical amplification process have been implicated in 
the pathophysiology of several mental disorders, including 
schizophrenia (Phillips et al. 2016; Mäki-Marttunen et al. 
2019). Furthermore, the integration of two different com-
partments with feedforward and feedback input seems to 
be ideally suited to bridge the gap between artificial intelli-
gence and neuroscience, since there are similarities between 
deep learning algorithms and the functional subdivisions 
observed in PNs (Guerguiev et al. 2017).

Dendrites of pyramidal neurons are covered with spines, 
which receive most of synaptic inputs and are thought to 

play a central role in several functions, from electrical filter/
isolation to synaptic and structural plasticity (reviewed in 
Yuste 2011; Sala and Segal 2014). The density of dendritic 
spines, as well as their pattern of developmental growth and 
reshaping, display significant differences in different cortical 
areas (Elston and Defelipe 2002; Elston and Fujita 2014). 
Moreover, the density and distribution of dendritic spines 
appear to be differently regulated in apical and basal den-
drites of PNs during learning (Knafo et al. 2001), in response 
to hormones (Gould et al. 1990), and in experimental models 
of neurological illness (Perez-Cruz et al. 2011).

PN Dendritic Domains and ID

From the features outlined above, it is clear that the exten-
sive dendrites of neocortical PNs play a pivotal role in neural 
computation and higher functions. Therefore, the changes 
of PN dendrites appear to be central in the genesis of ID. 
Moreover, a disruption of the interplay between function-
ally distinct basal and apical compartments might contribute 
to the pathophysiology of several mental disorders, includ-
ing ID. Here, we focus on PN dendritic alterations in some 
of the most frequently observed genetic and non-genetic 
types of ID. Among genetically determined IDs, Down 
syndrome (DS), caused by trisomy of the human chromo-
some 21, besides representing the most commonly identi-
fied form (Sherman et al. 2007), can be also reproduced by 
murine models (Dierssen et al. 2001). Notably, dendritic 
alterations have been reported in both species (reviewed in 
Benavides-Piccione et al. 2004). Interestingly, when com-
pared to matched-age controls, PNs in the visual cortex of 
individuals with DS showed a higher complexity of dendritic 
branching during the first six months of postnatal life, fol-
lowed by a reduction of branches thereafter, and dendritic 
alterations were evident both in the apical and basal den-
drites (Becker et al. 1986). In addition to these alterations 
in branching, a reduction of spine density has been reported 
in the apical dendrite of humans affected by DS (Suetsugu 
and Mehraein 1980). It should be noted, however, that PNs 
of the prefrontal cortex in a murine model of DS display an 
increased density of spines (Thomazeau et al. 2014). An 
augmented number of dysmorphogenetic dendritic spines 
is a consistent feature of a common inherited cause of ID, 
the fragile X syndrome (FXS), characterized by mutations 
of the FMRP, the protein encoded by the FMR1 gene (Bagni 
and Greenough 2005).

The most common form of non-genetic ID is the con-
sequence of the exposure to alcohol in utero and is nowa-
days referred to as fetal alcohol spectrum disorders (FASD). 
Rodent experimental models of FASD allowed to clarify 
several aspects in the pathogenesis of ID, including those 
related to PN dendritic anomalies (Valenzuela et al. 2012). 
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Experimental FASD might represent an interesting case of 
dissociation between dendritic anomalies of basal and api-
cal compartments: after exposure to ethanol during the first 
week of postnatal life in rats, corresponding to the third tri-
mester of gestation in humans, the basal dendritic branches 
of PNs are strongly simplified, both in the somatosensory 
and in the prefrontal cortex (Granato et al. 2003, 2012; Ham-
ilton et al. 2010). Conversely, the spine density of layer 2/3 
basal dendrites is not affected (Hamilton et al. 2010; De 
Giorgio and Granato 2015). Using the same experimental 
protocols, a specular alteration was observed in the apical 
dendrites, that featured normal branching properties along 
with a decreased spine density (Whitcher and Klintsova 
2008; Granato et al. 2012; De Giorgio and Granato 2015). 
It is worth mentioning, however, that in other types of ID, 
such as congenital/neonatal hypothyroidism, the apical den-
drite shows a modified branching pattern (Ipiña and Ruiz-
Marcos 1986).

PN Dendrite Physiology and ID

As noted above, active currents generated locally in the den-
dritic tree can play a fundamental role for the function of 
PNs. Disruption of dendritic potentials can be the signature 
of many neurological and mental disorders (Palmer 2014). In 
the experimental model of FASD, we have demonstrated that 
the generation of Ca2+ spikes in the apical dendrites of layer 
5 PNs is strongly impaired (Granato et al. 2012). A derange-
ment of dendritic Ca2+ signaling has been also reported in 
the murine model of FXS (Meredith et al. 2007) and might 
be part of a more complex set of dendritic channelopathies 
observed in this condition (Brager and Johnston 2014). 
Calcium spikes are required to induce synaptic plasticity 
(Kampa et al. 2006; Cichon and Gan 2015). In addition, 
they support the apical amplification mechanism described 
above, that in turn is thought to provide the neurobiological 
basis for context-sensitive perception and learning (Phillips 
2017). Interestingly, shutting down the Ube3a protein leads 
to a selective defect of growth of PN apical dendrites (Miao 
et al. 2013). The deficiency of the Ube3a protein in humans 
is associated to the Angelman syndrome, a condition char-
acterized by ID and whose murine model displays a deficit 
of contextual learning (Jiang et al. 1998). Besides a direct 
impairment of dendritic calcium electrogenesis, other fac-
tors can contribute to the anomalous function of the apical 
dendrite and to the genesis of ID. For instance, HCN chan-
nels, responsible for the Ih current, play a role in the interac-
tion between the basal and the apical dendrites of PNs and 
some of their variants can be associated to ID (Marini et al. 
2018). Another factor ensuring the communication between 
different dendritic compartments is represented by the back-
propagation of axon potential along the apical dendrite. 

Loss of sodium channels sustaining the backpropagation 
can also lead to ID (Spratt et al. 2019). Finally, PNs partici-
pate in a cortical microcircuit to which dendrite-targeting 
GABAergic interneurons provide a substantial contribution 
(Markram et al. 2004; Palmer et al. 2012; DeFelipe et al. 
2013). Furthermore, top-down projections from higher cor-
tical areas can engage in a disinhibitory circuit by contact-
ing inhibitory neurons (chiefly VIP-calretinin cells) that, in 
turn, synapse onto other inhibitory cells, thus activating PN 
dendrites. Such a disinhibitory circuit might represent part 
of the neuronal basis for the apical amplification, since it is 
ideally suited to be involved in recalling past experiences 
and exploiting contextual cues (Pi et al. 2013; Karnani et al. 
2014). Interestingly, an increase in the number of calretinin 
interneurons has been reported both in a model of FASD and 
in the Ts65Dn model of DS (Granato 2006; Pérez-Cremades 
et al. 2010).

The dendrites of each PN receive several thousand syn-
apses. Therefore, although we focused on the morpho-
functional dendritic alterations observed in the most rep-
resentative ID syndromes, many rare mutations of synaptic 
proteins and ligand-gated ion channels can be responsible 
for anomalies of the dendritic machinery and can lead to ID 
(reviewed in Vieira et al. 2021). A striking example is rep-
resented by the mutations of the NMDA receptor subunits, 
whose consequence is represented either by loss or by gain 
of function, with possible excitotoxic mechanisms mediating 
the damage in the latter case (Lemke et al. 2016; Fry et al. 
2018). NMDA mutations can also result in modified synaptic 
plasticity (Shin et al. 2020) and interference with dendritic 
growth (Sceniak et al. 2019).

Concluding Remarks

Considering that PNs are the most abundant neuronal type of 
the cerebral cortex, and that they bear a large dendritic tree, 
it turns out that PN dendrites occupy a considerable part of 
neocortical volume. Therefore, the primary role played by 
PN dendrites in cortical computation and their involvement 
in ID are quite obvious. Even though each ID syndrome 
seems to be characterized by a specific type of dendritic 
alteration, times are not yet mature to classify ID accord-
ing, for instance, to the different dendritic domain primar-
ily altered, to the spine density, or to the specific interplay 
between inhibitory interneurons and PN dendrites. Although 
such a classification might prove useful to steer the clini-
cal and therapeutic interventions, any effort in this direc-
tion appears to be challenging. In fact, ID is a permanent 
condition that is usually established early during neural 
development, often through intermediate phases showing 
transient features (see, for example, the dendritic hypertro-
phy observed in DS). Furthermore, some of the pathologic 



151Cellular and Molecular Neurobiology (2022) 42:147–153	

1 3

features might merely represent a byproduct, or a compen-
sation attempt, of primary alterations. This might be the 
case for the increased number of potentially disinhibitory 
interneurons observed in DS and FASD, or the increased 
density of dendritic spines in DS and FXS.

Studies on PN dendrites in humans affected by ID are 
shadowed by technical limitations, in particular, by the 
capricious Golgi staining. The refinement of recording and 
staining techniques, along with the increased possibility of 
modeling neurons and their dendrites, can help to improve 
the results of human investigations (Elston et  al. 2001; 
Benavides-Piccione et al. 2013; Goriounova et al. 2018). 
Furthermore, animal models of ID allow detailed in vitro 
and in vivo explorations of dendrite and spine anomalies. 
Therefore, the collaboration among clinical, computational, 
and experimental neuroscientists will warrant a bright future 
for the research on ID and dendrites.
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