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Abstract

Thymidine biosynthesis is essential in all cells. Inhibitors of the enzymes involved in this pathway (e.g. methotrexate) are
thus frequently used as cytostatics. Due to its pivotal role in mycobacterial thymidylate synthesis dUTPase, which hydrolyzes
dUTP into the dTTP precursor dUMP, has been suggested as a target for new antitubercular agents. All mycobacterial
genomes encode dUTPase with a mycobacteria-specific surface loop absent in the human dUTPase. Using Mycobacterium
smegmatis as a fast growing model for Mycobacterium tuberculosis, we demonstrate that dUTPase knock-out results in
lethality that can be reverted by complementation with wild-type dUTPase. Interestingly, a mutant dUTPase gene lacking
the genus-specific loop was unable to complement the knock-out phenotype. We also show that deletion of the
mycobacteria-specific loop has no major effect on dUTPase enzymatic properties in vitro and thus a yet to be identified
loop-specific function seems to be essential within the bacterial cell context. In addition, here we demonstrated that
Mycobacterium tuberculosis dUTPase is fully functional in Mycobacterium smegmatis as it rescues the lethal knock-out
phenotype. Our results indicate the potential of dUTPase as a target for antitubercular drugs and identify a genus-specific
surface loop on the enzyme as a selective target.
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Introduction

Despite over a century of extensive research, tuberculosis (TB),

the infectious disease caused by Mycobacterium tuberculosis (M.

tuberculosis), still remains a public health problem worldwide. It has

been estimated that more than two billion people are latently

infected with M. tuberculosis and a total of around eight million new

cases [1,2] and 1.6 million deaths occurred in 2010 as reported by

the WHO [3]. The emergence of multidrug resistant strains of M.

tuberculosis [4] as well as the existence of extensively drug resistant

TB in more than 40 countries [5] and the global spread of HIV

are among the factors underlying the resurgence of TB research

[6]. New drugs and second generation vaccines are required to

control this deadly human pathogen [7].

An in-depth understanding of the physiological role of enzymes

involved in the metabolic pathways of mycobacteria is crucial to

identify good targets for rational drug design. Enzymes of the

essential thymidylate metabolic pathway are frequently used as

targets in anticancer and antimicrobial treatments [8]. The

dUTPase enzyme has recently been proposed as a useful target

in mycobacteria [9,10,11,12] and in other diseases including

cancer and malaria [13,14,15,16]. dUTP is a natural intermediate

in the dTTP biosynthetic pathway and is being continuously

synthesized in all dividing cells (Figure 1). The enzyme dUTPase is

responsible for i) keeping the cellular dUTP/dTTP ratio at a low

level to restrict availability of dUTP as a DNA building block and

for ii) providing the dTTP precursor dUMP [17,18,19,20].

Decrease in or lack of dUTPase activity may lead to major

increase in the uracil content of DNA which resulted in

chromosome fragmentation and cell death in the studied cases

[21,22,23]. Importantly, in all known mycobacterium species,

thymidylate biosynthesis necessarily relies on two de novo biosyn-

thetic pathways both involving dUTPase action (Figure 1). In

addition to the well-known monofunctional dUTPase (Rv2697c), a

bifunctional dCTP deaminase/dUTPase (Rv0321) (earlier sug-

gested to exist only in Archea [24,25]) is also encoded within the

M. tuberculosis genome [26]. This bifunctional enzyme catalyses

both the dCTP deamination reaction and the triphosphate

hydrolysis of the resulting dUTP directly producing dUMP from

dCTP [27] (Figure 1). Curiously, this bifunctional enzyme has only

been reported in M. tuberculosis of all mycobacterium species so far.

In contrast to mycobacteria, humans encode the dCMP deami-

nase and the thymidine kinase genes thus providing two

alternatives for the dUTPase-mediated [9] pathway.
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Previous studies have demonstrated the essentiality of the

generally occurring monofunctional dUTPase (product of the dut

gene) in E. coli [28] and in yeast [29,30]. High density mutagenesis

studies suggested that M. tuberculosis requires the product of dut but

not the bifunctional enzyme for growth [31,32]. In contrast to the

thorough biochemical characterization of the M. tuberculosis

dUTPase enzyme [10,11,12,33], no detailed information has yet

been published about the physiological effect of dut deletion

mutants in mycobacteria. We therefore directed our efforts to

obtain formal genetic proof of the essentiality of dUTPase in

Mycobacterium smegmatis (M. smegmatis). We assessed whether the fast

growing and non-hazardous M. smegmatis can serve as a valid

model for M. tuberculosis in the investigation of the thymidylate

synthesis pathway and chose this organism to carry out the

functional deletion of dut.

Although dUTPase is often proposed as a drug target [13,14], a

potential problem in selective drug design against this enzyme is

the high sequence and structure similarity between the human and

pathogen dUTPases. Therefore, we specifically investigated a

mycobacteria-specific insert both in enzymatic and phenotypic

studies.

Results

M. smegmatis and M. tuberculosis share a similar set of
enzymes for thymidylate metabolism as revealed by a
comparative genomic approach

Comparison of the amino-acid sequences of enzymes involved

in thymidylate biosynthesis (shown in Figure 1) revealed that M.

smegmatis encodes the same enzymes as M. tuberculosis does (Table 1),

while no homologs of human dCMP deaminase (Uniprot: P32321)

or human thymidine kinase (Uniprot: P04183) were identified in

these genomes. The role of dCMP deaminase and thymidine

kinase in other organisms is to provide the major flux of dUMP

production and thymidine salvage, respectively. Such alternative

pathways do not seem to exist in mycobacteria, reinforcing the

emphasis on dUTPase. In addition, a ClustalW sequence

alignment of the C-termini of dUTPases from widely different

species exposes a five amino acid long insert that distinguishes

mycobacterial dUTPases from the human and other homologs

(Figure 2A, B).

Similar Blast search and sequence comparison in the Mycobac-

terium leprae, Mycobacterium ulcerans, and Mycobacterium bovis patho-

gens indicated that these species also encode all known enzymes of

thymidylate metabolism in mycobacteria sharing above 84%

identity. Thymidylate kinase is an exception; its amino acid

sequence is more variable between different species (around 66%

identity).

In conclusion, we postulate that the thymidine metabolism

enzymes of M. smegmatis are highly similar not exclusively to M.

tuberculosis, but also to other mycobacterial pathogens.

The dCTP deaminase of M. smegmatis is presumably a
bifunctional dCTP deaminase/dUTPase

A previous study demonstrated that the enzyme annotated as

‘‘dCTP deaminase’’ in M. tuberculosis functions also as a dUTPase

[26]. It is most relevant for our study to examine whether M.

smegmatis and M. tuberculosis encodes an identical enzyme set for

dUMP production. Therefore, we carried out multiple sequence-

alignments for dUTPases, putative and confirmed bifunctional

dCTP deaminase/dUTPases and dCTP deaminases from various

species. These sequence comparisons show that the mycobacterial

enzymes annotated for dCTP deaminases contain conserved

amino acid residues that are indispensable for dUTPase activity

(Figure 2A). According to Helt et al. these residues are: Ser102,

Asp119 and Gln148 (M. tuberculosis numbering, [26]) All of these

residues are conserved in mycobacterial dCTP deaminases,

dUTPases and the confirmed bifunctional dCTP deaminase/

dUTPase enzymes from M. tuberculosis and Methanocaldococcus

jannaschii (Figure 2A). One of the residues indispensable for dUTP

hydrolysis is Asp119, which coordinates the catalytic water

molecule and interacts with the 39-OH of the bound nucleotide

in dUTPases [34]. As seen in Figure 2A, this residue is conserved

in the whole superfamily. The monofunctional dCTP deaminases,

however, contain a conserved Arg (Arg126 in E. coli) residue

(outlined by pink in Figure 2A) which occupies the position of the

nucleophile water molecule and forms a salt bridge with the Asp in

the catalytic position (Asp128 in E. coli [35]). That is why dUTP

hydrolysis in monofunctional dCTP deaminases cannot occur.

The position of this Arg is occupied by an aromatic residue (Phe,

Trp) in dUTP hydrolyzing bifunctional enzymes (Figure 2A),

similarly to the putative mycobacterial bifunctional dCTP

deaminase/dUTPases.

In the next step, we built the 3D structure of the M. smegmatis

dCTP deaminase by homology modeling using the M. tuberculosis

bifunctional dCTP deaminase/dUTPase as template (87%

sequence identity). The Ramachandran plot of the homology

model shows that nearly 90% of the residues are in the most

favored regions and less than 1% of the residues can be found in

the disallowed regions which indicate the excellent reliability of the

model (data not shown). The overall 3D structures of the M.

tuberculosis and M. smegmatis enzymes are highly similar as seen in

Figure 2C which is also supported by the 0.33 Å RMSD value

comparing all atoms of the proteins. Importantly, the residues

characteristic to bifunctional dCTP deaminase/dUTPase enzymes

[26,35] are in identical positions in M. smegmatis and M. tuberculosis

(Figure 2D). In summary, data presented in Figure 2 indicates that

M. smegmatis and other mycobacteria likely possess a bifunctional

dCTP deaminase/dUTPase enzyme.

Figure 1. Key enzymes of the de novo thymidylate biosynthesis
pathway in mycobacteria. Various enzymes present in this pathway
are as follows: bifunctional deoxycytidine triphosphate deaminase/
deoxyuridine triphosphate nucleotidohydrolase (bifunctional dCTPdea-
minase/ dUTPase), deoxyuridine 59-triphosphate nucleotidohydrolase
(dUTPase), nucleoside diphosphate kinase (Ndk), thymidylate kinase
(dTMP kinase), thymidylate synthase (ThyA, ThyX) and ribonucleoside
diphosphate reductase (Nrd). The dUTPase enzyme (underlined)
converts dUTP (grey highlighted box) into dUMP (grey highlighted
box) thereby provides input into dTTP synthesis and eliminates dUTP.
An abnormally elevated dUTP/dTTP ratio will lead to uracil incorpora-
tion into DNA, as indicated by the dashed arrow. DNA synthesis is
provided by several different polymerases (for simplicity no specific
polymerases are named here).
doi:10.1371/journal.pone.0037461.g001

Dut Is Required for Mycobacterial Viability
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The dut gene is essential for growth in M. smegmatis
Previous high density mutagenesis study provided the prediction

that M. tuberculosis requires dUTPase for viability [31] and this

finding was further corroborated in a recent genome wide study

[32]. In order to address this question directly we used an efficient,

reliable two-step deletion strategy [36] to knock out the functional

dut gene from the chromosome of M. smegmatis. Figure 3 shows the

chromosomal location and environment of dut and the regions

used to construct the vectors applied in this study. A schematic

representation of the workflow is shown in Figure 4, while the

results of the experiments are displayed in Figure 5. We first

attempted to construct a marked disrupted deletion mutant of the

dut gene in the wild-type (WT) background (Figure 4A). A non-

replicating delivery vector termed p2Nbk-duth (Figure S1A) was

introduced into M. smegmatis and single crossover recombinants

(SCOs) were selected (see Figure 4B for work-flow and Figure 5A

for results). In the next step, double crossovers (DCOs) were

generated from the SCOs (Figure 4C) and screened by PCR to

determine if the WT or the disrupted dut deletion mutant allele

was present (Figure 4D). Of the 59 potential DCOs screened 49

were found to be WT DCOs while the other 10 proved to be

spontaneous sucrose-resistant (sucR) SCO strains (sucrose was used

Figure 2. Sequence and structural comparison of selected members of the dUTPase superfamily. (A) Conserved motifs are indicated
above the sequences as lines. Representative organisms from widely different evolutionary branches are also included for comparison. Mycobacterial
dCTP deaminases contain all those conserved residues that are indispensable for dUTPase reaction. Residues conserved between dUTPases and
bifunctional dCTP deaminase/dUTPases are important for the dephosphorylation reaction and indicated with green boxes. Residues important for the
deamination reaction and crucial for dCTP deaminase monofunctionality are depicted as gray and magenta boxes, respectively. Mycobacterial
dUTPases contain an insert present solely in the mycobacterial dut, this insert is shown as a yellow box. The alignment was performed with ClustalW.
(B) The mycobacterial insert induces a loop structure on the surface of the dUTPase monomer. The superimposed structure of hDUT (PDB ID: 3EHW,
under publication in a separate paper) and mtDUT (PDB ID: 2PY4) are depicted as yellow and green cartoon representation, respectively. The
mycobacterial insert can be seen as cartoon tube representation. In the active sites the bound ligands, dUPNPP and Mg2+ can be seen, whereby the
Mg2+ is visualized as a yellow (hDUT) or green (mtDUT) sphere while dUPNPP is represented as sticks with atomic coloring (carbons in yellow and
green). Structures were prepared using PyMol. (C) Superimposed overall structure of the M. tuberculosis bifunctional dCTP deaminase/dUTPase and
the M. smegmatis dCTP deaminase enzymes in green and magenta cartoon representation, respectively. (D) Enlarged view from C showing the
conserved residues and the non-hydrolysable substrate analog a-b-imido-dUTP (dUPNPP) as modeled to the active site. Residues and the dUPNPP
molecule are in stick representation with atomic coloring (green, magenta and cyan carbons for M. tuberculosis, M. smegmatis enzymes and dUPNPP,
respectively). Note the closely identical organization of both the overall structure and the active site in M. tuberculosis and M. smegmatis dUTPases.
doi:10.1371/journal.pone.0037461.g002
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for negative selection). The fact that we could not isolate disrupted

deletion mutants in the WT background indicated that the

deletion mutant phenotype is probably lethal.

The dUTPase gene, dut, is in a predicted operon (http://

operondb.cbcb.umd.edu/cgi-bin/operondb/homol_pairs.

cgi?gene1_id = 219933082&gene2_id = 219933083) with an un-

annotated protein downstream of dut (M. SMEGMATIS_2766)

(Figure 3). Therefore, the inability to isolate deletion mutants in

the WT background may have been due to the disruption of the

downstream gene of unknown function. To unequivocally confirm

that dut alone is essential we constructed a merodiploid strain

carrying an additional copy of dut expressed from its native

promoter using a mycobacteriophage L5-based integrating vector

(Figure S1B). After confirming the integration of the complement-

ing vector into the SCO strains, DCOs were generated in this

background and screened by PCR (Figures 4, 5). Of the 19

potential DCOs screened, 13 were WT while 6 contained the dut

disrupted allele (Figure 5B). Consequently, dut can be disrupted at

its native locus if a functional copy of the same gene is supplied

elsewhere. The expected genotype of the disrupted deletion

mutant strains was confirmed by Southern blot analysis

(Figure 5C). These results prove the essentiality of dut in M.

smegmatis as we could only obtain deletion mutants at the native dut

locus in a merodiploid strain (p,0.00025, using Fisher’s exact test).

M. tuberculosis and M. smegmatis dUTPases are
functionally equivalent

We previously showed that thymidylate metabolism enzymes

share high sequence similarity within the Mycobacterium genus

(Table 1). To demonstrate functional similarity experimentally, we

tried to rescue the lethal phenotype of dut disruption with the

expression of M. tuberculosis dUTPase in the mutant DCO strain. A

complement vector carrying the M. tuberculosis dut gene was

constructed and electroporated into SCO cells. After confirmation

of the plasmid integration event, the resulting strains were

screened for DCO events. Out of 20 potential DCOs screened,

10 genomic dut disrupted mutant cell lines carrying the M.

tuberculosis protein could be isolated (Figure 6A). We also obtained

9 WT and 1 sucrose-resistant SCO strains. The expected genotype

of the disrupted deletion mutant strains were confirmed by

Southern blot analysis (Figure 6B). To check if normal protein

expression is driven from the complementing plasmids in M.

smegmatis, we carried out a Western-blot analysis using the FLAG-

tag epitopes engineered on the proteins. Our results show that the

expression of the dUTPase protein from M. tuberculosis and M.

smegmatis are comparable (Figure 6C). The fact that the M.

tuberculosis dut could revert lethality in our M. smegmatis system

suggests that M. tuberculosis and M. smegmatis dUTPases are

functionally equivalent.

The mycobacteria-specific surface loop is essential for
viability

The mycobacteria-specific C-terminal insert in dUTPase

presents itself as a unique opportunity to selectively target the

mycobacterial protein in a human background. Nevertheless, the

functional and the physiological role of this five-aminoacid-insert,

although well conserved in mycobacteria, is still unknown. In

order to address this intriguing question, we attempted to

complement the lethal deletion mutant phenotype with the dut

gene lacking the mycobacteria-specific insert. For this, a comple-

ment vector carrying the dut mutation termed D-loop was

constructed and electroporated into SCO cells. Following the

confirmation of the plasmid integration event, the resulting strains

were subjected to an extensive DCO screen (Figure 7A). Out of 88

potential DCOs screened no deletion mutant cell line could be

isolated. We also compared the protein expression levels in

merodiploid strains carrying the WT or the D-loop mutant

dUTPase complementing copies besides the intact endogenous dut

gene. The Western-blot on FLAG-tagged dUTPase constructs

showed that the expression efficiencies of WT and D-loop

Table 1. Homology of M. tuberculosis and M. smegmatis proteins present in the thymidylate synthesis pathway.

Enzyme Identities1 (%) Similarities2 (%) Gene name in Mtb Gene name in Msm

Bifunctional dCTP deaminase/dUTPase 87 95 Rv0321 MSMEG_0678

dUTPase 85 94 Rv2697c MSMEG_2765

Nucleoside diphosphate kinase Ndk 80 88 Rv2445c MSMEG_4627

Thymidylate (dTMP) kinase 64 71 Rv3247c MSMEG_1873

Thymidylate synthase ThyA 87 92 Rv2764c MSMEG_2670

Thymidylate synthase ThyX 86 92 Rv2754c MSMEG_2683

Ribonucleoside diphosphate reductase NrdE 92 97 Rv3051c MSMEG_1019, MSMEG_2299

Ribonucleoside diphosphate reductase NrdF2 92 95 Rv3048c MSMEG_1033, MSMEG_2313

1 = % identical amino-acids;
2 = classified on the basis of chemical properties (e.g. polar vs. non-polar) of the respective amino-acids side chains.
doi:10.1371/journal.pone.0037461.t001

Figure 3. Genomic environment of the dut gene. Arrangement of
the neighboring genes on the chromosome of the mc2 -155 M.
smegmatis strain is shown together with the regions amplified for the
construction of p2Nbk-duth and pGem-dut. Relevant restriction sites are
also shown. The chromosomal location of the dut gene is represented
by black arrow, the region cloned into the delivery vector (p2Nbk-duth)
is indicated with a black rectangle, and the region cloned in the
complementing vector (pGem-dut) is shown by a white rectangle.
doi:10.1371/journal.pone.0037461.g003

Dut Is Required for Mycobacterial Viability
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dUTPases are indistinguishable (Figure 7B). The fact that we

could not isolate any viable dut deletion mutant in a D-loop

background strongly suggests that the mycobacteria-specific

segment is essential for the growth of M. smegmatis.

The lack of the mycobacteria-specific surface loop results
in minor changes in the enzymatic properties of M.
tuberculosis dUTPase

Upon obtaining the above striking result with the D-loop strain

we were interested to reveal the enzymatic behavior of the D-loop

enzyme (mtDUTD-loop) in vitro. Because the D-loop strain was not

viable, one might presume that the enzymatic activity of mtDUTD-

loop would be compromised. To investigate the enzymatic

efficiency of the mtDUTD-loop, we expressed and purified the

mutant protein (Figure 8A) which proved to be as stable as the WT

in vitro.

To evaluate the consequences of the loss of the specific insert to

the enzymatic cycle, we measured the activity of mtDUTD-loop and

compared it to that of mtDUTH145W [11] used as WT. As shown

in Figure 8B, the maximal steady-state activity of the mtDUTD-loop

deletion mutant decreased to 0.8 s21 compared to the WT

(1.2 s21) while the Michaelis constant (KM) was found to fall

between 0.9–1.1 mM for both enzymes (Table 2). The observed

1.2-fold decrease in Vmax and the similar KM values indicate that

the catalytic efficiency of dUTPase is little affected by this

mutation. The surface loop is relatively close to the active site of

the enzyme and it was therefore possible that the lack of it disturbs

substrate binding. We investigated this possibility by determining

Figure 4. Schematic representation of allelic replacement by homologous recombination. (A) Generation of SCO strains. p2Nbk-duth was
electroporated into WT competent M. smegmatis, and single-crossover (SCO) transformants were selected. (B) Merodiploid strains were constructed
by electroporating the complementing plasmid (pGem-dut) into the SCO strains. (C) Generation of disrupted dut deletion mutant strain. The double
crossover event may result either a disrupted dut deletion mutant strain (a), or a wild type strain (b). (D) Strategy for SCO and DCO screening. a)
shows primers and expected PCR products for the knock-out (KO) allele while b) shows the same for the WT allele. Abbreviations: WT; wild type; SCO;
single crossover; DCO; double cross over.
doi:10.1371/journal.pone.0037461.g004

Dut Is Required for Mycobacterial Viability
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the dissociation constant (Kd) of the WT and deletion mutant

dUTPase complexed with the non-hydrolysable substrate analog

a-b-imido-dUTP (dUPNPP) using fluorescence and circular

dichroism (CD) titration. We took advantage of the discriminative

power of a Trp sensor built in the active site [10,37] to measure

the binding by fluorescence titration. This Trp residue substitutes

a conserved histidine residue which overlaps with the uracil ring of

the substrate dUTP forming a P – P aromatic stacking

interaction. It was shown that introduction of a Trp residue to

the aromatic site results in WT enzymatic behavior [37].

According to Toth et al., the fluorescence signal of the Trp residue

changes upon substrate binding which allows for the measurement

of the dissociation constant of the enzyme-substrate complex [37].

Figure 8C shows fluorescence intensity titrations upon dUPNPP

binding to dUTPase. The mtDUTD-loop mutant displays a

reduction in the observed fluorescence quench upon ligand

binding compared to the WT and yielded about ten times higher

Kd (Table 2). Titration of the differential CD signal of the enzyme-

substrate complex upon dUPNPP binding to mtDUTH145W and

mtDUTD-loop yielded dissociation constants of 0.9 and 3.9 mM for

the WT and for mtDUTD-loop, respectively (Figure 8D and

Table 2). The CD measurements are in line with the fluorescence-

based ones in that the mutation slightly affects the substrate

binding affinity of dUTPase (4.3–11 fold decrease). It must be

noted that the binding affinity of dUPNPP and the cognate

substrate dUTP to the enzyme may be different from each other to

a small extent. Nevertheless, relative changes tend to be the same

regardless of the substrateanalog.

In summary, deletion of the mycobacterium-specific insert had

no major effects on dUTPase enzymatic properties in vitro despite

its essentiality in the living cell.

Discussion

In the present paper, we investigated the physiological effect of

dUTPase gene disruption in M. smegmatis. Lethality of dUTPase

Figure 5. The dut gene is essential in M. smegmatis. M stands for the 1 kb DNA marker from Fermentas. (A) Identification of SCO strain by
colony PCR. SCO strains were generated by homolog recombination of p2Nbk-duth with chromosomal copy of dut. Chromosomal DNA from M.
smegmatis mc 2-155 was used as a positive control yielding the 486 bp fragment (lane WT); the suicide vector integration due to single-crossover
event yielded the 860 bp fragment. (lane SCO). (B) Colony PCR analysis of the generated double crossover (DCO) strains. For demonstration, only a
subset of 19 samples are shown here. The identical numbers represent samples from the same cell line. The potential DCO cell lines were screened for
both the WT copy (indicated as 2, 3) and for the disrupted deletion mutant dut gene (labeled as 29 39). The lengths of the expected PCR product for
the wild type (WT) dut gene and for the disrupted dut mutant were 0.7 and 1.1 kb, respectively. (C) Southern blot analysis of DCOs. The probe used to
perform the hybridization corresponds to the 1.5 kb WT (lane 1) and the 3.3 kb disrupted dut deletion mutant (lane 2 and 3) restriction fragment,
respectively.
doi:10.1371/journal.pone.0037461.g005

Figure 6. The M. tuberculosis dUTPase is able to complement the lethal phenotype in M. smegmatis. (A) Colony PCR analysis of the
generated DCO strains. For demonstration, only a subset of 20 samples are shown here. M stands for the 1 kb DNA marker from Fermentas. The
identical numbers represent samples from the same cell line. Every cell line was screened for both the WT copy (indicated as 1, 2, 3) and for the
disrupted deletion mutant dut gene (labeled as 19 29 39). The lengths of the expected PCR product for the wild type (WT) dut gene and for the
disrupted dut mutant were 0.7 and 1.1 kb, respectively. (B) Southern-blot analysis of dut disrupted, M. tuberculosis dut coding mutants. WT was used
for control. The probe used to perform the hybridization corresponds to the 1.5 kb WT (lane 1) and the 3.3 kb dut disrupted mutant (lane 2 and 3)
restriction fragment, respectively. (C) Western-blot analysis of FLAG-tagged M. tuberculosis dUTPase expression in M. smegmatis.
doi:10.1371/journal.pone.0037461.g006

Dut Is Required for Mycobacterial Viability
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deletion mutants has been reported before only in E. coli [28] and

yeast [29,30]. Current understanding of the mycobacterial DNA

repair system is still poor compared with that of other bacterial

(e.g. E. coli) organisms [38,39]. It is known, however, that the M.

tuberculosis and M. smegmatis genomes lack several of the DNA

repair genes and that M. tuberculosis polymerases are highly error-

prone [40]. We had thus considered that in case of mycobacteria

the importance of preventive DNA repair measures, as e.g. exerted

by dUTPase is remarkably high. The results presented here

corroborate this assumption. In order to demonstrate the

Figure 7. The D-loop mutant dUTPase is unable to rescue the lethal phenotype despite its normal expression level. (A) Colony PCR
analysis of the generated double crossover (DCO) strains. 88 strains were screened and no mutant cell line could be isolated. For demonstration, only
a subset of the samples are shown here. M stands for the 1 kb DNA marker from Fermentas. The identical numbers represent samples from the same
cell line. Every cell line was screened for both the WT copy (indicated as 1, 2, 3, 4) and for the disrupted mutant dut gene (labeled as 19 29 39 49). The
lengths of the expected PCR product for the wild type (WT) dut gene and for the disrupted dut mutant were 0.7 and 1.1 kb, respectively. (B) Western-
blot analysis of FLAG-tagged WT and D-loop dUTPase expression in M. smegmatis transformed with the appropriate construct.
doi:10.1371/journal.pone.0037461.g007

Figure 8. Effect of the D-loop mutation on the substrate hydrolysis and binding of M. tuberculosis dUTPase. (A) SDS-PAGE analysis of
the purified proteins used in this study. M stands for the PageRuler Plus Prestained Protein Ladder (Fermentas). The WT and D-loop mutant dUTPases
have calculated molecular weights of 18.0 kDa and 17.6 kDa, respectively. (B) The steady-state activity of WT and D-loop mutant dUTPase is shown.
Michaelis-Menten curves for the WT (squares) and the D-loop mutant (triangle) were measured using the phenol red pH indicator assay. Fitting the
Michaelis-Menten equation to the curves yielded the following Vmax and KM values: 1.2260.06 s21 and 0.960.5 mM for WT, 0.8860.02 s21 and
1.160.2 mM for D-loop. (C) Fluorescence intensity titration of the WT and the D-loop mutant using the single Trp signal is shown upon dUPNPP
binding. Smooth lines through the data are quadratic fits yielding the Kd values listed in Table 2. Errors represent S.D. for n = 3. For more parameters
see Table 2. (D) CD equilibrium titrations. Comparison of ligand (dUPNPP) binding to the WT and to the D-loop mutant dUTPase. Smooth lines
represent quadratic fits to the data yielding the following Kd values: 0.960.5 mM for WT and 3.962.4 mM for D-loop.
doi:10.1371/journal.pone.0037461.g008
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importance of the enzyme dUTPase in mycobacterial viability, we

applied a two-step homologous recombination based strategy. We

could isolate disrupted deletion mutants solely when a second,

functional copy of dut was provided, which proves that this enzyme

is essential in M. smegmatis.

The sequence analysis and homology modeling experiments

demonstrated that thymidylate biosynthesis is homologous in all

known mycobacteria and therefore, our findings probably apply to

all of them. We showed that the mycobacterial dCTP deaminases

are well conserved and most likely exert the dCTP deaminase/

dUTPase function so far only studied in M. tuberculosis. High

density mutagenesis reports [31,32] suggested that the bifunctional

dCTP deaminase/dUTPase enzyme is dispensable for viability.

Our current study demonstrates that the loss of monofunctional

dUTPase is lethal to M. smegmatis, nevertheless, lethality may not

be due to the lack of dUTPase activity. It is yet to be systematically

investigated how dUTP hydrolysis activity exerted by the mono-

and bifunctional dUTPases affects viability in mycobacteria.

Comparison of the available dUTPase sequences unambigu-

ously led to the conclusion that mycobacterial dUTPase confer a

unique and strictly mycobacteria-specific insert close to the C-

terminus of the polypeptide chain (Figure 2A). This insert induces

the formation of a surface loop close to the entrance of the active

site as can be seen in the crystal structure of M. tuberculosis

dUTPase (Figure 2B) [10,12,41]. We demonstrated that the

mycobacteria-specific loop is essential for viability. As this segment

of the protein contributes to the physiological effect conveyed by

the whole enzyme, it could serve as a powerful selective target

surface on the molecule.

Our spectroscopic and steady-state kinetics measurements on

the purified mtDUTD-loop protein led to the conclusion that the

five-aminoacid-insert near the active site does not have a major

impact on catalysis itself (Figure 8B, C, D). The enzymatic activity

reduced to approximately 67% in mtDUTD-loop is not significant

compared to the orders of magnitude decrease in activity and

increase in KM caused by almost any other mutation we previously

introduced to homologous dUTPases [33,37,42]. The exact

correlation of dUTPase activity with mycobacterial viability is

not known. However, Guillet et al. reported that mutant yeast

strains are viable with dUTPase enzymatic activity reduced to less

than 10% of the wild-type one [30]. This finding suggests that

mtDUTD-loop could probably complement the lethal phenotype if

the five-aminoacid-long insert would not be required for other

processes.

There are several studies in the literature mapping essential

domains to determine protein function in mycobacteria (e.g. the

WhiB-like proteins [43] or the UvrD1protein [44]). The majority

of the residues investigated in these papers were strictly required

for enzyme activity. This is not the case with the mycobacterium-

specific dUTPase loop. We speculate that due to its exposed

position, it might provide a binding surface for a yet unknown

protein partner or another ligand and this interaction might

mediate the essential function detected in our assay. A recently

published study demonstrated that some bacteriophage dUTPases

have two different and genetically distinct activities [45]. It seems

that mycobacterial dUTPase may also have functions beyond their

enzymatic activity provided by a unique and essential sequence

motif. To elucidate the specific function of this short sequence

extensive further studies are required.

Key enzymes of the de novo thymidine biosynthesis pathway

(Figure 1) are attractive targets in the search for novel

antitubercular therapeutics. The currently used target enzymes

are the essential thymidylate synthase ThyX in M. tuberculosis

[46,47,48] and ThyA in general [8,49]. Here we provide formal

genetic proof of dUTPase essentiality in a mycobacterium for the

first time and propose dUTPase as a potential drug target. Based

on high sequence similarities and on the functional equivalence of

the M. tuberculosis and M. smegmatis dUTPases, we suggest that the

dUTPase enzyme and its mycobacteria-specific loop might bear

similar key physiological roles in other, pathogenic mycobacterial

species. The pathogens Mycobacterium leprae, and Mycobacterium

ulcerans, the causative agents of leprosy and Buruli ulcers,

respectively, still remain a serious problem. Incidences of Buruli

ulcers are increasing in certain areas of the tropics such as West

Africa [50]. In addition, Mycobacterium bovis has a broad host range,

producing tuberculosis in several mammals including humans and

cattle, having a considerable economic and public health

importance in its own right [51].

In summary, we showed that disruption of the dut gene results in

lethality in M. smegmatis and that the mycobacteria-specific insert is

required for effective complementation of the lethal phenotype.

We also showed that the mycobacteria-specific insert has only

subtle contribution to the enzymatic activity of dUTPase and is

therefore presumed to mediate an important non-enzymatic

function within the bacterium. Finally, an inventory of the

mycobacterial enzymes of thymidylate synthesis indicates that

mycobacteria share a common dTTP biosynthetic route and that

our findings in M. smegmatis may be applied to other, pathogenic

mycobacterial species.

Materials and Methods

Protein sequence analysis and homology modeling
To determine the degree of identity between the enzymes

involved in the thymidylate metabolism of M. tuberculosis and M.

smegmatis, we carried out amino acid sequence search and

comparisons using the http://blast.ncbi.nlm.nih.gov/Blast.cgi

web server and the protein-protein BLAST algorithm. Default

parameter settings were applied. Multiple sequence alignments

were performed using the ClustalW software. The prediction of

the 3D structure of the dCTP deaminase of M. smegmatis (Uniprot:

A0QQ98) was performed by comparative homology modeling

using the SWISS-MODEL Server and Workspace http://

swissmodel.expasy.org/ [52]. For template, the apo crystal

structure of the M. tuberculosis bifunctional dCTP deaminase:

dUTPase (PDB: 2QLP) was used (87% sequence identity with the

M. smegmatis enzyme) [26]. The quality of the generated model was

evaluated by the ANOLEA [53], QMEAN [54] and PRO-

CHECK [55] programs.

Bacterial strains, media and growth conditions
M. smegmatis mc2155 [56] was grown in Lemco medium (broth)

or with the addition of 15 g L21 Bacto agar (solid) as described

Table 2. Kinetic parameters of WT and D-loop deletion
mutant M. tuberculosis dUTPase enzymes and dissociation
constants of dUTPase-dUPNPP complexes.

WT D2loop

Activity measurement kcat (s21) 1.2260.06 0.8860.02

KM (m M) 0.960.5 1.160.2

Fluorescence intensity titrations Amax (%) 27262 24661

Kd (m M) 0.360.1 3.360.5

Circular dichroism measurement Kd (m M) 0.960.5 3.962.4

doi:10.1371/journal.pone.0037461.t002

Dut Is Required for Mycobacterial Viability

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e37461



previously [57]. Kanamycin was added at g/ml, hygromycin B at

100 mg/ml, gentamicin at 10 mg/ml, and streptomycin at 20 mg/

ml concentration. For sucrose selection, 5% (wt/v) sucrose was

included. X-Gal (5-bromo-4-chloro-3-indolyl-b- D- galactopyra-

noside) was used at 40 mg/ml.

Construction of the suicide delivery vector
The suicide delivery vector was constructed to generate the dut

deletion mutant using a rapid cloning system [36]. First, a 2.1 kb

fragment containing the dut gene together with its flanking region

was amplified by polymerase chain reaction (PCR) from the M.

smegmatis genome (region indicated in Figure 3). The 2.1 kb

fragment was subsequently cloned into p2NIL [36] using the

HindIII restriction site. The hygromycin marker gene (hyg) was

PCR amplified from the pGOAL19 plasmid [36] using primers

that carry the AgeI restriction sites. The marked disrupted allele

was subsequently constructed by inserting the 1.8 kb hyg gene into

the single AgeI site in the middle of the dut gene, resulting in a

disrupted, non-functional dUTPase. The 6.1 kb PacI cassette

carrying the lacZ and sacB selection markers from pGOAL17 [36]

was cloned into the sole PacI site of p2NIL to yield p2Nbk-duth.

Primers used for cloning, mutagenesis and screening are compiled

in Table S1.

Construction of the complementing vectors
To make the complementing construct for the M. smegmatis WT

dut, PCR was used to amplify the complete gene together with the

native promoter 337 bp upstream of dut. Thereafter the 0.8 kb

PCR product was A-tailed and cloned into pGEM T-Easy

(Promega). The Gm-Int HindIII cassette from the pUC-Gm-Int

plasmid [58] was introduced into the resulting construct to yield

the integrating vector pGem-dut. The D-loop deletion mutant dut

complementing vector was made by the QuikChange method

(Stratagene) using the pGem-dut as template. The M. tuberculosis dut

coding complementing vector was made by exchanging the M.

smegmatis dut coding sequence for the M. tuberculosis dut coding

sequence. A FLAG-tag was cloned into all vectors subsequently.

All sequences were verified by restriction digestion and sequenc-

ing.

Generation of SCO, DCO and merodiploid strains
5 mg of UV pretreated plasmid DNA [59] was electroporated

into competent M. smegmatis [60], then single-crossover (SCO)

transformants were selected on medium containing kanamycin,

hygromycin and X-Gal. Merodiploid strains were constructed by

electroporating the SCO strains with the appropriate comple-

menting plasmids followed by isolation of kanamycin-, hygro-

mycin-, and gentamicin-resistant transformants. Double crossovers

(DCOs) were generated in the wild-type and merodiploid

background by streaking cells onto plates lacking antibiotics.

DCO selection was performed on medium containing sucrose, X-

Gal, and gentamicin as required [36]. Colony PCR screening was

carried out using gene-specific screening primers (Table S1) and

Red-Taq polymerase (Sigma Aldrich) to determine whether the

wild-type or the deletion mutant allele was present in the targeted

chromosomal location.

Genomic DNA isolation was carried out as follows
10 mL liquid culture of M. smegmatis was harvested, and the cells

were resuspended in 1 mL 10 mM Tris pH 7.5. Thereafter

0.1 mm glass beads were added to 2 mL volume, the cells were

disrupted by vortex and ice incubation by turn. After centrifuga-

tion the supernatant was manipulated routinely to purify DNA by

phenol:chloroform:IAA (25:24:1) extraction followed by isopropa-

nol precipitation [61].

Southern blot analysis was carried out using the
DecaLabelTM DNA Labeling Kit (Fermentas) according to
the manufacturer’s instructions

Restriction digestion of the genomic DNA was performed using

NcoI and PstI resulting in 1.5 kb and 3.3 kb fragments in the case

of WT and dut-disrupted mutant strains, respectively. The probe

was a 0.7 kb fragment encompassing the dut gene (for primers see

Table S1).

Verification of protein expression from the complement
vector

1 mg FLAG-tagged pGEM vector carrying the WT or the D-

loop M. smegmatis, or the WT M. tuberculosis dut was electroporated

into competent M. smegmatis cells. Gentamycin-resistant transfor-

mants were isolated and the integration of the complementing

vector was confirmed by PCR reaction. FLAG-tagged dut coding

strains were grown until the OD600 reached 0.4–0.5 then the cells

were harvested by centrifugation. Pellets were resuspended in lysis-

buffer (50 mM Tris-HCl, pH = 7.5; 140 mM NaCl; 1 mM

EDTA; 0.5% SDS; 1% Triton X-100; 0.5 mM PMSF; 2 mM

BA; 15 mM b-mercaptoethanol; 0,1 mg/ml DNase) and sonicated

(Elma, S30H ElmaSonic, D78224) for 4 times 5 minutes. Con-

centrations of the final supernatants of the cell extraction were

measured using Nanodrop ND-1000 and equalized by dilution

before Western-blot analysis. Protein lysates were heated at 95uC
for 5 min, separated by SDS-PAGE, and transferred to PVDF

membrane for immunoblotting with the specific antibody against

FLAG-tag (Sigma, Monoclonal ANTI-FLAGH M2 antibody).

Immune-complexes were visualized using enhanced chemilumin-

cesence. The blotted polyacrylamide gel stained with Comassie

Brilliant Blue and the PVDF membrane stained with Ponceau

were used as loading controls.

Mutagenesis, cloning and dut gene expression
Site-directed mutagenesis was carried out according to the

Stratagene QuikChange site-directed mutagenesis instructions and

verified by sequencing of both strands. The D-loop deletion

mutant (mtDUTD-loop) was created by deletion of the five (Ala133-

Ser137) loop-specific amino acids (for mutagenic primers see

Table S1). The recombinant dUTPase carrying an N-terminal

hexa-His tag was cloned into pET19-b vector and expressed in

Escherichia coli BL21(DE3) (pLysS) cells. For protein overexpression,

the cells were grown to an OD600 of 0.4, treated with 0.5 mM

isopropyl-b-D-thiogalactopyranoside at 37uC for 3 hours.

Protein purification was carried out as described
previously [41]

The final supernatant after cell extraction was loaded on a Ni-

NTA column (Novagen) and purified according to the Novagen

protocol. The purity of the protein preparation was analyzed by

SDS-PAGE. The enzyme conferring a single Trp in the active site

(mtDUTH145W) was used as wild-type in the kinetic measurements

[10]. Protein concentration was measured using the Bradford

method (Bio-Rad Protein Assay) and by UV absorbance

(l280 = 8480 M21cm21 for mtDUTH145Wand for mtDUTD-loop)

and is given in monomers. All measurements were carried out in

the dialysis buffer comprising 20 mM HEPES pH 7.5, 100 mM

NaCl, 2 mM MgCl2 and 1 mM DTT if not stated otherwise.
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Steady-state colorimetric dUTPase assay
Protons released in the dUTPase reaction were detected by

phenol red pH indicator in 1 mM HEPES pH 7.5 buffer also

containing 100 mM KCl, 40 mM phenol red (Merck) and 5 mM

MgCl2. A Specord 200 (Analytic Jena, Germany) spectrophotom-

eter and 10 mm path length thermostatted cuvettes were used at

20uC. Absorbance was recorded at 559 nm. The Michaelis-

Menten equation was fitted to the steady-state curves using Origin

7.5 (OriginLab Corp., Northampton, MA).

Fluorescence intensity titrations
Fluorescence was measured in a Jobin Yvon Spex Fluoromax-3

spectrofluorometer at 20uC, with excitation at 295 nm (slit 1 nm)

and emission at 347 nm (slit 5 nm). 4 mM protein was titrated by

the addition of 1–2 ml aliquots from concentrated dUPNPP

solutions (purchased from Jena Bioscience, Germany). Because

large concentrations of nucleotides were used, care was taken to

correct for any additional fluorescence or inner filter effect

imposed on the measured intensities by the nucleotide stock

solutions.

Circular dichroism intensity titrations
CD spectra were recorded at 20uC on a JASCO 720

spectropolarimeter using a 10 mm path length cuvette. 50 mM

protein was titrated by stepwise addition of the non-hydrolysable

substrate analogue dUPNPP, in a buffer containing 20 mM

HEPES pH 7.5, 50 mM NaCl and 2 mM MgCl2. A spectrum

between l= 240–350 nm was recorded at each nucleotide

concentration. Differential curves were obtained by subtracting

the signal of dUPNPP alone from that of the corresponding

complex. Differential ellipticity at lmax = 269 nm was plotted

against the dUPNPP concentration to obtain the binding curves.

The following quadratic equation was fitted to the experimental

curves:

y~szA � czxzKð Þ{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
czxzKð Þ2{4 � c � x

q� �
=2 � c

s = y at x = 0; A = amplitude; c = protein concentration; K = Kd.

Statistical analysis
Spectroscopy and kinetics measurements were carried out at

least 3 times. Error bars represent standard deviations. In case of

no error bars shown, a representative curve is displayed and the

relevant table shows the standard deviations of a certain parameter

obtained from several different measurements. In case of

experiments carried out in the whole bacterium the Fischer’s

Exact Test was applied to determine the p value.

Supporting Information

Figure S1 Key plasmids used in the generation of dut
deletion mutant M. smegmatis. (A) p2Nbk-duth delivery

vector used to generate mutant SCOs. The 2.1 kb HindIII M.

smegmatis fragment indicated in Figure 3 was inserted into the

p2NIL vector to construct the delivery vector. The dut allele was

disrupted with a 1.8 kb fragment encoding hygromycin resistance,

resulting in a non-functional dut gene. (B) The plasmid pGem-dut

was used to complement the gene-disruption mutation. The wild-

type dut allele together with its own promoter (337 bp upstream of

the dut coding region) was cloned into an L5-based integrating

vector to produce pGem-dut. Detailed cloning procedures are

given in Materials and Methods. Cdut, WT dut gene with its own

promoter; kan, kanamycin resistance gene; hyg, hygromycin

resistance gene; lacZ, b – galactosidase; sacB, sucrose sensitivity

gene; amp, ampicillin resistance gene; aacC1, gentamycin resistance

gene.

(TIF)

Table S1 Primers used in the present study.
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