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Abstract: Anemone coronaria L. (2n = 2x = 16) is a perennial, allogamous, highly heterozygous
plant marketed as a cut flower or in gardens. Due to its large genome size, limited efforts have
been made in order to develop species-specific molecular markers. We obtained the first draft
genome of the species by Illumina sequencing an androgenetic haploid plant of the commercial line
“MISTRAL® Magenta”. The genome assembly was obtained by applying the MEGAHIT pipeline
and consisted of 2 x 10° scaffolds. The SciRoKo SSR (Simple Sequence Repeats)-search module
identified 401.822 perfect and 188.987 imperfect microsatellites motifs. Following, we developed
a user-friendly “Anemone coronaria Microsatellite DataBase” (AnCorDB), which incorporates the
Primer3 script, making it possible to design couples of primers for downstream application of the
identified SSR markers. Eight genotypes belonging to eight cultivars were used to validate 62 SSRs
and a subset of markers was applied for fingerprinting each cultivar, as well as to assess their intra-
cultivar variability. The newly developed microsatellite markers will find application in Breeding
Rights disputes, developing genetic maps, marker assisted breeding (MAS) strategies, as well as
phylogenetic studies.
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1. Introduction

Anemone genus belongs to the Ranunculaceae family and the nowadays most culti-
vated species (A. coronaria L., A. hortensis L., and A. pavoniana Lam.) originated in the
Mediterranean basin. A. coronaria L., also known as poppy anemone, is an herbaceous,
perennial crop cultivated both as a cut-flower and garden plant [1]. It is a diploid species
characterized by 16 chromosomes (2n = 2x = 16), but some of the commercial varieties are
tetraploid. The cultivars exploited as cut-flower are early flowering and produce robust
stems carrying flowers with large petals and sepals, while garden cultivars produce erect
leaves and a higher number of smaller flowers with short petioles [2]. Poppy anemone is
allogamous, due to protogyny, and highly heterozygous [3]. Although self-pollination is
possible, the species is characterized by marked inbreeding depression [4], which precludes
the obtainment of pure lines suitable for the production of F1 hybrid seeds. Commercial
cultivars are produced by inter-crossing of selected heterozygous plants and show variable
levels of internal genetic variability. Growers plant rhizomes, which are generated after
one season of nursery cultivation [5].

In previous studies, DNA markers techniques have been applied and adapted mainly
for access intra-cultivars genetic variability or to perform varietal fingerprinting, refs. [5-7]
but no examples are reported in literature on the development of DNA species-specific markers.
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The advances in next-generation sequencing (NGS) techniques and the progressive
reduction of sequencing costs facilitated the obtainment of draft sequence genomes in many
plant species. However, due to the large size of A. coronaria genome, estimated between
9.08 and 11.93 Gb according to the analyzed genotype [8,9], a reference genomic sequence
of the species is not available.

We generated the first draft for genome sequence of A. coronaria, and we report on the
massive microsatellite loci identification following its genome-wide survey. Microsatellite—
alias simple sequence repeats (SSR)-markers, are co-dominantly inherited, ubiquitous,
highly polymorphic, and have found large application in plant breeding and phylogenetic
studies because of their simple application through conventional PCR protocols [10-16].
Unlike single nucleotide polymorphisms (SNPs), which have become the gold standard
among molecular markers, SSRs show the advantage of being multi-allelic and highly in-
formative, characterized by a certain level of transferability between related specie [17-20],
and are easily and automatically scorable.

Based on the microsatellites identified, we developed a public dynamic database,
which also provides need-based primer designing facilities and represents the first on-line
SSR loci resource available for the scientific community and breeders of poppy anemone
and related species. Furthermore, a set of the newly developed markers have been validated
in commercial cultivars.

2. Results and Discussion
2.1. Draft Genome Assembly and Annotation

Since A. coronaria is a highly heterozygous species, the sequence divergence between
alleles in a diploid genotype may hinder a reliable contig assembly of its genome se-
quence [21,22]. In order to overcome this hurdle, we performed DNA sequencing of a
haploid androgenetic plant originated through “in vitro” anther culture of a diploid plant
of the cultivar MISTRAL® Magenta. Overall, 91.24 Gb of cleaned reads were generated
and used as input for genome assembly (Supplementary Materials). The obtained draft
assembly consisted of ~4.7 x 10° scaffolds (N50 = 5046 bp) for a total genome size of
6.94 Gb. By removing scaffolds shorter than 500 bp, their number was reduced to 2 x 10°
(N50 = 6157 bp), for a total genome size of ~6.13 Gb (Supplementary Materials). K-mer
analyses of Illumina sequencing data were performed in order to estimate the genome size
of the MISTRAL® Magenta genotype. For the 19-mer frequency distribution, the number of
K-mers was 3,100,416,21, with a plot peak around 4 (times each 19-mear occurs—see Sup-
plementary Materials). According to our analysis (see Section 3), the MISTRAL® Magenta
genome size was estimated around 7.8 Gb, leading our final assembly to cover ~78.6% of
the genotype genome.

After the masking of the draft genome, about 75% of the sequences were classified
as repetitive elements. This result is in accordance with what was previously reported
in the literature, namely that the expansion of gigantic genomes has been driven by the
proliferation of transposable elements [23,24]. Indeed, also due to the sequencing of short-
libraries (270 bp), the huge amount of repetitive content hampered the assembly procedures
and biased some assembly metrics.

The masked assembled draft genome was structurally annotated with the Maker-P
suite, identifying an overall number of 26,260 genes (AED < 0.4) covering ~56.12 Mb (0.92%)
of the estimated genome size. Functional annotation performed through InterProScan
domain inspection highlighted about 84% of the predicted proteins with at least one
IPR domain. Among the top SUPERFAMILY domains, the most abundant (8.62%) was
SSF56112 (protein kinase-like domain), which acts on regulatory and signaling processes in
the eukaryotic cell. The second most represented superfamily (6.19%) was SSF52540 (P-loop
containing nucleoside triphosphate hydrolase) which is involved in several UniPathways,
such as chlorophyll or CoA biosynthesis, followed by SSF48264 (4.10%-Cytochrome P450).
These superfamilies have been previously reported as highly abundant in various genomic
backgrounds [25-29].
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2.2. The SSR Content of the Poppy Anemone Draft Genome

In the assembled poppy anemone genome, a total of 401,822 perfect SSR motifs
(density of 65.52 SSR/Mb), which included 42,111 compound SSRs, and 188,987 imperfect
SSR motifs were identified (Table 1).

Table 1. Microsatellite motifs distribution across the assembled genome. Perfect (including com-
pound) and imperfect SSR are reported.

Mono- Di- Tri- Tetra- Penta- Hexa- Total/Mean
Types 2 4 10 32 91 304 443
Count 13,475 241,693 95,326 27,203 10,805 13,320 401,822
% 34 60.2 23.7 6.8 2.7 3.3 100
Perfect SSR  Density (SSR/Mbp) 2.2 39.41 15.54 4.44 1.76 217 65.52
Cumulative (Mbp) 0.05 1.94 1.14 0.43 0.21 0.32 411
Cumulative (%) 0.08% 47.20% 27.74% 10.46% 5.11% 7.79% 100%
Mean Repeat Number 22.7 11.3 6.9 52 5.0 6.8 57.9
Count 2823 111,281 38,183 10,719 12,920 13,061 188,987
Imperfect % 1.49% 58.88% 20.20% 5.67% 6.84% 6.91% 100%
S5R Density (SSR/Mbp) 0.46 18.14 6.23 215 211 213 31.22

Six classes of perfect SSRs were evaluated (from mono- to hexanucleotide) for their
abundance in the assembled genome. Dinucleotides were the most abundant, in accordance
with what has been previously reported in literature [30-39], representing 60.2% of the
identified SSRs. Trinucleotides were the second most abundant class (23.7%), followed
by tetranucleotides (6.8%). Penta-, hexa-, and mononucleotides covered the remaining
percentage and showed analogous frequency ranging from 2.7 to 3.4% (Figure 1a). The most
represented dinucleotide motifs, AT/AT, AG/CT, and AC/GT, accounted respectively for
72.56%, 16.05%, and 11.39% (Figure 1b), while CG/GC motifs were approximately absents
(0.009%). The high abundance of AT /AT motifs was in line with a number of previously
reported genome surveys, confirming these microsatellites as the most represented dinu-
cleotide motifs in higher plants. Within the trinucleotide repeat motifs, the most abundant
were AAG/CTT, accounting for 36.84%, AAT/ATT for 16.55%, and ATC/GAT for 15.75%
(Figure 1c).

The variation of perfect microsatellites repeats was investigated in all SRR classes
(Supplementary Materials). As previously reported, longer repeats (>25) tend to be less
abundant in the genome [37,38,40,41]. As can be observed in Figure 2, the tri-, tetra-,
penta-, and hexanucleotides relative distribution was higher between one and 10 motif
repeats, while mononucleotides distribution increased from 14 motif repeats onward and
dinucleotides showed higher abundance between 8 and 19 motif repeats.

Based on the number of motif repeats, 0.95% of SSRs were classified within the
hypervariable class I (>30 motif repeats), 3.71% were assigned to the potentially variable
class II (20-30 motif repeats) types, while the remaining 95.34% were included in the
variable class III (<20 motif repeats) types (Figure 3a).

Compared with our previously published data [37,38], in which SSR classification
was based on microsatellite length (nt), the present classification reports a lower number
of SSRs belonging to class I and II. The choice of shifting from a microsatellite length
(nt) classification to a repeat number-based one was performed in order to maximize
the polymorphism discrimination power and informativeness of the Class I and Class II
markers (Figure 3b).
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Figure 3. (a) The frequency of repeat classes (class I > 30 motif repeats, class II 20-30 motif repeats,
class III < 20 motif repeats; (b) the distribution of motif type within each class.

2.3. Gene Context of SSRs

The obtained gene annotation made it possible to investigate the distribution of
microsatellites across the gene space. Overall, 3223 perfect (0.80% of the total) and
1261 imperfect SSRs (0.67%) were associated with 3223 and 1261 genes respectively, rep-
resenting 0.23% of the gene space. These SSRs were estimated to cover a total of 134 Kb,
values which translates to a density across the gene space of 57.48 and 22.52 SSRs/Mbp for
perfect and imperfect motifs, respectively.

We also investigated the perfect SSR motifs detected in the global set of genomic and
genic SSRs. The microsatellites were classified in non-triplet repeats (mono-, di-, tetra- and
pentanucleotides), and triplet repeats (tri- and hexanucleotides), and a fair balance between
the two classes (45.33% triplets; 54.67% non-triplets; Figure 4a) was detected in genic SSRs,
while in the whole genomic set the triplets were just about 27%.

Trinucleotides were the most common class among the genic perfect microsatellites
(38.2%), and the second most common class were the dinucleotides (29.0%; Figure 4b). The
predominance of trinucleotides in the gene space has been widely reported in literature as a
direct effect of negative selection against frameshift mutations in coding regions [38,42-45].
Furthermore, the increase of trinucleotides frequency in genomic coding regions might
be due to a positive selection for specific single amino-acids [46,47]. For this reason, the
most frequent trinucleotides genic perfect SSR motif types were investigated (Figure 4c),
identifying AAG/CTT, coding for lysine, as the most represented motif (11.14%), followed
by AAT/ATT (7.60%), ATC/GAT (5.31%), and ACC/GGT (4.87%) coding for aspargine,
isoleucine, and threonine respectively. In the genic regions, the most common dinucleotides
were AG/CT (11.88%) followed by AT/AT (9.12%). The predominance of AG/CT motif
in gene sequences has been widely reported in literature, as well as the higher frequency
of AT/AT in the non-transcribed regions. Being present in transcripts, genic SSRs have
been reported as an important class of “functional markers” (DNA markers derived from
functionally characterized sequence motifs [48]) playing a crucial role in gene expression in
both mammals and plants [49-53]. Furthermore, genic microsatellite markers have been
reported to possess higher portability among related species, making it possible to use
them as anchor markers in comparative genetics [54].
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Figure 4. (a) Non-triplet SSR vs. triplets SSR; (b) distribution of repeat types within perfect and
imperfect SSR motifs in both the genomic and genic regions; (c) Comparison between di- and
trinucleotide repeats in both full genomic regions and gene space.

The GO categorisation of the genic SSR highlighted 1113 sub-categories of three main
GO categories—Biological Process (BP), Molecular Function (MF), and Cellular Component
(CQC). Thirteen sub-GO categories represented ~33% of the identified entries (Figure 5).

The MF sub-categories “protein amino acid binding” (GO:0005515) and “ATP binding”
(GO:0005524) represented more than the 10% of the overall identified accessions. The oc-
currence of SSRs within specific gene functions has been previously observed [22,37,55-57],
as well as the presence of SSRs in binding-associated genes, specifically in the 5'-UTR
region [49]. Unexpectedly, only 2.4% of the SSRs identified fell among the “regulation
of transcription” (GO:0006355) sub-GO category (BP) as the accumulation of microsatel-
lites in transcription factors, and more in general in transcription regulation loci has been
repeatedly reported in literature [22,37,55-57].
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Figure 5. Thirteen main sub-GO categories of genes containing SSRs.

2.4. AnCorDB Construction, System Architecture, Features and Utility

A public and searchable database of the microsatellites data reported in this paper
was developed (AnCorDB—Auvailable at www.anemone.unito.it, accessed on 9 March 2022).
It offers similar features to the CyMSatDB [37] and the EgMiDB databases [38] and it can be
used to retrieve SSRs based on either simple and complex searches. The database provides
browsable access to all the SSRs identified in the poppy anemone genome. SSRs can be
retrieved on the basis of simple characteristics, such as “SSR feature” (whole genomic or
only genic SSR), “repeat kind” (perfect vs imperfect), or advanced characteristics, such
as “motif type” (mono- to hexanucleotide), “specific motif sequence”, “repeat number”.
Multiple parameters can be also combined to search for a specific set of SSRs as per user
requirement, as researchers can limit the search via motif repetition and number of markers
required (1-99). Scaffold position can be changed through a dedicated query. The output
lists a wide range of information (SSR identifiers, scaffold number, motif type and length,
genomic location—start and end position-, SSR length) including an optional download
of the flanking sequences. Primer3 tool is implemented in the database, allowing primers
design through the “Design Primers” button which directs the use to a list of up to five
possible primer pairs, with their melting temperatures (Tm), their GC content, and the
expected length of the amplicon. The obtained pairs of primers can be downloaded in
MS-Excel format (Figure 6).

2.5. SSR Validation and Varietal Fingerprinting

A set of 150 microsatellite loci was selected as representative of the overall genome
distribution of every class and motif, their primer pairs were designed, and they were
PCR-validated. On the basis of the amplicon quality, 62 SSRs were selected for varietal
fingerprinting of poppy anemone cultivars (Supplementary Materials). In some cases we
detected a low efficiency of the primer design which could be attributed to the low coverage
of our draft genome, leading to misassembly in the repetitive elements regions [58,59].
Nevertheless, the percentage of suitable primer pairs resulted in line with the one de-
tected in previous SSR mining reports based on draft genome sequence obtained at low-
coverage [60-62].
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Figure 6. Example of SSR search and primer design at AnCorDB.

We tested the selected 62 SSR markers on eight commercial cultivars of which six were
diploids and two tetraploids (see Section 3), representative of the phenotypic variability of
the varieties marketed by Biancheri Creazioni. A total of 203 alleles were generated, with
a mean of 3 (range 1-8) alleles per locus. The largest range in amplicon length detected
was 199-604 bp, resulting from the amplification of Ancor33, a dinucleotide AT motif. In
the 25.8% of the loci, the assay generated the amplicon predicted length, while in the
48.4% the amplicon was longer than expected and in the 25.8% shorter. Only three SSRs
were monomorphic across the evaluated genotypes and thirty markers were nullallelic
for at least one genotype. The polymorphism information content (PIC) values of the
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polymorphic SSRs varied from 0.13 to 0.85 (mean 0.52 £ 0.025). AnCor49 had the highest
PIC, and AnCor71 the lowest (Supplementary Materials).

The scored allele peaks were used to elaborate a UPGMA-based dendrogram (Figure 7)
which allowed the fingerprinting of each cultivar.
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Figure 7. UPGMA dendrogram (left) and PCoA analysis of the eight varieties based on 62 microsatel-
lite loci (right). Bootstrap values (%) are reported in red.

The detected genetic relationships among varieties was in accordance with their
breeding origin (Biancheri, personal communication). Two major clades were identified,
and supported with bootstrap values higher than 90. In Clade I, the two tetraploid cultivars
(“BCN” and “Blu”) clustered with an average genetic similarity of 78% and a bootstrap
probability of 92%, while among the other three cultivars, Edge resulted more genetically
differentiated from “Bordeaux” and “Magenta”, which showed a genetic similarity of 74%
and clustered with a bootstrap probability of 94%. In Clade II, “Tigre” and “Tigre Wine”,
which in turn resulted highly differentiated, showed an average genetic similarity of 60%.

The first two axes of the PCoA scatter plot (Figure 7) explained 42 and 31% of the
overall genetic variation respectively confirming the genetic relationships between the
cultivars. Interestingly, the cultivars “Edge” and “Rosa”, although resulted genetically
differenciated following UPGMA analyses, showed a common value for the first main
coordinate of the PCoA.

Aiming at developing a fingerprint protocol for poppy anemone and identifing the
minimum number of SSR loci needed to fully discriminate between the cultivars in study;,
we selected six SSRs. Five of them were selected on the basis of their PIC values, namely the
dinucleotide SSRs Ancor33, -36, -49, -59, and -83, applied togheter with the tetranucleotide
Ancorl77 (detailed information in Supplementary Materials). On the basis of the 6 SSR
markers, we created a similarity matrix and correlation between this matrix and the one
obtained using the whole data set indicated a good fit of the genetic relationships (r = 0.92)
and made it possible to fingerprint each cultivar. This suggests their possible application as
a valuable tool for varietal identification in the species.

2.6. Intra-Cultivar Variability Assessment

In order to assess the intra-cultivar variability among the 8 cultivars in study and
furtherly validate the newly developed SSRs, five plants per cultivar were genotyped using
the previously described set of six microsatellites. Fixation index (Fis) values ranged from
—0.68 to 0.79. As expected from selected genotypes obtained within breeding programs,
most the loci showed significant deviation from HWE, with only one marker (Ancor89)
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showing no significant difference between expected (Hg) and observed (Hp) heterozygosity
values (Supplementary Materials). The principal coordinate analysis and UPGMA dendro-
gram illustrate the genetic relationships between members of this extended germplasm
panel (Figure 8).
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Figure 8. Dendrogram and PCoA obtained from UPGMA cluster analysis of five plants for each of
the eight cultivars, based on six microsatellites (47 alleles). Bootstrap values (%) for the main nodes
are reported in red.

PCoA axes 1 and 2 accounted for ~74% of the overall genetic variation, the former
contributing ~48%, and the latter ~26%. As expected, the cultivar “Edge” and “Rosa”
shared positive (or slightly negative) values for the first coordinate, together with “Tigre”
and “Tigre Wine”. “Edge” showed the highest intra-cultivar variability, while “Bordeaux”
the lowest (Figure 7). The UPGMA based on 62 and six SSRs in some cases provided
different clustering among the cultivars under study. This is the case of the cultivars “Rosa”
and “Bordeaux”, which appeared more genetically distant on the basis of 62 microsatellites
(Figure 7), while closer on the basis of six SSRs (Figure 8) and with a bootstrap value as low
as 45.

Each plant of the cultivars “Edge”, “Blu”, and “BCN” showed a unique fingerprinting,
while in the other five, some plants shared common alleles. Despite the observed intra-
cultivar genetic variability, the application of only six SSRs made it possible to clearly
discriminate the diploid cultivars, each of them clustered with bootstrap support from
95 to 100, while no clear genetic differentiation between the tetraploid cultivars “BCN”
and “Blu” was detectable, suggesting the application of additional specific markers for
their fingerprinting. For this purpose, the sixty-two amplified markers were investigated,
leading to the identification of five microsatellites each of which might be individually
applied for “BCN” and “Blu” discrimination (Table 2).
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Table 2. List and primer sequences of the six candidate markers for cultivar discrimination analyses
between BCN and Blu.

Alleles (bp)

SSR SSR Type Motif N° of Repeats BCN BLU
AnCor49 Di AT 26 450; 468 435
AnCor74 Di GT 30 501; 530 529; 539
AnCor87 Di TC 29 271 262;275

AnCorl15 Tri AAC 28 518 528
AnCor132 Tri AAC 27 533; 589 536; 572
AnCor139 Tri AAG 26 501 504; 512

3. Materials and Methods
3.1. Draft Genome Sequencing, Assembly, and Annotation

Leaves of a haploid plant originated from the commercial line MISTRAL® MAGENTA
obtained through “in vitro” androgenesis by applying the regeneration protocol adapted
by [5], were provided by Biancheri Creazioni (Camporosso (IM), Italy). Plant DNA Kit
(E.ZN.A.®) was used for the genomic DNA extraction following the manufacturer’s in-
structions. DNA quality was assessed through the NanoDrop™ 2000 spectrophotometer
and the Qubit® 2.0 Fluorometer was used for DNA quantification. One microgram of DNA
was used for the construction of a 270 bp insertion library (Novogene, Hong Kong), which
was sequenced using a NovaSeq Illumina platform (Illumina Inc., San Diego, CA, USA)
with paired-end chemistry (2 x 150bp). Raw reads were cleaned with Scythe (v0.994,
https:/ /github.com/vsbuffalo/scythe, accessed on 2 January 2022) for removing contam-
inant residual adapters and Sickle (v1.33, https://github.com /najoshi/sickle, accessed
on 2 January 2022)) for removing reads with poor quality ends (Q < 30). De novo as-
sembly was performed with standard parameters using the MEGAHIT assembler ([63];
https://github.com/voutcn/megahit, accessed on 2 January 2022)), an ultra-fast and
memory-efficient NGS assembler based on succinct de Bruijn graphs that can be applied
both for metagenomics and single genome assembly. The quality of the genome assembly
(e.g.,: N50, scaffolds/scaffolds number/size/length, genome length) was assessed using
the perl script Assemblathon_stats.pl ([64]; https://github.com /ucdavis-bioinformatics/
assemblathon2-analysis, accessed on 2 January 2022)). Cleaned reads were then used
for k-mer-based genome size estimation using the jelly-bean software and applying the
formula Genome Size = 19-mers count/peak position of the number of times each 19-mer
occurs (see Supplementary Materials).

The assembled draft genome was pre-masked using RepeatMasker v4.1.0 [65] with
a de novo approach. A species-specific repeats library was constructed following the
Repeat Library Construction Advanced pipeline ([66]-http://weatherby.genetics.utah.edu/
MAKER/wiki/index.php/Repeat_Library_Construction-Advanced, accessed on 2 January
2022)) which requires the use of mite hunter, LTRdigest, LTR_harvest (available in genome
tools, v1.5.10), and Repeatmodeler v1.0.11. The new library was then combined with
Repbase-viridiplantae to identify transposable elements (TEs). TEs were classified into two
main classes: Class I (retrotransposon elements) and Class II (DNA transposons). Gene
prediction was performed using Maker-P v2.31.08. Augustus v3.3.2 ([67]) Hidden Markov
Models, and SNAP ([68]) gene prediction algorithms were combined with transcripts and
protein alignments as evidence to support the prediction. All predicted gene models were
filtered and only the ones with an AED < 0.4 were maintained. AED measures the con-
cordance of a gene predicted with aligned transcripts, mRNA-seq, and protein homology
data. AED scores range from 0 and 1, where 0 indicates perfect concordance between
evidence and gene prediction, while 1 absence of concordance. To measure the quality and
completeness of the predicted proteomes, a quantitative assessment was carried out based
on evolutionary informed expectations of gene content known as Benchmarking Universal
Single-Copy Orthologs (BUSCO v3.0.2., Embryophyta odb 10—[69]). The sequences of
the predicted proteins were also noted using InterproScan5 ([70]) compared to all the
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available databases (ProSitePro les-20.119—([71], PANTHER-10.0—[72], Coils-2.2.1—[73],
PIRSF-3.01—[74], Hamap-201511.02—[75], Pfam-29.0—[76], ProSitePatterns—20.119—[71],
SUPERFAMILY-1.75—([77], ProDom-2006.1—[78], SMART-7.1—[79], Gene3D-3.5.0—[80],
and TIGRFAM-15.0—([81]). Then, GOfeat ([82]) was used to identify the enrichment of GO
terms for specific gene clusters.

3.2. SSR-Mining

The un-masked draft assembly of the A. coronaria L. genome was used for SSR mining.
Scaffolds were chopped into manageable pieces using SciRoKo tool ([83]—v3.4; https://
kofler.or.at/bioinformatics /SciRoKo, accessed on 2 January 2022)), and perfect, compound,
and imperfect SSRs were identified in silico using SciRoKo and the misa.pl pipeline (https:
//github.com/cfljam/SSR_marker_design, accessed on 2 January 2022)). A minimum of
four repetitions together with a minimum length of 15 nt were requested. Any sequence
was considered as a perfect SSR when a motif was repeated at least fifteen times (1 nt motif),
eight times (2 nt), five times (3 nt), or four times (4-6 nt), allowing for only one mismatch.
For compound repeats, the maximum default interruption (spacer) length was set at 100 bp.
The coordinates (start/end position) of each SSR were matched with those of the gene space
using Bedtools intersect (using the default parameters) with -loj (left outer join) option:
where the overlap comprised at least 1 nt, the repeat was designated as a genic SSR. A GO
categorization of the three main GO categories—"biological processes” (BP), “molecular
functions” (MF), and “cellular components” (CC)—were applied to genes carrying at least
one SSR.

3.3. AnCorDB, an SSR Database for Poppy Anemone

The Anemone coronaria Microsatellite DataBase (AnCorDB; www.anemone.unito.it,
accessed on 9 March 2022)) was developed to provide browsable access to the SSR data.
This web application, based on a LAMP stack, comprises a client tier (client browser), a
middle tier (Apache web server with PHP interpreter), and a database tier (MySQL DBMS).
A user-friendly interface was developed using PHP, which is an open-source server-side
scripting language. The set of in silico detected SSRs were stored in the MySQL database,
using PHP scripts to parse the text file from SciRoKo. User need-based customized queries
can be generated from the web interface and allow users to search the microsatellite marker
information in MySQL database. A stand-alone version of Primer3 has been also provided
to design primer pairs for any given SSR: its output lists alternative sets of primer pairs,
and the characteristics of the expected amplicon.

3.4. Marker Validation

One hundred and fifty microsatellites were selected among the ones with a number of
repetitions between 20 and 30, in line with the overall genome representation of every class
and motif. Specifically, di- and tri-nucleotides were selected in the interval ranging from 25
and 30 motif repetitions, while this threshold was lowered to the interval between 20 and
30 motif repetitions for the other classes of microsatellites. These parameters were applied
with the aim of obtaining the highest potential polymorphism rate of the selected markers.
The primer pairs obtained from the database were used for the DNA amplification of eight
A. coronaria cultivars representative of the phenotypic variability of the ones marketed
by Biancheri Creazioni. Among them, six cultivars were diploid (“Bordeaux”, “Edge”,
“Magenta”, “Rosa”, “Tigre”, and “Tigre Wine”), while two were tetraploid (“BCN” and
“BLU”). The following touchdown PCR protocol was applied: 94 °C for 5 min followed
by 13 touchdown cycles with denaturation step at 94 °C for 30 s, a step at 60 °C for 30 s
decreasing the annealing temperature of 0.38 °C every cycle, and lastly extension step at
72 °C for 30 s. At last, 35 cycles at 94 °C for 30 s (denaturation), 55 °C for 30 s (annealing),
and 72 °C for 30 s (extension), and a final extension cycle at 72 °C for 5 min. PCR products
were separated using a 2% agarose gel to check their occurred amplification.
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3.5. SSR Fingerprinting and Intra-Cultivar Variation Assessment

A subset of 62 SSRs (Supplementary Materials) were further analyzed through capil-
lary sequencing (ABI PRISM® 310, Applied Biosystems™). M13-Tailed Forward primers
were designed for each microsatellite and applied in a three-primers unbalanced PCR
reaction with a fluorescent-labelled M13 primer ([84]). PCR was carried out in a final
volume of 20 uL containing: 4 uL of 5x GoTaq Colorless Buffer (GoTag® DNA Polymerase,
Promega), 1 uL of MgCl_2 (25 mM), 0.4 puL of dNTPs (10 mM), 3 uL of DNA template
(5ng/uL), 1 uL of Reverse and M13-labeled primer (10 uM), 0.2 uL of Forward-M13 Tailed
primer (10 uM), and 9.2 puL of ultrapure water. In each reaction, 1 pL of amplification
product was pooled with other three products labelled with different fluorophores (FAM,
VIC, NED, and PET) and purified using the PEG-precipitation method described by [85].
Multiplex genotyping reactions were carried out in ABI PRISM® 310 according to the
GeneScan® Reference Guide (Applied Biosystems™). Results were visualized using Peak
Scanner™ Software v1.0 (Applied Biosystems™) and for each microsatellite the amplicons’
length was scored. A binary matrix was generated by scoring the band presence (1) and
absence (0), which was used to compute pairwise similarity coefficients [86] and then to
construct a UPGMA-based dendrogram [87] with 1000 bootstraps. Principal coordinate
analysis (PCoA) was also performed for displaying the multi-dimensional relationship
between genotypes, and the two axes were plotted graphically, according to the extracted
eigenvectors. All analyses were performed using the NTSYS software package v2.10 [88]
and Past 4.09 software [89]. The polymorphic information content (PIC) was calculated
for each locus as described by [90] and used for selecting the most informative SSRs and
identify the lowest number of loci needed for fingerprinting each of the cultivar in study.
Mantel test [91] was performed to establish correlations between the similarity matrices
generated by the most informative SSRs with the one generated from the complete data
set. An intra-cultivar variability assessment was also performed by applying the most
informative SSR loci on five plants belonging to each of the eight cultivars. PCR reactions,
capillary sequencing, UPGMA-based dendrogram, and PCoA analysis were performed
as described above. Calculations of observed (Hp) and expected (Hg) heterozygosity and
Wright's fixation index (Fig) were estimated with the program IDENTITY 1.0 [92]. Exact tests
of Hardy—Weinberg equilibrium (HWE) were made by means of the software GENEPOP
3.4 [93].

4. Conclusions

The development of a draft genome assembly of Anemone coronaria L. represents the
first step toward genomic studies in poppy anemone. Its availability made it possible to
identify a wide set of SSR markers and release the comprehensive microsatellite database
AnCorDB (www.anemone.unito.it). The latter contains a full set of information regarding
both genic and non-genic, perfect and imperfect SSR loci. Its intuitive web interface
and its customized primer design offer a highly flexible tool to the scientific community
and breeders, exploitable for genetic as well as phylogenetic studies. Our results also
demonstrated that the application of a limited number of SSRs might be suitable for varietal
discrimination and may contribute to solve Breeding Rights disputes.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijms23063126/s1.
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