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Abstract

Loneliness is an increasingly prevalent condition linking with enhanced morbidity and premature mortality. Despite recent
proposal on medicalization of loneliness, so far no effort has been made to establish a model capable of predicting
loneliness at the individual level. Here, we applied a machine-learning approach to decode loneliness from whole-brain
resting-state functional connectivity (RSFC). The relationship between whole-brain RSFC and loneliness was examined in a
linear predictive model. The results revealed that individual loneliness could be predicted by within- and between-network
connectivity of prefrontal, limbic and temporal systems, which are involved in cognitive control, emotional processing and
social perceptions and communications, respectively. Key nodes that contributed to the prediction model comprised regions
previously implicated in loneliness, including the dorsolateral prefrontal cortex, lateral orbital frontal cortex, ventromedial
prefrontal cortex, caudate, amygdala and temporal regions. Our findings also demonstrated that both loneliness and
associated neural substrates are modulated by levels of neuroticism and extraversion. The current data-driven approach
provides the first evidence on the predictive brain features of loneliness based on organizations of intrinsic brain networks.
Our work represents initial efforts in the direction of making individualized prediction of loneliness that could be useful for
diagnosis, prognosis and treatment.
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Introduction

Loneliness is a negative emotional state induced by subjective
perception of social isolation even when among other people
(Weiss, 1973; Cacioppo and Cacioppo, 2018). Susceptibility to

loneliness is a trait-like phenotype that is moderately heritable,
stable across time and varied across individuals (McGuire and
Clifford, 2000; Boomsma et al., 2005; Boomsma et al., 2007;
Canli et al., 2018). People high on loneliness experience less
reward from daily social interactions, exhibit hypersensitivity
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to negative social information, show impaired social skills and
have poor self-regulation (Jones et al., 1982; Hawkley et al.,
2007; Bangee et al., 2014; Yildiz, 2016; Cacioppo et al., 2017).
Loneliness has also been linked to big five personality dimen-
sions, especially neuroticism and extraversion (Atak, 2009;
Abdellaoui et al., 2018a).

Loneliness is a risk factor for a variety of mental and physical
health conditions (House et al., 1988), ranging from depression
and anxiety to Alzheimer’s disease, cardiovascular disease and
cancer (Antoni et al., 2006; Cacioppo et al., 2006; Wilson et al., 2007;
Cacioppo et al., 2010; Hawkley et al., 2010). Due to the increasing
prevalence of loneliness and its detrimental effects in modern
societies, many researchers have advocated the medical solution
of loneliness as a public health problem (Holt-Lunstad et al., 2017;
Cacioppo and Cacioppo, 2018). In this context, models that can
be used to predict loneliness severity at the individual level may
provide clinical utility in terms of diagnosis and prognosis in
future. The current work presents initial efforts in this direction
by making individualized prediction of loneliness from intrinsic
whole-brain functional connectivity.

Recent brain imaging studies on loneliness have demon-
strated links between loneliness and changes in brain functions
and structures important for affective, social and cognitive
processing. First, loneliness has been linked to attenuated
ventral striatum responses to positive social information
(Cacioppo et al., 2009; Inagaki et al., 2015), and enhanced
insular responses to negative social information (Lindner et al.,
2014), as well as aberrant fronto-limbic functional connectivity
when processing negative stimuli (Wong et al., 2016). Second,
loneliness is associated with altered structural morphometry
and integrity in brain regions that are important for social
perception, particularly the posterior superior temporal sulcus
(pSTS) and temporoparietal junction (TPJ; Kanai et al., 2012;
Nakagawa et al., 2015). Lastly, altered gray matter volume
in the prefrontal system [e.g. dorsolateral prefrontal cortex
(dlPFC)] (Kong et al., 2015) as well as its within- and between-
network organizations have been associated with diminished
self-regulation in lonely people (Tian et al., 2014; Layden et al.,
2017; Tian et al., 2017). Taken together, previous neuroimaging
evidence indicates diverse manifestations of loneliness in
multiple neuropsychological processes (Cacioppo and Hawkley,
2009; Cacioppo et al., 2014). Intriguingly, preliminary evidence
has shown that associations between loneliness and altered
brain functions and structures are mediated by the neuroticism
and extraversion (Kong et al., 2015).

Building on recent brain imaging findings (Rosenberg et al.,
2016; Smith et al., 2017; Beaty et al., 2018; Hsu et al., 2018),
here we implemented a connectome-based predictive modeling
approach (Shen et al., 2017) to predict individual loneliness
from whole-brain resting-state functional connectivity (RSFC).
The RSFC allows for examining interplay between large-scale
neural systems associated with loneliness (Braun et al., 2018),
which is a complex construct rooted in the functional and
structural integrity of distributed networks (e.g. Tian et al., 2014;
Nakagawa et al., 2015; Layden et al., 2017; Smith et al., 2017;
Tian et al., 2017; Smith et al., 2018). Furthermore, the machine-
learning approach typically implements cross-validation pro-
cedures to estimate the model with training samples and to
test the performance of the model with independent samples
(i.e. test samples). Therefore, the predictive model enables
subject-specific predictions, which are of help in clinical
practice where doctors require for individualized assessment
of symptom severity (Paulus, 2015; Huys et al., 2016; Paulus,
2017). Moreover, predictive models integrate all available brain

features (i.e. RSFC in the present study) to predict outcomes (i.e.
loneliness), which enhance statistical power and avoid multiple
comparisons and provide more practical utility compared to
commonly used group statistics (see also Woo et al., 2017).
Finally, predictive features adopted by the model implicate
neural correlates of the loneliness (Rosenberg et al., 2016;
Cui et al., 2018).

Based on previous findings, we expected that individual dif-
ferences in loneliness would be predicted by characteristics of
intrinsic connectivity across distributed networks, particularly
those implicated in emotional (e.g. the amygdala, insula, stria-
tum), social (e.g. the pSTS and TPJ) and cognitive (e.g. the dlPFC)
processing. We also expected that both loneliness and associated
network connectivity would be modulated by neuroticism and
extraversion.

Material and methods
Participants

Seventy-five healthy right-handed college students from Beijing
Normal University (62 males and 55 singles; age 21.88 ± 3.01
years) without history of neurological or psychiatric disorder
were recruited. The study was conducted in accordance with
the 1964 Helsinki Declaration and its later amendments and was
approved by the Ethics Committee of Beijing Normal University.
Written informed consents were obtained from all participants.

Assessment of loneliness

Loneliness was assessed using the Revised UCLA Loneliness
Scale (Russell, 1996), which is a well-validated measure of
general feelings of loneliness. The scale consists of 20 items,
and each item is scored on a 4-point Likert scale ranging from
1 (never) to 4 (always). The higher scores on the scale indicate
higher levels of loneliness.

NEO personality inventory-revised

Personality was assessed by the NEO personality inventory-
revised (Costa Jr and McCrae, 1992). The scale consists of
120 items and assesses the five different dimensions of
personality: neuroticism, extraversion, openness, agreeableness
and conscientiousness. Each item is rated on a 5-point Likert
scale ranging from ‘strongly disagree’ to ‘strongly agree’.

Image acquisition

Images were acquired on a Siemens 3-Tesla TRIO scanner at
Beijing Normal University Imaging Center for Brain Research.
The resting state scanning consisted of 150 contiguous echo-
planar imaging (EPI) volumes using the following parameters:
axial slices, 33; slice thickness, 3.5 mm; gap, 0.7 mm; repetition
time (TR), 2000 ms; echo time (TE), 30 ms; flip angle, 90◦; voxel
size, 3.5 × 3.5 × 3.5 mm3 and field of view (FOV), 244 × 244 mm2.
In addition, high-resolution structural images were acquired
through a 3D sagittal T1-weighted magnetization-prepared rapid
acquisition with gradient-echo sequence, using the following
parameters: sagittal slices, 144; TR, 2530 ms; TE, 3.39 ms; slice
thickness, 1.33 mm; voxel size, 1 × 1 × 1.33 mm3; flip angle, 7◦;
and FOV, 256 × 256 mm2.

All participants underwent a 5 min resting-state functional
magnetic resonance imaging scanning, during which they
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were instructed to close their eyes, keep still, remain awake
and not to think about anything systematically (see also
Nooner et al., 2012). Several approaches were implemented
to reduce the possibility that participants might fall asleep
during the scan: (i) participants were explicitly instructed to
close their eyes but not fall asleep during the resting-state
scan; (ii) experimenters communicated with each participant
immediately after the scan, and all participants responded
promptly, indicating that they did not fall asleep; and (iii)
the current study implemented rigorous criteria (see also
‘image preprocessing’) to exclude participants from further
analyses based on their head motion. Therefore, it is likely that
participants sleeping during the scan (therefore, lower control of
head movements) were excluded from analyses in the current
study.

Image preprocessing

Neuroimaging data analyses were performed with the DPABI
software package (Yan et al., 2016), which is a convenient soft-
ware plug-in based on SPM12 (http://www.fil.ion.ucl.ac.uk/spm).
The first 10 volumes of the functional images were discarded
for signal equilibrium and participants’ adaptation to scanning
noise. The images were then realigned for head movement
correction. Seven participants (6 males, 5 singles) were excluded
from further analysis under the criteria of head motion exceed-
ing 2.5 mm maximum translation, 2.5◦ rotation or mean frame-
wise displacement exceeding 0.2 mm throughout the course of
scans (Power et al., 2012; Yan et al., 2013). To normalize func-
tional images, participants’ structural brain images were first
co-registered to their own mean functional images and were
subsequently segmented. The parameters derived from seg-
mentation were used to normalize each participant’s functional
images into the standard Montreal Neurological Institute space
(MNI template, resampling voxel size was 3 × 3 × 3 mm3). After-
wards, the linear trends of time courses were removed, and a
band-pass filtering (0.01–0 1 Hz) was applied to the time series
of each voxel to reduce the effect of low-frequency drifts and
high-frequency physiological noise (Biswal et al., 1995; Zuo et al.,
2010). Subsequently, the images were spatially smoothed using a
Gaussian filter to decrease spatial noise (4 × 4 × 4 mm3 full width
at half maximum). Finally, three common nuisance variables
were regressed out, including the white matter signal, the cere-
brospinal fluid signal (Fox et al., 2005; Snyder and Raichle, 2012)
and 24 movement regressors including autoregressive models
of motion incorporating six head motion parameters, six head
motion parameters one time point before and the 12 correspond-
ing squared items (Friston et al., 1996).

RSFC feature extraction

In the current study, network nodes were defined by using a
functional brain atlas, derived from a graph theory-based par-
cellation algorithm that maximized the similarity of the voxel-
wise time series within each node (Shen et al., 2010; Shen et al.,
2013). The atlas includes 268 nodes spanning the whole brain
including cerebellum and brainstem (Figure 2A). Notably, the
268-node atlas comprises nodes with more coherent time series
than those defined by the automatic anatomic labeling atlas and
thus represents an improvement over anatomical parcellation
schemes because anatomical boundaries do not always match
functional ones (Shen et al., 2013).

For each participant, the time course of each node was com-
puted by averaging the blood oxygen level-dependent signal of
all of its constituent voxels at each time point. Second, network
edges were defined as functional connectivity between each pair
of nodes, calculating as the correlation (Pearson’s r) between
time courses of each pair of nodes. Fisher’s r-to-z transformation
was then implemented to improve the normality of correla-
tion coefficients, resulting in a 268 × 268 symmetric connectivity
matrix that represented the set of edges/connections in each
participant’s resting-state connectivity profile (Finn et al., 2015;
Rosenberg et al., 2016).

Exploratory correlation analysis

An exploratory correlation analysis was implemented across
all participants to examine the relevance of RSFC to loneliness.
Specifically, Pearson correlation between each edge in the con-
nectivity matrices and loneliness scores was computed across
participants. The resultant r values were forward to a threshold
of P < 0.05 (Finn et al., 2015; Rosenberg et al., 2017; Rosenberg et al.,
2018) and separated into a positive tail (i.e. positive correlation
between strength of edge and loneliness scores) and a negative
tail (i.e. negative correlation between strength of edge and
loneliness scores). Therefore, connections in the positive tail
(hereafter referred to as ‘positive network’) and negative tail
(hereafter referred to as ‘negative network’) were selected by cor-
relations with loneliness scores rather than positive or negative
functional connections themselves (see also Rosenberg et al.,
2016; Beaty et al., 2018; Hsu et al., 2018). Afterwards, a single
aggregate metric of network strength was employed to char-
acterize degree of connectivity in the positive and negative
tails for each participant. That is, positive network strength
was computed by summing the edge strengths (i.e. Z scores)
for all the edges in the positive tail. Similarly, negative network
strength was computed by summing the Z scores of all the edges
in the negative tail. Lastly, the positive and negative network
strengths were correlated with loneliness scores. Notably, results
of this analysis were for display purpose, and no statistical
tests were performed (Kriegeskorte et al., 2009; Kristensen and
Sandberg, 2017). Furthermore, conclusions on the relationship
between positive/negative network strengths and loneliness
were not derived from this analysis, but instead were based on
results from cross-validation detailed below. In other words, this
analysis was conducted to illustrate an overview of data before
formal prediction analysis (see also Rosenberg et al., 2016).

Prediction analysis using cross-validation

To determine whether network strength predicted loneliness in
unseen individuals, a leave-one-out cross-validation (LOOCV)
was used to evaluate the out-of-sample prediction performance.
Specially, N-1 participants were used as the training set and
the remaining one was used as the testing sample, where N is
the number of the participants. During the training procedure,
predictive networks were defined and employed for calculating
positive and negative network strengths as described in the
exploratory correlation analysis. Afterwards, simple linear mod-
els were constructed to respectively relate positive and negative
network strengths to loneliness scores in the training set. During
the testing procedure, each testing participant’s strengths of
positive and negative network was normalized using the param-
eters acquired during training procedure, and then the trained
models were used to predict the testing participant’s loneliness
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score (Finn et al., 2015; Rosenberg et al., 2016; Shen et al., 2017).
The training and testing procedures were repeated N times such
that each participant was used once as the testing participant.

Pearson correlation coefficient (r) and mean squared error
(MSE) between actual and predicted loneliness scores were used
to evaluate the accuracy of prediction. The permutation test was
applied to determine whether the obtained metrics were signif-
icantly better than expected by chance. Specially, we permuted
the loneliness scores across participants without replacement
1000 times, and each time re-applied the above LOOOCV predic-
tion procedure. This resulted in a distribution of correlation (r)
and MSE values reflecting the null hypothesis that the model did
not exceed chance. The number of times the permuted value was
greater than (or with respect to MSE values, less than) or equal
to the true value plus one was then divided by 1001 providing
an estimated P-value for both the correlation coefficient (r) and
observed MSE.

Contributing network in the prediction of loneliness
scores

To characterize the neural substrates of the contributing
network, the network was defined as the set of edges that were
present in the every iteration of the LOOCV described above.
Afterwards, the 268 nodes were grouped into 10 macroscale
brain regions, including the prefrontal lobe (46 nodes), motor
lobe (21 nodes), insular lobe (7 nodes), parietal lobe (27 nodes),
temporal lobe (39 nodes), occipital lobe (25 nodes), limbic lobe
(36 nodes), cerebellum lobe (41 nodes), subcortical lobe (17 nodes)
and brainstem lobe (9 nodes) (Finn et al., 2015; Rosenberg et al.,
2016). The number of edges between each pair of macroscale
regions was then calculated. Furthermore, the importance
of individual nodes was measured as the number of their
connections (Rosenberg et al., 2016; Beaty et al., 2018). The
connectivity patterns of the top 20 most highly connected nodes
were illustrated.

Validation analysis with different cross-validation
schemes

Main results were further validated with different cross-
validation schemes (i.e. 2-fold, 5-fold and 10-fold). Taken the
2-fold cross-validation as an example, all participants were
divided into two subsets, in which one subset was used as the
training set, and the remaining one was used as the testing
set. Training set was normalized and used to train a linear
prediction model, which then was used to predict scores of the
normalized testing data. The normalization of testing data used
the normalizing parameters acquired from training data. This
procedure was repeated twice, so that each subset was used as
testing set once. Finally, the correlation r and MSE between the
true and predicted scores were calculated across all participants.
As the full data set were randomly divided into two subsets, the
performance might depend on the data division. Therefore, the
2-fold cross-validation was repeated 100 times, and the results
were averaged to produce a final prediction performance. A 1000
times permutation test was applied to test the significance of
the prediction performance.

Control analyses

Several control analyses were implemented to further
examine the significance of predictions of our models despite
potential confounds of age, gender, relationship status (single vs

in a romantic relationship) and motion. In these analyses, new
predictive networks were constructed by employing those edges
whose partial Pearson correlation with loneliness scores while
controlling for confounding variables (e.g. motion) passed the
P < 0.05 threshold (see also Shen et al., 2017; Hsu et al., 2018).
Finally, head motion was further controlled for in the data
preprocessing, such that volumes with an FD > 0.5 mm, along
with the immediately preceding volume and two subsequent
volumes, were considered micromovement-containing volumes,
and each of these volumes was modeled as a separate regressor
in nuisance covariates regression (Yan et al., 2013; Power et al.,
2014).

Relationship of personality with loneliness and
associated network connectivity

The associations between loneliness and five personality dimen-
sions (neuroticism, extraversion, openness, agreeableness and
conscientiousness) were estimated with a linear regression, with
the loneliness as the dependent variable and five personality
dimensions as predictors. Since the regression analysis revealed
reliable association of loneliness with neuroticism and extraver-
sion (see also Results section), we examined whether networks
contributing to the prediction of loneliness were capable of
predicting neuroticism and extraversion. In these analyses,
connectivity features selected by the prediction model of loneli-
ness were forward to the predictive models for these personality
scores. In other words, these analyses examined whether
loneliness-related predictive networks were also associated
with neuroticism and extraversion. Finally, control analyses
were conducted to examine whether RSFC-based model could
still predict loneliness after controlling for neuroticism and
extraversion (for details, see also ‘Control analyses’ section).

Results
Exploratory correlation analysis

As expected, loneliness showed significant positive association
with neuroticism (β = 0.51, t = 3.99, P < 0.0005) and negative
association with extraversion (β = −0.33, t = −3.28, P = 0.002),
but not with conscientiousness (β = 0.06, t = 0.46, P = 0.65), open-
ness (β = −0.06, t = −0.61, P = 0.55) or agreeableness (β = −0.18,
t = −1.90, P = 0.06). Additionally, loneliness scores were not
significantly correlated with mean frame-to-frame head motion
(r = 0.0003, P = 1.00) or age (r = −0.04, P = 0.75) and did not differ
as a function of gender (males vs females: t = −0.26, P = 0.80) or
relationship status (single vs in a romantic relationship: t = 0.99,
P = 0.33).

Regarding the correlation between RSFC and loneliness
scores, across all participants, the average r value was 0.298
(range: 0.241 ∼ 0.3400) in the positive tail that comprised
14 edges. The average r value was −0.292 (range: −0.239 ∼ −0.508)
in the negative tail that comprised 8163 edges. Because limited
number of edges in the positive tail could not provide reliable
predictions, the following analyses focused on the negative
network.

The edges in the negative network represented <25% of
the whole-brain 35 778 total edges defined in the current atlas.
The negative network strength, computed by summing the edge
strengths for all the edges in the negative tail, were correlated
with loneliness scores (r = −0.488). These findings impli-
cated the validity of negative network strength as a summary
statistic.
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Fig. 1. Performance of the prediction model. (A) Scores of loneliness across participants. (B) Correlation between actual and predicted loneliness scores. (C) Permutation

distribution of the correlation coefficient (r) for the prediction analysis. The value obtained using the real scores are indicated by the blue dash line. (D) Consistency

between actual and predicted loneliness scores. (E) Permutation distribution of the mean squared error for the prediction analysis. The value obtained using the real

scores are indicated by the blue dash line. ∗P < 0.05.

Prediction analysis using cross-validation

A LOOCV approach was implemented to examine whether the
relevance between negative network strength and loneliness
scores generalized to novel individuals. It was demonstrated
that RSFC in the negative network was able to predict loneliness

scores in the novel individuals (correlation between actual and

predicted scores: r = 0.244, P = 0.019; MSE = 72.70, P = 0.019, permu-

tatio tests, Figure 1). However, RSFC in the positive network could

not reliably predict loneliness scores (correlation between actual

and predicted scores: r = −0.30, P > 0.05; MSE = 97.72, P > 0.05).
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Fig. 2. Macroscale regions used for characterizing contributing connectivity. (A) The 268 nodes. (B) Twenty macroscale brain regions. (C) The connectivity patterns

selected by the prediction model, plotted as number of connections within each macroscale regions. (D) Connections plotted as number of edges within and between

each pair of macroscale regions. L, left; R, right; PFC, prefrontal; Mot, motor; Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim, limbic; Cer, cerebellum; Sub,

subcortical; Bsm, brainstem.

Contributing networks in the prediction of loneliness
scores

Across all folds of LOOCV, the numbers of edges that contributed
to the prediction ranged from 2001 to 10 865. Notably, 1912 of
these edges appeared in the every iterations of the LOOCV and
were defined as the contributing network (Rosenberg et al., 2016;
Shen et al., 2017).

Based on macroscale regions (Figure 2B), it was revealed that
connections within prefrontal, temporal and occipital lobes;
connections of the prefrontal lobe with subcortical, limbic and
temporal lobes; and connections of the temporal with limbic,
occipital and cerebellum lobes were primary predictors of
loneliness scores (Figure 2C and D).

In addition, the top 20 most highly connected nodes were
located in the dlPFC, lateral orbital frontal cortex (lOFC), ven-
tromedial prefrontal cortex (vmPFC), caudate, amygdala, inferior
temporal gyrus (ITG), middle temporal gyrus (MTG), supplemen-
tary motor area (SMA), precentral gyrus and cerebellum impli-
cating the critical roles of these regions in predicting loneliness
(Figure 3 and Table 1).

Validation with different cross-validation schemes

Using different cross-validation schemes, the performance of
predication was re-estimated. The resultant correlation coeffi-

cients between actual and predicted loneliness scores remained
significant (Table 2), thus validating the main findings.

Control analyses

After controlling for the potential confounds of head motion,
age, gender, relationship state, head motion, neuroticism
and extraversion, new predictive networks were constructed
and used in the cross-validation schemes. These analyses
indicated that predictive models could still significantly predict
loneliness scores (i.e. correlation between actual and predicted
loneliness scores remained significant), independent of age,
gender, relationship state, head motion, neuroticism and
extraversion (Table 2).

Personality prediction based on the loneliness-related
network

To assess the association between personality (i.e. neuroticism
and extraversion) and networks that contribute to the prediction
of loneliness, we examined whether these networks were
capable of predicting neuroticism and extraversion. It was
demonstrated that the loneliness-related network was able
to predict these personality scores in the novel individuals:
neuroticism (correlation between actual and predicted scores:
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Fig. 3. Connectivity patterns of the top 20 nodes with the most connections. L, left; R, right; dlPFC, dorsolateral prefrontal cortex; lOFC, lateral orbital frontal cortex;

ITG, inferior temporal gyrus; vmPFC, ventromedial prefrontal cortex; MTG, middle temporal gyrus; SMA, supplementary motor area; PFC, prefrontal cortex; Mot, motor;

Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim, limbic; Cer, cerebellum; Sub, subcortical; Bsm, brainstem.

r = 0.45, P = 0.001; MSE = 143.01, P = 0.001, permutation tests,
Figure 4A and C) and extraversion (correlation between actual
and predicted scores: r = 0.22, P = 0.004; MSE = 110.10, P = 0.001,
permutation tests, Figure 4B and D).

Discussion
Loneliness is an increasingly prevalent condition associated
with enhanced morbidity and premature mortality. Despite the
increased recognition of loneliness as an important risk factor
for many mental and physical health and recent proposal on
medicalization of loneliness (Holt-Lunstad et al., 2017; Cacioppo
and Cacioppo, 2018), so far no effort has been made to establish
a model capable of predicting loneliness at the individual level.
Such a model would be important for diagnosis and prognosis in
future, and since the brain is thought to be the key organ of social
connections and processes (Cacioppo et al., 2014; Cacioppo et al.,
2015a), brain features provide promising candidates to establish
predictive models. The current work utilized the intrinsic whole-
brain functional connectivity in a machine-learning framework

to establish a connectome-based model that is predictive of
loneliness at the individual level. Notably, our findings further
indicate that both loneliness and underlying neural substrates
were modulated according to the levels of neuroticism and
extraversion.

Our findings reveal intrinsic functional connectivity across
multiple neural systems contributes to predicting individual
loneliness. Specifically, inter-individual variations in loneliness
were primarily accounted for by intrinsic functional connec-
tivity within the prefrontal cortex as well as its connectivity
with other networks, particularly the subcortical, limbic and
temporal structures. The activity within these neural systems
has been previously implicated in cognitive, affective and social
components of loneliness (Cacioppo et al., 2009; Inagaki et al.,
2015; Wong et al., 2016; Canli et al., 2018). In short, loneliness
could be predicted by large-scale distributed functional network
connectivity, suggesting that loneliness is characterized by inter-
active patterns across multiple brain systems. In line with this
hypothesis, evidence from animal studies indicates that chronic
social isolation has profound effects on brain chemistry and
function across multiple neural systems (Zelikowsky et al., 2018).
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Table 1. Twenty nodes with the most connections selected by the prediction model

Node MNI coordinates (mm) Lobe degree

L dlPFC −39.3 17.2 46.7 Prefrontal 72
L lOFC −32.0 20.5 −16.0 Prefrontal 54
L ITG −59.8 −27.4 −18.1 Temporal 50
R vmPFC 9.6 17.8 −19.5 Prefrontal 48
L vmPFC −5.4 29.1 −10.1 Prefrontal 47
R cerebellum 6.9 −67.9 −37.8 Cerebellum 44
R MTG 50.0 −33.8 −0.7 Temporal 43
R caudate 13.7 −4.2 20.9 Subcortical 41
R cerebellum 11.7 −84.1 −34.6 Cerebellum 41
L caudate −12.5 11.6 8.7 Subcortical 41
R cerebellum 32.2 −78.5 −40.4 Cerebellum 40
L vmPFC −6.9 48.3 −5.7 Prefrontal 40
L precentral gyrus −45.8 −0.4 49.3 Motor 40
L precentral gyrus −35.9 −23.3 65.6 Motor 39
R ITG 61.3 −22.9 −22.4 Temporal 39
L amygdala −26.8 2.4 −18.7 Limbic 39
R vmPFC 5.1 34.9 −17.4 Prefrontal 39
L cerebellum −6.5 −66.2 −37.7 Cerebellum 38
R SMA 6 −22.3 65.6 Motor 35
R vmPFC 8.2 45.9 −1.7 Prefrontal 35

L, left; R, right; dlPFC, dorsolateral prefrontal cortex; lOFC, lateral orbital frontal cortex; ITG, inferior temporal gyrus; vmPFC, ventromedial prefrontal cortex; MTG,
middle temporal gyrus; SMA, supplementary motor area.

Table 2. Results of validation and control analyses

r MSE

r-value P-value MSE-value P-value

Validation analyses
2-fold 0.250 0.017 80.06 0.038
5-fold 0.248 0.014 74.36 0.019
10-fold 0.246 0.015 73.29 0.020

Control analyses
age 0.243 0.020 72.85 0.019
gender 0.241 0.016 72.27 0.015
relationship status 0.243 0.018 7259 0.021
group motion
regression

0.235 0.017 72.49 0.013

individual motion
scrubbing

0.282 0.006 70.13 0.007

Neuroticism 0.254 0.014 73.46 0.021
Extraversion 0.247 0.016 71.80 0.013

MSE, mean squared error.
Note: the r and MSE values indicated the consistency between actual and predicted loneliness scores across different fold schemes in the validation analyses and after
controlling for different confounding variables in the control analyses.

We demonstrate that the predictive model of loneliness
consisted of key nodes associated with emotion processing,
including the vmPFC, caudate and amygdala. On the one hand,
the vmPFC and caudate have been frequently involved in
positive social interactions, such as cooperating with others
(Rilling et al., 2002; Feng et al., 2015a), being fairly treated
(Tabibnia et al., 2008; Feng et al., 2015b) and communicating one’s
own thoughts and feelings to others (Tamir and Mitchell, 2012).
Therefore, it is plausible that altered functional connectivity in
these regions might underlie the diminished pleasure derived
from social interactions among lonely people (Hawkley et al.,
2007). In line with our findings, loneliness is associated
with lower striatal activation in response to positive social

information (Cacioppo et al., 2009) as well as differential
transcriptome expression in the ventral striatum (Canli et al.,
2017). On the other hand, the amygdala is a key region in the
limbic system associated with the encoding of threatening
stimuli (LaBar et al., 1998; Adolphs et al., 2005; Adolphs, 2008).
Accordingly, changes in functional connectivity of this region
may be related to hypervigilance to negative social informa-
tion and negative expectations of social interactions among
lonely people (Yamada and Decety, 2009; Hawkley et al., 2010;
Cacioppo et al., 2015b).

We further demonstrated MTG and ITG in the temporal lobe
as key nodes of the predictive model of loneliness. These regions
play critical roles in social perception, such as the processing
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Fig. 4. Performance of the prediction model for personality scores. (A) Correlation between actual and predicted neuroticism scores. (B) Correlation between actual and

predicted extraversion scores. (C) Permutation distribution of the correlation coefficient (r) for the prediction analysis of neuroticism scores. The value obtained using

the real scores are indicated by the blue dash line. (D) Permutation distribution of the correlation coefficient (r) for the prediction analysis of extraversion scores. The

value obtained using the real scores are indicated by the blue dash line.

of faces and eye gaze (Perrett et al., 1985; Critchley et al., 2000;
Haxby et al., 2002). Other studies have identified the activations
of these regions in the empathy and theory of mind tasks
(Farrow et al., 2001; Völlm et al., 2006). In light of previous findings,
our results suggest that loneliness is involved in altered social
perception and communication mediated by the temporal lobe.
This conjecture aligns with two lines of evidence. First, high-
lonely people compared to low-lonely people gave less attention
to others during communication and were less accurate at
encoding nonverbal communications, implicating social skill
deficits among lonely people (Gerson and Perlman, 1979;
Jones et al., 1982). Second, loneliness was corrected with
structural changes in the pSTS part of the temporal lobe,
and the association was mediated by basic social perception
skills (Kanai et al., 2012).

We also revealed dlPFC and lOFC as key nodes in the pre-
diction of loneliness. These regions have been implicated in
many high-order control processes, ranging from task-set main-
taining to long-term planning and response suppression and

selection (Miller and Cohen, 2001; Cole and Schneider, 2007;
Seeley et al., 2007; Menon, 2011). Notably, they have also been
involved in emotion regulation through modulations of limbic
and subcortical regions (Wager et al., 2008; Kober et al., 2010;
Lee et al., 2012). Accordingly, the current findings provide a
potential neural mechanism on the impaired self-regulation and
cognitive functions among lonely people (Baumeister et al., 2005;
Campbell et al., 2006; Hawkley et al., 2009). In line with our
findings, loneliness has been found related to changes in brain
structures of the dlPFC (Kong et al., 2015) and its functional
connectivity with arousal systems (Layden et al., 2017).

Taken together, the multiple neural systems identified in the
current study might underlie the affective, social and cognitive
processing deficits related to loneliness. Notably, our findings
provide the first evidence showing that these seemingly distinct
processes do not work separately, but extensively interact with
each other to maintain loneliness. In this regard, the whole-
brain functional connectivity approach provides more holistic
measures of loneliness as a complex construct.
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Our findings finally indicate that loneliness and associated
neural substrates are modulated according to neuroticism
and extraversion. These findings complement several lines of
evidence. First, previous studies report the strongest correlations
between loneliness and neuroticism or extraversion (Atak, 2009;
Teppers et al., 2013; Mund and Neyer, 2016), although several
studies also identify correlations of loneliness with openness,
agreeableness and conscientiousness (Lopes et al., 2003;
Abdellaoui et al., 2018b). Second, loneliness and neuroticism
exhibited a considerable genetic overlap measured by both
genetic variants and familial relationships (Abdellaoui et al.,
2018a). Third, neuroticism and extraversion mediated the
associations between loneliness and altered brain structures
in the dlPFC (Kong et al., 2015). These findings together
indicate that loneliness and neuroticism/extraversion are
highly relevant constructs, and they might share common
underpinnings at both psychological and biological levels. In
particular, neuroticism is characterized by enhanced sensitivity
to aversive stimuli, whereas extraversion is characterized
by increased sensitivity to positive social stimuli, and both
personality characteristics are closely related to core features
of loneliness (Cacioppo et al., 2009; Cacioppo et al., 2015b).
Nevertheless, the current study revealed that the RSFC-
based model could still predict individual loneliness scores
after controlling for neuroticism and extraversion. These
findings indicate that the predictive model can account for
variance in loneliness that is not explained by the personality
traits.

Notably, the current study represents advances in neu-
roscience advocating the applications of brain features in a
machine-learning framework to establish neuroimaging-based
predictions (Fu and Costafreda, 2013; Paulus, 2015; Woo et al.,
2017). This approach aims to reveal predictive brain features
that can be used to facilitate diagnosis, prognosis and treatment
of individual patients in clinical practice. Within this framework,
an accumulating body of research has developed predictive
models based on brain imaging features to discriminate patients
from health controls or to predict symptom severity (for reviews,
see also Fu and Costafreda, 2013; Woo et al., 2017). In this regard, a
potential application of the current approach would be the use of
RSFC measures in predicting severity of loneliness either among
general population or among patients (e.g. anxiety or mood
disorder), considering that loneliness is a critical risk factor for
many health problems.

Several limitations should be noted as they relate to the
current study. First, although the current study controlled
for potential major confounds such as age, gender, relation-
ship status and motion, other measures of objective social
isolation (e.g. the objective levels of social contact) should
be collected and controlled for in future studies. Similarly,
loneliness could be related to transient mood states and could
be temporary, future studies may also consider controlling
for those confounding factors. Second, one may not interpret
the predictive network as a ‘neuromarker’ of loneliness,
since the current study did not completely examine the
specificity of the predictive model. Indeed, the relation-
ship between RSFC and loneliness could be explained by
their common associations with a third variable. Third, our
prediction was obtained in a relatively small sample, and
the generalization of the current findings requires further
validation using an independent larger sample and other
cross-validation methods. Fourth, it is noteworthy that the
current prediction model of loneliness was based on the
negative network (i.e. connections negatively associated with

loneliness). The large negative but small positive predictive
network of loneliness may reveal a dis-connectivity pattern
as the increase of loneliness. Given the positive predictive
model failed and was not stable, we should be cautious
about drawing any conclusions based on the non-significant
findings.

Despite these limitations, we first demonstrate that func-
tional connectivity of distributed networks effectively predicts
loneliness at the individual level. Notably, nodes and edges
of the predictive network have been frequently implicated
in affective, social and cognitive processing required by
developing and maintaining social connections. The current
data-driven approach provides a novel tool to characterize
neural mechanisms of loneliness and might have potential
applications in clinical practice.
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