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Abstract
Background Aged heart is defined via structural and mitochondrial dysfunction of the heart. However, there is still 
no potent compound to improve cardiac function abnormalities in aged individuals. Olive oil (OLO), as an oil with 
monounsaturated fatty acids, has diverse protective effects on the cardiovascular system, including anti-inflammatory, 
anti-diabetic, and mitigating effects on blood pressure. In the present study, we evaluated the protective effects of 
OLO against aging-related cardiac dysfunction.

Methods Male Wistar rats were randomly divided into three groups: Control, D-galactose-induced aging rats (D-GAL 
group), and aging rats treated with OLO (D-GAL + OLO group). Aging in rats was induced by intraperitoneal injection 
of D-GAL at 150 mg/kg dose for eight weeks and the D-GAL + OLO group was treated with oral OLO by gavage for 
eight weeks. The heart tissues were harvested to assay the oxidative stress, molecular parameters, and histological 
analysis.

Results The D-GAL given rats indicated increased cardiomyocyte diameter as cardiac hypertrophy marker (21 ± 0.8, 
p < 0.001), an increased Malondialdehyde (MDA) level (27 ± 3, p < 0.001), a reduced Superoxide dismutase (SOD) 
(p < 0.001, 18.12 ± 1.3), and reduction in gene expression of Sirtuin 1 (SIRT1) (p < 0.05, 0.37 ± 0.06), Peroxisome 
proliferator-activated receptor-gamma coactivator (PGC)-1α (p < 0.001, 0.027 ± 0.04), and Transcription Factor A, 
Mitochondrial (TFAM) (p < 0.001, 0.023 ± 0.01), Bcl2 (p < 0.001, 0.04 ± 0.004) and an increase in gene expression of Bax 
(p < 0.001, 23.5 ± 5.4) in comparison with the control animals. Treatment with OLO improved cardiac hypertrophy 
(14 ± 0.4, p < 0.001), MDA (22 ± 2.5, p < 0.01), SOD (p < 0.001, 34.9 ± 2), SIRT1 (p < 0.05, 1.37 ± 0.46), PGC-1α (p < 0.001, 
1.11 ± 0.1), TFAM (p < 0.01, 0.23 ± 0.02), Bcl2 (p < 0.05, 0.35 ± 0.05) and Bax genes (p < 0.01, 0.1 ± 0.03).

Conclusions Overall, OLO protects the heart against D-GAL-induced aging via increasing antioxidant effects, and 
enhancing cardiac expression of SIRT1, PGC-1α, TFAM, Bcl2 and Bax genes.
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Background
Aging can contribute to the progressive decline of physi-
ological functions leading to increased susceptibility to 
death. It enhances the susceptibility to cardiovascular 
disorders which have been known as the main cause of 
death in the aging population [1–3]. The important fea-
tures of the aged heart include cardiac hypertrophy, 
fibrosis, and cell death [4]. Therefore, understanding 
the underlying mechanisms is essential to identify novel 
therapeutic strategies with a potential for the prevention 
or treatment of aging-related cardiac diseases. The natu-
ral aging model is the best and most suitable for studying 
the characteristics of human aging and aging mechanism 
[5]. Chronic administration of D–galactose (D-GAL) 
causes cardiac functional and structural alterations simi-
lar to cardiac diseases caused by natural aging in animals 
[6–8]. Although, the aging model caused by D‐GAL is an 
invasive method due to the chronic injection of D‐GAL 
into the peritoneum and it can cause complications such 
as pain and infection for the animal, so this method also 
has limitations [9].

Mitochondrial dysfunction in the cardiovascular sys-
tem is the most important contributor to aging which 
leads to enhanced reactive oxygen species (ROS) pro-
duction and as a result cardiac oxidative stress [10–12]. 
Oxidative stress during aging causes mitochondrial 
dysfunction [13]. Several mitochondrial processes are 

involved in the pathogenesis of cardiac hypertrophy 
induced with aging, such as reduced mitochondrial bio-
genesis through Sirtuin 1 (SIRT1)/Peroxisome prolif-
erator–activated receptor γ coactivator 1α (P G C-1α)/
mitochondrial transcription factor A (TFAM) pathway 
in the heart [8]. In addition, oxidative stress during aging 
leads to cardiac apoptosis [14]. Therefore, oxidative stress 
is involved in cardiac hypertrophy induced with aging by 
reduced mitochondrial biogenesis and apoptosis in the 
heart.

Olive oil (OLO) is the basic origin of fat in the Medi-
terranean diet, which is associated with reducing cardio-
vascular diseases [15]. In addition to the high amount 
of monounsaturated fatty acids, OLO includes other 
ingredients with substantial biological effects [16]. On 
the other hand, it is a good origin of polyphenolic com-
pounds which have cardiac protective effects against 
ischemia/reperfusion-induced arrhythmias in rats [17]. 
It has been reported that at four weeks post-myocardial 
infarction (PMI), redox ratio reduced by 44.4% in the 
ligated regular chow and only 16.4% in the ligated OLO 
in rats. At 16 weeks PMI, the reduced was 67.2% in the 
ligated regular chow and 25.2% in the ligated OLO. At 
four weeks PMI, lipid peroxides levels enhanced 137.43% 
in the ligated regular chow and14.68% in the ligated OLO 
in rats. Hydroperoxides enhanced 272% in the ligated 
regular chow and 32% in the ligated OLO in rats [18].
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Numerous studies have indicated that the protective 
effect of OLO on cardiovascular diseases may be due 
to its anti-oxidative [19], anti-inflammatory [20], anti-
apoptotic [21], and antihypertensive [22] effects. How-
ever, more investigations are required to approve its use 
in improving cardiac hypertrophy during aging. There is 
not enough scientific report to explain the action mecha-
nism of OLO in D-GAL- induced cardiac hypertrophy in 
aging. Therefore, in the present study, we evaluated the 
role of OLO, as an antioxidant agent, in the protection 
of the heart against D- GAL-induced cardiac hypertro-
phy although further assessment is needed to determine 
the possible underlying mechanism of OLO on the aging 
heart.

Methods
Chemicals
Extra virgin OLO was obtained from Hamadan, Iran. 
D-GAL and Pentobarbital sodium salt were purchased 
from Sigma-Aldrich Co (St. Louis, MO, USA).

Animals
A total of 24 adult male Wistar rats (age: 3 months old; 
body weight: 300 ± 20  g) were purchased from the ani-
mal house of the Hamadan University of Medical Science 
(Hamadan, Iran). The rats were housed in the standard 
cages (12 h light/dark cycle, 25° C ± 2 °C). Moreover, the 
animals had availability to water and food ad libitum and 
were handled to minimize the stress during the overall 
experimental term. All experimental protocols were car-
ried out through ethics by the Animal Experiment Com-
mittee performed by the Guide for the Care and Use of 
Laboratory Animals (Ethics Committee Permission No. 
IR.UMSHA.AEC.1402.019).

Experimental design
The sample size of each group was computed to be 8 by 
the formula:

 

n =
(Z1−α/2 + Z1−β)

2 × (S2
1 + S2

2)

d2
=

(1.96× 1.29)2 × (13.522 + 9.072)

(89 − 70)2
= 7.75 ∼ 8

where S1
2 and S2

2 are means [23].
After seven days of adaptation, 32 rats were randomly 

divided into three experimental groups (8 rats in each 
group included):

1. Untreated Control (CONT, n = 8).
2. D-GAL -induced Aging rats (D-GAL, n = 8).
3. Aging rats treated with OLO (D-GAL + OLO, n = 8).

The values of calories and fat received in humans were 
considered to determine the amount of OLO given to 
rats through gavage. According to the previous reports, 
a human weighing 70 kg needs 2000 calories daily [24]. It 
has been suggested that 20–35% of these calories (equiv-
alent to 44–78 g of fat) be provided through fat [25]. In 
this study, approximately 20% of the calories needed by 
the rats were supplied through fat consumption. The rats 
consumed about 15  g of food pellets daily, which had 
approximately 7% fat. Therefore, they received 9.45 calo-
ries daily through fat in the diet. Also, 0.3 mL or approxi-
mately 0.3 g of OLO was given daily to the rats through 
gavage [26], which has an energy value of 2.7 calories. 
Therefore, the total amount of energy that rats received 
from fat consumption was 12.15 calories, which is almost 
equal to 20% of their daily needed calories.

The used OLO was harvested from Gilan province 
(North of Iran). The phenolic compounds of OLO were 
determined as follows: OLO (14 g) were shaken well with 
14 mL of methanol/water solution. Then it was centri-
fuged at 5000  rpm for 10  min to separate the methanol 
and water phase. Then, the hydroalcoholic extracts were 
evaporated by a vacuum distillation device at 35  °C until 
they reached a thick sap, then they were washed 3 times 
with 20 ml of hexane to remove fats. The remaining meth-
anol was dissolved and 50 µL of it was given to the HPLC 
device (Water, 486, USA), and finally the concentration 
of the compounds was expressed in terms of mg/kg of oil 
[27]. To determine the fatty acids, OLO (0.2 g) was hydro-
lyzed in the presence of 15 ml of methanol and alcoholic 
potassium hydroxide, and then derivatized in an alkaline 
medium. Then, the produced methyl esters were extracted 
through normal pentane. OLO (2 µL) was given to the GC 
machine (HP5890N, USA). The results were expressed in 
percentage of chromatographic surface [28]. Qualitative 
indices of free acidity, peroxide value and spectrophoto-
metric indices (K232, K270) were determined based on the 
rules of the European Community [29]. The characteristics 
of OLO used in the present study are listed in Table 1.

Table 1 Characteristics of the Olive oil used in the present study
Characteristics Main fatty acid
Peroxide(meq O2 /kg oil): 
6.2
K232: 0.62
K270: 0.090
Acidity: 0.44%

Oleic acid: 77.95%
Stearic acid: 3.23
Palmtic acid: 15.68%
Linoleic acid: 3.01%
Linolenic acid: 0.45
Total unsaturated fatty acids: 80.74 mg/kg
Total saturated Fatty acids: 18.91 mg/kg
Carotenoid: 2.74 mg/kg
Vanilic acid: 0.37 mg/kg
Chlorophyll: 9.8 mg/kg
Total phenols: 207.95 mg/kg
Tyrosol: 0.81 mg/kg
Hydroxytyrosol: 0.21 mg/kg
Cinnamic acid: 0.13 mg/kg
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Aging in rats was induced via intraperitoneal (IP) 
injection of D-GAL at 150  mg/kg dose daily for eight 
weeks [30]. The animals in D-GAL + OLO group were 
co-administrated with oral OLO (0.3 ml/rat or 1 ml/kg, 
gavage feeding) [31] and D-GAL (150  mg/kg, IP injec-
tion) daily for eight weeks. To anesthetize the rats in end-
point study, sodium pentobarbital at 60 mg/kg dose was 
given by IP injection [32].

Assessment of cardiac hypertrophy index
Isolated hearts were washed with saline and then 
weighed. Cardiac hypertrophy index (CH index) was 
considered as the ratio of the Heart Weight (HW)/ Body 
Weight (BW)(g/g) by the following formula [33]:

 

Cardiac hypertrophy index=

HeartWeight(g)

BodyWeight(g)
× 100

Histological examination of the heart tissue
For structural evaluation, the heart tissues were isolated 
from the animals and then the samples were washed 
with normal saline and then fixed in 10% formalin buf-
fer. After preparing paraffin blocks and preparing 5  μm 
slices from each block. The obtained sections were 
dewaxed with xylene, diluted with alcohol gradient solu-
tion, then stained with hematoxylin-eosin (H&E), washed 
again with alcohol solution and cleared with xylene. An 
LABOMED light microscope equipped with a digital 
camera (LABOMED) was then used to investigate and 
capture the stained sections. For analysis of H&E images, 
Sect.  (10 per animal) were randomly selected and stud-
ied at 150 μm intervals [34]. At least 15 non-overlapping 
fields of view from each group were examined (100X 
magnification). The size of cardiomyocytes was measured 
by Image J software.

Cardiac level of Malondialdehyde and Superoxide 
dismutase enzyme
Heart tissues were stored at − 20◦C for the biochemical 
analysis. Following homogenization, the cardiac levels 
of Malondialdehyde (MDA) and Superoxide dismutase 
(SOD), as oxidative stress and antioxidant mediators, 
were measured through Zellbio kits (CAS Number of kit: 
ZB-SOD-96 A; Company: Zellbio, Ulm, Germany; Detec-
tion limit of kit: 1U/mL) according to the manufacturer’s 
instructions.

Cardiac expression levels of SIRT1, PGC-1α, TFAM, Bax and 
Bcl2 genes by real-time PCR analysis
Tissue samples with a weight of about 30  mg from the 
apex of hearts were obtained and then homogenized to 
isolate total RNA by RNX- plus reagent (Sinaclon, Iran) 
according to the manufacturer’s instructions. A nano-
drop spectrometer was used to determine the purity and 
concentration of total isolated RNA at 260 and 280 nm. 
Then,1  µg of total RNA was reversely transcribed using 
a cDNA synthesis kit (CAS Number of kit: A101161, 
Parstous, Iran, transcription kit, Easy cDNA Ultra-TM 
Synthesis Kit) in a gradient thermal cycler, and Real-time 
PCR was performed using Light Cycler 96 (Germany). 
Finally, the relative expression of genes was analyzed 
through the 2−ΔΔCT method. The relative levels of SIRT1, 
PGC-1α, TFAM, Bax and Bcl2 mRNAs were normal-
ized with beta-actin mRNA level as an internal control 
(Table 2).

Statistical analysis
Data were expressed as means ± SEM. The Kolmogorov-
Smirnov test was used to check the normal distribution 
of the data. In addition, Levene’s test was used to check 
the equality of variances. Findings were analyzed using 
one way analysis of variance (ANOVA) followed by post 
hoc Tukey’s test. P value < 0.05 was considered statisti-
cally significant.

Results
Effect of Olive oil on aging-related cardiac hypertrophy 
index
Heart weight was significantly increased in the D-GAL 
(P < 0.05) and D-GAL + OLO (P < 0.01) groups compared 
to the control rats. Treatment with OLO in aged animals 
did not improve heart weight. However, cardiac hyper-
trophy index shown no significant change among groups. 
In the present study, body weight was significantly 
(P < 0.01) increased in the D-GAL + OLO rats compared 
to the control and aged animals. Previous study has indi-
cated that overweight or obesity is the most important 
risk factors associated with cardiac hypertrophy [35]. 
Therefore, failure to improve cardiac hypertrophy in the 
aged group receiving OLO could be due to weight gain 

Table 2 Sequence of primers
Genes Sequence
SIRT1 F
SIRT1 R

 G A T C A T T C A G T G T C A T G G T T C C T
 G G C T C T A T G A A A C T G T T C T G G T A A

PGC-1α F
PGC-1α R

 C A G A C C T A G A T T C A A A C T C A G A C G
 A A A T C C A G A G A G T C A T A C T T G C T C

TFAM F
TFAM R

 A A G C A C A A A T C A A G A G G A G A G A A T
 C A C A C T G C G A C G G A T G A G A T

Bax F
Bax R

 T T T T G C T A C A G G G T T T C A T C C
 T A T T G C T G T C C A G T T C A T C T C

Bcl-2 F
Bcl-2 R

 T G G T A C C T G C A G C T T C T T T C
 A T C T C C A G T A T C C C A C T C G T A

Beta-actin F
Beta-actin R

 A T C A G C A A G C A G G A G T A C G A T
 A A A G G G T G T A A A A C G C A G C T C

Silent information regulator 1; SIRT1, Peroxisome proliferator-activated 
receptor gamma co-activator 1-alpha; PGC-1α, Mitochondrial transcription 
factor A; TFAM, Bcl-2-associated X protein; Bax, B-cell lymphoma 2; Bcl-2
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in this group. In addition, the size of cardiomyocytes was 
significantly (P < 0.001) increased in the D-GAL animals 
compared to the control animals. Also, OLO treatment 
significantly (P < 0.001) improved the size of cardiomyo-
cytes in the D-GAL + OLO rats versus the D-GAL rats 
(Table 3).

Effect of olive oil on the cardiac tissue
The tissue sections prepared from the control group 
(A) show the morphology of cardiomyocytes with oval 
and bright central nuclei in normal physiologic condi-
tions. Examination of different fields of samples from 
the D-GAL receiving group (B) indicates an irregularity 
in the arrangement of cardiomyocytes, an increase in the 
intracellular distance, more acidity of the cell cytoplasm, 
and also importantly the cardiac hypertrophy in D-GAL- 
induced aging. However, the administration of OLO into 
the aging rats (C) was able to reduce the irregularity of 
myofibers, acidification of sarcoplasm, and other patho-
logical conditions related D-GAL- induced cardiac aging 
(Fig. 1).

Oxidative stress and antioxidant enzyme levels in the heart 
tissue
Cardiac MDA levels in groups are displayed in Table  4. 
We reported that the aged rats showed significant 
increased MDA level compared to the control rats in the 
heart tissue (p < 0.001), while treatment with OLO, signif-
icantly reduced cardiac MDA level (p < 0.01). These data 
indicated that, aging plays a critical role in cardiac oxida-
tive stress and OLO reverses this parameter. The cardiac 
level of SOD in the D-GAL group exhibited a significant 
decline compared to the control group (p < 0.001). On the 
other hand, OLO treatment led to a remarkable increase 
in the cardiac SOD levels of the D-GAL + OLO group 
in comparison with the D-GAL- injected aging group 
(p < 0.001, Table 4).

Effect of Olive oil on expression levels of SIRT1, PGC-1α and 
TFAM genes
We found that the expression levels of SIRT1 (p < 0.05), 
PGC-1α (p < 0.001), and TFAM genes (p < 0.001) reduced 
in the D-GAL-given aging group in comparison with 
the control group. However, OLO treatment in the 
D-GAL + OLO group enhanced notably the cardiac 
expression of SIRT1 (p < 0.05), PGC-1α (p < 0.001), and 
TFAM genes (p < 0.01) compared to untreated D-GAL 
group (Figs. 2, 3 and 4).

Effect of Olive oil on expression levels of Bax and Bcl2 
genes
We observed that there was a remarkable decrease in 
Bcl2 (p < 0.001) expression in the aged animals com-
pared to the control animals. Moreover, the aged animals 

Table 3 Effect of Olive oil treatment on cardiac hypertrophy
CONT D-GAL D-GAL + OLO

BW (g) 324.6 ± 4.9 332 ± 4.6 354.6 ± 4**##

HW (g) 1.01 ± 0.04 1.14 ± 0.02# 1.13 ± 0.01##

HW/BW (g/g) 0.003 ± 0.00008 0.0034 ± 0.0002 0.003 ± 0.00008
Cardiomyocyte 
Diameter (µm)

13 ± 0.5 21 ± 0.8### 14 ± 0.4***

Data have been expressed as mean ± SEM in CONT; control, D-GAL; D-galactose- 
injected aging rats, D-GAL + OLO; co-treated with D-galactose and Olive oil, 
BW; body weight, HW; heart weight. n = 8. # P < 0.05, ## P < 0.01, ### P < 0.001 
compared with control group, ** p < 0.01, *** p < 0.001 compared to the D-GAL 
group

Table 4 Effect of Olive oil treatment on indicators of oxidative 
stress and antioxidant enzyme in the heart

CONT D-GAL D-GAL + OLO
MDA (µM) 20 ± 1 27 ± 3### 22 ± 2.5**
SOD (U/mL) 34.7 ± 1.37 18.12 ± 1.3### 34.9 ± 2***
Data have been expressed as mean ± SEM in CONT; control, D-GAL; D-galactose- 
injected aging rats, D-GAL + OLO; co-treated with D-galactose and Olive 
oil, MDA; Malondialdehyde, SOD; Superoxide dismutase. n = 8. ### P < 0.001 
compared with control group, ** p < 0.01, *** p < 0.001 compared to the D-GAL 
group

Fig. 1 Cardiac histology in the animal groups. Hematoxylin and eosin staining (H&E staining) indicated the cardiac tissue architecture in (A) control; aging 
group induced by D-GAL injections (B); group co-treated with D-GAL and OLO (C). The images are presented at 100X magnification and arrowheads 
show cardiomyocytes
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indicated an enhancement in Bax (p < 0.001) expression 
compared to the control ones. We represented there was 
an improvement of these parameters in OLO treated 
group (Table 5).

Discussion
Our findings indicated histological alterations in the aged 
hearts. We found that the D-GAL injections into the 
peritoneal of rats for eight weeks led to cardiac hypertro-
phy. CH is a prevalent phenomenon in cases associated 
with cardiac hypertrophy ranging from obesity, and high 
blood pressure, to aging [36, 37]. D-GAL-induced aging 
models, similar to normal aging in rats, show structural 
aging changes in the heart [38]. Therefore, the effects of 
D-GAL-induced aging on the heart could be associated 
with a potential risk factor for cardiomyopathies. OLO 
treatment improves age-related cardiac structural dete-
rioration and also the age-associated cardiac hypertro-
phy. However, these cardiac alterations were improved 
post-long-term treatment with OLO highlighting that 
OLO has protective effects on D-GAL-induced struc-
tural changes in the aged hearts. OLO may regulate the 
cardiac hypertrophy and cardiac dysfunction associated 
with myocardial infarction through its anti-oxidative and 
anti-inflammatory effects on the heart [18].

The D-GAL induced aging model is well established 
and widely used [39]. Administration of D-GAL can 
markedly induce aging in the heart, as indicated by 
increased levels of several markers of cardiac aging, 
including oxidative stress, decreased expression of anti-
oxidant enzymes such as SOD, and increased cardiac 
apoptosis [38, 40]. Our results show that the cardiac level 
of the MDA, as an oxidative stress marker is increased 
and SOD enzyme, as an anti-oxidant marker, is reduced 
in the heart in the aging rats but OLO treatment can 
improve effectively MDA and SOD levels, indicating its 
antioxidant effects on the cardiac tissue.

Cardiac mitochondrial damage occurs more frequently 
in aged animals [41]. Mitochondrial dysfunction can 
often be seen in apoptosis studies, similar to our study 
[42]. In this study, overproduction of ROS induced by 
D-GAL injection caused mitochondrial dysfunction. Oxi-
dative stress leads to a decrease in mitochondrial biogen-
esis. In turn, mitochondrial dysfunction increased ROS 
production, creating a vicious cycle between mitochon-
drial dysfunction and oxidative stress [43, 44].

PGC-1α is an important regulator of mitochondrial 
biogenesis and oxidative metabolism [45].

PGC-1α ameliorates mitochondrial damage and aging-
induced cardiac dysfunction in the heart, suggesting 

Table 5 Effect of Olive oil treatment on expression levels of Bax 
and Bcl2 genes

CONT D-GAL D-GAL + OLO
Bax (Fold to control) 1 ± 0.4 23.5 ± 5.4### 0.1 ± 0.03**
Bcl2 (Fold to control) 1 ± 0.3 0.04 ± 0.004### 0.35 ± 0.05*
Data have been expressed as mean ± SEM in CONT; control, D-GAL; D-galactose- 
injected aging rats, D-GAL + OLO; co-treated with D-galactose and Olive oil. 
n = 8. ### P < 0.001 compared with control group, * p < 0.05, ** p < 0.01 compared 
to the D-GAL group

Fig. 4 Cardiac TFAM gene expression in the animal groups. CONT, con-
trol; D-GAL, aged rats induced by D-galactose; D-GAL + OLO, group 
co-treated with D-galactose and OLO. Data have been expressed as 
mean ± SEM (n = 8) in CONT; control, D-GAL; D-galactose- injected aging 
rats, D-GAL + OLO; co-treated with D-galactose and Olive oil. P < 0.001 
compared with control group, ** p < 0.01 compared to the D-GAL group

 

Fig. 3 Cardiac PGC-1α gene expression in the animal groups. Data have 
been expressed as mean ± SEM (n = 8) in CONT; control, D-GAL; D-galac-
tose- injected aging rats, D-GAL + OLO; co-treated with D-galactose and 
Olive oil. ###P < 0.001 compared with control group, *** p < 0.001 com-
pared to the D-GAL group

 

Fig. 2 Cardiac SIRT1 gene expression in the animal groups. Data have 
been expressed as mean ± SEM (n = 8) in CONT; control, D-GAL; D-galac-
tose- injected aging rats, D-GAL + OLO; co-treated with D-galactose and 
Olive oil. #P < 0.05 compared with control group, * p < 0.05 compared to 
the D-GAL group
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that PGC-1α can activate TFAM to increase mitochon-
drial biogenesis [46, 47]. Also, PGC-1α controls SOD 
as an antioxidant enzyme. It has been demonstrated 
that PGC-1ɑ directly interacts with SOD and controls 
its activity [48]. We also observed increased PGC-1α 
expression levels following OLO treatment, along with 
increased TFAM expression and cardiac SOD level in 
D-GAL-induced aged rats [49, 50].

SIRT1 is a key regulator of energy metabolism in the 
heart, which reduces oxidative stress and apoptosis 
in cardiac cells [51]. SIRT1 can act as an upstream fac-
tor and directly increase the expression of PGC1-α. In 
this study, we observed that D-GAL injection decreased 
the expression level of SIRT1 and PGC-1α in rats [51–
53]. Our previous studies support that aging induced 
by D-GAL is involved in reducing SIRT1, PGC-1α and 
TFAM genes expression in the heart of aged rats. They 
mediate the regulation mitochondrial biogenesis [6, 8]. 
OLO treatment could stimulate the SIRT1/PGC-1ɑ path-
way and improve the mitochondrial biogenesis. It has 
been shown that OLO prevents cardiac oxidative stress 
by regulating Nrf2-dependent gene expression such as 
SIRT1 gene expression in senescence-accelerated mouse-
prone 8 mice [54]. In addition to energy production, 
mitochondria also play an important role in ROS produc-
tion and apoptosis control [55].

A variety of key events in apoptosis focus on mito-
chondria, such as release of apoptosis-inducing factors, 
loss of mitochondrial membrane potential, and changes 
in cellular redox states [56]. The down-regulation of 
SIRT1 is associated with reduced mitochondrial mem-
brane potential, decreased mtDNA number, and cellular 
oxidative stress in primary myoblasts [57]. Therefore, 
SIRT1 is involved in regulation of apoptosis. Apoptosis is 
a critical pathway that leads to cardiac hypertrophy and 
cardiac dysfunction [58]. Mitochondrial-related apopto-
sis is modulated through two clusters of Bax and Bcl-2 
proteins, and the equilibrium between these two clusters 
controls the apoptosis induction [59]. Our data show 
that apoptosis is increased in response to aging in aged 
animals. Our present work reveals that OLO treatment 
is able to prevent apoptosis in aging rats. These findings 
suggest that OLO is effective in improving aging-induced 
cardiac hypertrophy by reducing apoptosis.

Mitochondrial dysfunction and apoptosis have been 
exhibited as important factors in the development of car-
diac hypertrophy [60]. It has been reported that activa-
tion of SIRT1 inhibits cardiac hypertrophy in mice [61]. 
Moreover, previous studies have been reported that 
PGC-1α reduction is associated with cardiac hypertro-
phy in experimental animal models [62]. Therefore, OLO 
treatment could be regarded as an efficient therapeutic 
method in reducing cardiac hypertrophy by improving 
mitochondrial biogenesis, apoptosis and oxidative stress 

through SIRT1/PGC-1ɑ pathway in aging. New regula-
tory pathways help to find potential new therapeutic tar-
gets for cardiac hypertrophy. OLO is a functional food 
with legitimate health claims that have protective effects 
on the heart [63]. Therefore, among all dietary plans, 
a Mediterranean diet based on daily consumption of 
OLO as a source of fat is the most suitable dietary model 
for beneficial cardioprotective effects and longevity in 
human [64].

Limitations
Our findings did not reveal anti-inflammatory pathways 
involved in the protective effects of OLO. Therefore, in 
future studies, it would be better to elucidate the path-
ways through which OLO exerts its anti-inflammatory 
effects in aged animals. In addition, to further understand 
the protective effects of OLO on heart function, it is bet-
ter to examine the electrical function of the heart by elec-
trocardiogram and the mechanical function of the heart 
by measuring the left ventricular pressure. Moreover, the 
aging model caused by chronic injection of D-GAL can 
cause complications such as pain and infection for the 
animal, so this method has limitations. Therefore, fur-
ther animal and clinical studies are required to validate 
the protective effects OLO in cardiac aging. Numerous 
evidences show that OLO has many benefits for human 
health and is recommended to be used as part of a regu-
lar diet, but excessive and long-term consumption may 
lead to adverse effects [65]. Nevertheless, clinical trials 
are needed to evaluate the effects of OLO on cardiovas-
cular morbidity and mortality in different populations 
and individuals with different pathologies.

Conclusions
Our findings reveal that OLO treatment in D-GAL-
induced aging rats for eight weeks can increase cardiac 
expression levels of SIRT1, PGC-1α, and TFAM genes 
and reduce apoptosis. Thus, OLO improves mitochon-
drial biogenesis, apoptosis and oxidative stress in the 
heart resulting in inhibition of age-related cardiac hyper-
trophy. Overall, our results suggest that OLO is a potent 
candidate for decline of the cardiac malformations dur-
ing aging. Overall, a Mediterranean diet rich in OLO may 
play an important role in the prevention of age-related 
chronic diseases such as cardiovascular disease. There-
fore, dietary recommendations to reduce the effects of 
aging should be accompanied by more OLO consump-
tion. However, further mechanistic studies in animal and 
clinical experiments are required to validate cardiopro-
tective properties of OLO in aging.
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