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Abstract

Obesity confers an increased incidence and poorer clinical prognosis in more than 10 cancer types. Paradoxically, obesity
may provide protection from poor outcomes in lung cancer. Mechanisms for the obesity-cancer links are not fully elucidated,
with altered glucose metabolism being a promising candidate. Using 18F-fluorodeoxyglucose positron-emission-
tomography/computed tomography images from The Cancer Imaging Archive, we explored the relationship between body
mass index (BMI) and glucose metabolism in several cancers. In 188 patients (BMI mean [SD] ¼ 27.7 [5.1], range ¼ 17.4–49.3
kg/m2), higher BMI was associated with greater tumor glucose uptake in breast cancer (r¼0.36; P¼ .02) and with lower tumor
glucose uptake in non-small cell lung cancer (r ¼ -0.26; P¼ .048) using two-sided Pearson correlations. No relationship was ob-
served in soft tissue sarcoma or squamous cell carcinoma. Harnessing the National Cancer Institute’s open-access database,
we demonstrate altered tumor glucose metabolism as a potential mechanism for the detrimental and protective effects of
obesity on breast and lung cancer, respectively.

Obesity, currently affecting 35–40% of adults in the United
States (1), is correlated with an increased incidence and poorer
clinical outcomes in more than 10 different types of cancer (2).
The mechanisms underlying the obesity-associated cancer risk
are currently not well defined, but altered glucose metabolism
is characteristic of both increased body mass index (BMI) (3) and
cancer (4–7). Distinct metabolic mechanisms exist between tu-
mor types at the cellular level (8,9). Epidemiologic data allude to
differences at the population level: obesity is detrimental in
many cases (10) but seemingly protective in lung cancer (11).

As a tumor’s avidity for glucose underlies the use of 18F-fluo-
rodeoxyglucose positron emission tomography/computed to-
mography (18F-FDG PET/CT), we used PET and CT images to
examine tumor glucose metabolism in patients with four cancer
types: head and neck squamous cell carcinoma (HNSCC) (12),
soft tissue sarcoma (STS) (13), breast cancer (14,15), and non-
small cell lung cancer (NSCLC) (16–21). Utilizing the National
Cancer Institute-funded open-source database, The Cancer
Imaging Archive (TCIA) (22), we performed a retrospective
cross-sectional analysis to examine tumor glucose uptake (TGU)
in patients with obesity-associated and obesity-independent
cancers.

All patients with an 18F-FDG PET/CT scan, sex, height, and
weight available from TCIA were studied. All subjects provided
informed consent in accordance with each site’s institutional

review board. If multiple images were available, the earliest PET
and CT scan was used to minimize effects of therapy on the tu-
mor. Power analyses for correlation (b¼ 0.20 and a¼ 0.05) neces-
sitated a minimum of 29 patients, thus the four tumor types
with no less than 29 unique patient PET and CTs were analyzed.
Clinical parameters such as tumor stage and medications were
unavailable.

PET and CT images were loaded into ImageJ (NIH, Bethesda,
MD, USA) with an open source PET-CT Viewer (23), and tissues
were analyzed with a fixed-volume approach (24). Briefly, fixed-
volume spheres were drawn to measure maximal glucose up-
take in tumor, skeletal muscle (deltoid, infraspinatus, or quadri-
ceps), liver, spleen, and subcutaneous and supraclavicular
adipose tissue. Standardized uptake values (SUV) were calcu-
lated (25). Because BMI alone is related to SUV in obese patients,
the Janmahastian Formula was used to calculate and correct for
estimated lean body mass (LBM) (26). The primary endpoint was
LBM-corrected SUV (SUL) (in g/mL) of tumors, as related to BMI
(in kg/m2). Maximal SUL was chosen to avoid issues from partial
volume effects.

Two-sided Pearson correlations were used to measure BMI
vs TGU. A two-way ANOVA was used with Tukey multiple com-
parisons test to examine differences in TGU across cancer types,
between tissues, and between sexes. Data were analyzed in
GraphPad Prism 7.0 (San Diego, CA, USA), and REMARK
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reporting guidelines were used where applicable (27). Statistical
significance was determined as P values less than .05.

Sex, height, weight, BMI, estimated LBM, and estimated per-
cent body fat (%BF) were reported (Supplementary Table 1,
available online). Among 97 women and 91 men, BMI ranged
from 17.4% to 49.3 kg/m2 (mean [SD] ¼ 27.7 [5.1]) and %BF ranged
from 11.1% to 55.5%. Many STS PET and CT images were taken
from waist down, and some breast cancer images were taken
from above L3, thus estimated %BF could not be calculated us-
ing the L3 vertebral level method (28).

PET and CT data revealed a positive correlation between
BMI and TGU in breast cancer (r¼ 0.36; P¼ .02), yet a negative
correlation in NSCLC (r ¼ �0.26; P¼ .048) (Figure 1). In these
cohorts, we calculated target to background ratio, where tu-
mor SUV was divided by SUV in the descending aorta. Pearson
correlations between target to background ratio and BMI for
breast cancer (r¼ 0.25; P¼ .13) and NSCLC (r ¼ �0.34; P< .001)
were calculated. No statistically significant correlations were
seen in HNSCC (r¼ 0.06; P¼ .71) or STS (r¼ 0.23; P¼ .11)
(Figure 1). HNSCC TGU was higher than in breast cancer
(P< .001), STS (P< .001), and NSCLC (P¼ .04) (Figure 2). STS
TGU was higher than breast cancer TGU (P ¼ .002) (Figure 2).
This may be due to a higher proportion of men in the HNSCC
group (17.1% female) and STS group (52.9% female) as

compared with the 100% female breast cancer cohort, because
men had higher glucose uptake in nearly all tissues
(Supplementary Table 2, available online). This observation
likely reflects men’s higher metabolic rate (29).

Tumor SUV intensity has been used as a surrogate for breast
cancer time to progression (30). In the PERCIST guidelines (31), low-
ered SUV in breast cancer is beneficial, whereas treatment nonres-
ponders show no decline in SUV. Further, recent literature has
demonstrated the use of the maximum SUV to predict prognosis of
NSCLC, with lower pre- and posttreatment SUV showing improved
outcomes (32–34). These data suggest tumor glucose metabolism
as a link between obesity’s detrimental and protective effects on
cancer aggressiveness in breast and NSCLC, respectively.

Our results demonstrate no statistically significant correla-
tion of BMI with TGU in STS (35), but previous reports suggest a
weak link between STS severity and obesity (36,37). We detected
no correlation between BMI and SUV in HNSCC, supporting a
prior study that demonstrates that even in the setting of diabe-
tes, obesity per se is not correlated with HNSCC risk (38).
Although our results cannot confirm that TGU is altered by obe-
sity, this study provides a potential explanation for obesity’s
role in cancer risk and progression in patients with a wide range
of BMIs. Yet, the limited sample size may have reduced the
power of our study.

Figure 1. Body mass index vs lean body mass corrected-glucose uptake. Correlations between body mass index (BMI) and lean body mass-corrected maximized stan-

dardized uptake value (SULmax) in tumors of (A) head and neck squamous cell carcinoma, (B) breast cancer, (C) soft tissue sarcoma, and (D) non-small cell lung carci-

noma. A lean representative subject is highlighted in blue in the scatter plot, the same subject’s maximum intensity projection PET shown beneath with a blue frame,

and a green arrow pointing to the tumor. An obese representative subject is highlighted in the red the scatter plot, with his or her maximum intensity projection PET

shown beneath with a red frame, and a green arrow pointing to the tumor. A two-sided Pearson correlation was performed, and statistical significance was determined

as P< .05. SUL ¼ standardized uptake value.
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The influence of health and treatment status could not be
studied here. Chronic hyperglycemia, higher circulating insulin
levels, increased inflammation, elevated glucocorticoids, and
more related mechanisms on systemic glucose metabolism in
obese patients may impact tumor progression (39). These and
other obesity-related factors may reduce TGU in NSCLC and re-
duce risk (40) and improve survival (41) across all stages and
histological subtypes of lung cancer (42). Chemotherapy can in-
crease or decrease tumor and immune cell FDG uptake (43).
Antidiabetic therapies [metformin (44) and SGLT2 inhibitors
(45)] may also reduce TGU in multiple cancers.

In summary, tumor glucose metabolism was related to BMI
in a detrimental and protective manner in breast and lung can-
cer, respectively. Publicly available PET and CT images were ac-
quired through the National Cancer Institute’s TCIA and
analyzed in free open source software, demonstrating the grow-

ing utility of shared resources in oncology. Although limited by
the availability of clinical information, we highlighted a puta-
tive physiological mechanism for obesity’s impact on the ag-
gressiveness of multiple tumor types. Prospective studies
should be designed to include clinical parameters to better char-
acterize dysregulated glucose metabolism.
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