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Abstract: After the COVID-19 pandemic, the development of an accurate diagnosis and monitoring
of diseases became a more important issue. In order to fabricate high-performance and sensitive
biosensors, many researchers and scientists have used many kinds of nanomaterials such as metal
nanoparticles (NPs), metal oxide NPs, quantum dots (QDs), and carbon nanomaterials including
graphene and carbon nanotubes (CNTs). Among them, CNTs have been considered important
biosensing channel candidates due to their excellent physical properties such as high electrical
conductivity, strong mechanical properties, plasmonic properties, and so on. Thus, in this review,
CNT-based biosensing systems are introduced and various sensing approaches such as electrochem-
ical, optical, and electrical methods are reported. Moreover, such biosensing platforms showed
excellent sensitivity and high selectivity against not only viruses but also virus DNA structures. So,
based on the amazing potential of CNTs-based biosensing systems, healthcare and public health can
be significantly improved.

Keywords: carbon nanotubes; high-performance biosensors; nanomaterials-based biosensors

1. Introduction

The detection of biological components is important in several areas ranging from
healthcare, clinical medicine, environmental control, and food processing to homeland
security [1,2]. Therefore, the development of reliable and cost-effective devices is highly
demandable for our healthy lifestyles [3]. Sensor a class of devices that has been explored
to detect a range of gas molecules to biomolecules. Biosensors are analytical devices that
can combine biomolecules recognition via chemical or physical transduction [4]. Biosensor
development is being driven increasingly by nanotechnology. Signal transduction is the
basis for the operation of biosensors [5]. There are three elements in this system: a bio-
recognition element, a bio-transducer, and an electronic system consisting of a display, a
processor, and an amplifier. It interacts with a specific analyte through its bio-recognition
element [6]. A wide range of samples can be tested with biosensors, including body fluids,
food samples, and cell cultures. The main features of biosensors include: (a) being highly
specific for the analyte, (b) reaction must be unaffected by factors like pH, temperature,
or stirring, and (c) the linearity of the response will be maintained over a certain range of
analyte concentrations [7–9].
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One of the most widely used nanomaterials over the last two decades is carbon nan-
otubes (CNTs). This highly active field of research has a wide variety of CNT forms, and
new forms are being designed and fabricated on a continuous basis. Hence, CNTs are receiv-
ing considerable attention in many fields of application from medicine [10], agriculture [11],
and food safety [12] to bioprocessing [13], environmental [14], and industrial monitor-
ing [15]. In recent years, CNTs have drawn interest in biosensor devices due to their several
unique properties [16–19]. Specifically, CNTs possess a wide surface area and extensive free
surface energy, and can easily stabilize the biomolecules at the biosensor surface through
strong adsorb capability [20–22]. The strong carbon–carbon bonds and nanostructure of
chemically modified carbon nanotubes (CNTs) are attributed to their outstanding electric
conductivity, exceptional tensile strength, thermal conductivity, and optical properties al-
lowing them to efficiently transmit signals associated with detecting analytes, metabolites,
or disease biomarkers [23,24]. The use of CNTs for biomedical applications has therefore
attracted considerable attention. Owing to their high surface-to-volume ratio, CNTs are
capable of detecting biological components at ultra-fast speed with minimal concentrations.
With the great advantages of CNTs-based biosensors such as high sensitivity, fast response
time, lower potential for redox reactions, and longer lifetime with stability compared to
other sensors based on metal oxides, or silicon-based materials [25,26]. These potential
characteristics of CNTs have shed to elevate the research interests towards the develop-
ment of biosensors. Electrochemical sensors and optical sensors made from CNTs have
been developed for several applications, including the detection of heavy metals [27], in
addition to field-effect devices for detecting virus infection [28], bacteria [29], cancer [30,31],
diabetes [32], and biological components detection [33].

The systematic review is an overview of carbon nanotubes (CNTs) and their derivatives
as high-performance biosensors. The preparative methods such as electric-arc discharge,
laser ablation, and chemical vapor deposition (CVD) of the CNTs have been described
briefly here. The efforts made on the toxicology profile and mechanism of sensing of CNTs
in this study. Later, we have illustrated insightfully the applications of CNTs as a biosensor
for the detection of cancer and diabetes, biological components such as carbohydrates,
proteins, essential elements, some bacteria, and viruses (Figure 1). Additionally, the recent
development towards the commercialization of CNTs and their derivatives sensors has
been discussed.
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Figure 1. Schematic presentation of CNT-based biosensors.

2. Preparation of Carbon Nanotubes (CNTs)

After the discovery of synthetic pathways of C60 and other types of fullerenes [34], it ig-
nited the interest among synthetic chemists for other carbon-based materials with different
structural possibilities. The first multi-walled CNT (MWCNT) synthesis in the laboratory
was reported by Sumio Iijima in 1991 by using carbon black and graphite as precursor
materials in a regulated environment. He named it “Helical microtubules” [35]. Iijima
used the arc-discharge evaporation method to produce needle-like structures (ranging from
4–30 nm in length and up to 1 µm in diameter) comprising coaxial tubes of graphite sheets,
but his unquenchable reaction setting was also associated with some major drawbacks
including uneven shape, size, and mechanical strength as well as purity, which are the
most important parameters associated with their applicability. In the case of single-walled
CNT (SWCNT), it was jointly discovered by Iijima and Ichihashi [36] and Bethune and
colleagues [37] in 1993. They used arc discharge methods to produce CNTs whereas the
former group used an iron catalyst and the latter one used a cobalt catalyst. In both cases,
uneven size was the biggest issue as Iijima and Ichihashi reported a diameter between 0.75
and 13 nm whereas Bethune and colleagues reported a diameter between 1.2 and 20 nm.

Thirty years after the first encounter, there is revolutionary progress in the field of
CNTs. Currently, a variety of synthetic techniques are being employed with modified
approaches and tweaks to produce CNTs with some exceptional features due to the recent
revelation of CNT application in the pharmaceutical division.

Electric-arc discharge, laser ablation, and chemical vapor deposition (CVD) are com-
monly used to produce several types of CNTs.
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2.1. Electric-Arc Discharge

The oldest method of synthesis of CNTs is the arc discharge method. It utilizes the
principle of breaking down the gas to generate plasma. The main component of this
experimental setup is two parallelly attached electrodes (either horizontally or vertically)
where the anode is crammed up with carbon precursors along with catalysts whereas
the cathode is a pure graphite rod. The chamber is filled with an inert gas or engulfed
inside a liquid atmosphere. Both AC and DC power supplies can be used in this system
whilst the electrodes are kept in close contact (1–2 mm) to generate an arc and attain a
steady discharge. Plasma is generated by arc current at an extremely elevated temperature
(4000–6000 K) which sublimes the carbon precursor in the anode. The carbon vapors
accumulate in the gaseous phase and get deposited at the cathode due to the temperature
gradient. After cooling down it is taken out and purified for further investigation and
examined under an electron microscope for further assessment of the morphology [38].

CNTs grow in different phases in this method as in the vapor phase, liquid phase,
solid phase, and crystal phase, respectively [39–42].

In the arc discharge method, CNTs get synthesized by sublimation of a carbon precur-
sor. Carbon black [43–46] and graphite [47–56] are commonly used in this scenario although
some other carbon precursors namely fullerene waste soot [57], polyvinylalcohol [58], and
other hydrocarbons including toluene, xylene, cyclohexane, cyclohexanone, n-hexane,
n-heptane, n-octane, and n-pentane [59] are also reported. Some important parameters
namely, the pressure of the inert gas, optimal voltage as well as the choice of the catalysts
are critical for synthesizing highly pure CNTs via this method. For example, one of the
recent findings suggests that the Co-MCM-41 catalyst helps to produce CNTs with large
diameter distribution along with bulk production [60].

2.2. Laser Ablation

Laser vaporization or the laser ablation method is one of the most efficient methods
to synthesize CNTs. It uses the same principle of arc discharge method as vaporization of
carbon precursors in a laser-assisted pathway followed by depositing on the substrate. In
1995, R.E. Smalley and colleagues reported the first SWCNT synthesis by directly vaporizing
transition metal/graphite composite rods in a laser-aided pathway. The experimental setup
consists of a furnace, a quartz tube with a window, a target carbon composite doped with
catalytic metals, a water-cooled trap, and flow systems for the buffer gas to maintain
constant pressures and flow rates along with a pressure gas flow controller. Typically,
an Nd:YAG (neodymium-yttrium-aluminum-garnet) laser or a CO2 laser is introduced
through the window and focused onto the target. The target gets vaporized at a controlled
pressure. The buffer gas transports the manufactured SWNTs towards the water-cooled
trap, where they are collected [61]. In this method, it is possible to get a yield up to 90% but
the high cost makes it pretty tough to implement in large-scale production.

Arc discharge and laser ablation are both energy-intensive processes, therefore com-
parisons between them revealed some noteworthy commonalities. Such a situation is
exceedingly uneconomical for performance at an industrial level. Both techniques have ex-
tremely rigorous purification protocols and huge graphite requirements as a target material,
which restricts their use in large-scale industrial manufacturing.

2.3. Chemical Vapor Deposition (CVD)

The thermal CVD method is one of the simplest and most cost-efficient methods in the
field of CNT synthesis which can produce a high amount of yield. CVD synthesized CNT
was reported as defective at the beginning, but since 1998, after recognizing its potential, a
significant number of changes have been incorporated and nowadays it is one of the most
widely used methods for synthesizing CNTs. Currently, it is possible to engineer high-
quality SWCNTs and MWCNTs via this method. One of the most important advantages
it has over arc discharge and laser ablation methods is the temperature region as it can
be operated in lower regions such as 550–1000 ◦C. First, the carbon source gas and the
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carrier gas are introduced into the reaction chamber while the temperature is between 550
and 1000 ◦C. Next, the gas is decomposed to produce carbon atoms on a coated catalyst
substrate while the temperature is kept at a high temperature and finally carbon nanotubes
are produced. The most common transition metal catalysts are cobalt (Co) [62], iron (Fe),
nickel (Ni), copper (Cu), chromium (Mo), and their alloys [63]. In most cases, carbon
gases such as methane, ethanol, ethylene, acetylene, and benzene are used as the source of
carbon [64–66].

2.4. Others

Apart from conventional methods, there are also some other methods emerging for
CNT synthesis, namely solvothermal [67], low-temperature plasma reduction [67], sol-
gel [68], and flame [69] but low yield and difficult parameter control make it very hard for
them to get used in frontline synthesis.

3. Mechanism of Sensing

Due to excellent mechanical, electrical, and electrochemical properties, CNTs are
widely used in the field of biosensing. In 1962, Leland C. Clark, Jr, and Champ Lyons
published a report regarding the electrode system for cardiovascular surgery [70]; this is
the central principle on which CNT-based biosensors rely. It has been found that SWCNTs
have a broad array of electrical conductivity properties coupled with high chemical stability
and extraordinarily hefty length to diameter ratios, which may be as high as 132,000,000:1.
While metallic SWCNTs are also well suited for electrochemical implements, MWCNTs
have some advantages due to their superior metallic electronic properties [71]. CNT-based
biosensors have two main components: a biological sensitive element and a transducer.
CNTs are subjected to chemical alteration techniques to make them biologically responsive,
and the transducer then converts the concentration of the analyte to other detectable
physical variables such as current, absorbance, etc., which further can be analyzed and
assessed [72]. The sensing principle can be divided into two categories, physical and
chemical. The operating principle of physical sensing mimics the human response towards
external stimuli, it works by analyzing the response of the device that bids reaction to the
physical possession of the medium, and thus shows the “physical biosensor” term was
coined whereas the principle of chemical sensing relies on the measurability of analyte
concentration.

3.1. Physical Sensing

Physical biosensors can be classified into three categories: optical, piezoelectric, and
calorimetric. For optical sensing, SWCNTs are specifically utilized as different chiralities
have shown different electronic properties, exploiting those traits metallic, semi-metallic
and semiconducting CNT-based biosensors are produced. Already there is a strong relation-
ship being drawn between electronic structure and its photophysical behavior, which is cru-
cial for advancement in this section. Michael J. O’Connell and colleagues have reported the
fluorescent property of semiconducting SWCNTs in the near-infrared (NIR, 900–1600 nm)
spectrum due to their electronic band gap between valence and conduction band, as well
as a drastic reduction in photoluminescence intensity due to the aggregation phenomenon
of isolated nanotubes [73]. The course of mechanisms of fluorescence modulation in CNTs
can be depicted using several different shades namely Solvatochromism, charge transfer,
and doping and redox reactions. Creating a microenvironment of nonpolar solvent around
SWCNTs can significantly alter the photophysical properties resulting in a solvatochromic
shift ranging from 25 to 100 meV [74]. In the case of photo-induced charge transfer, the
plausible mechanistic pathway follows the ground-state thermal charge transfer from the
nanotube valence band and photo-induced excited-state charge transfer from the nanotube
conduction band resulting in quenching in fluorescence spectra [75]. In the case of doping,
the analyte adjusts exciton decay paths by altering the number of carbon lattice defects
whilst the redox reactions are responsible for brightening the fluorescence [76] as well
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as reversible quenching [77,78]. Another important feature of SWCNT is the resonance-
enhanced Raman signature, which is also used for advanced biosensing devices [79]. As
for piezorestivity, that is due to CNT’s high strength, toughness, and exceedingly high
Young’s modulus which is more than 1 TPa [80]. For detection, a high signal-to-noise ratio
is essential for field-effect transistors. From Thomas Helbling and colleagues’ report, where
they investigated the signal-to-noise ratio in carbon nanotube piezoresistive transducer ele-
ments and drew the correlation between the signal-to-noise ratio of SWCNT and gate bias
voltage and concluded that the best operating strategy of SWCNT-based biosensors will be
at device off-state [81]. For the calorimetric CNT-biosensor, it operates by monitoring the
temperature change and heat effect after the reaction of immobilized biological materials
with corresponding objects which could be detected by the transducer [23].

3.2. Chemical Sensing

According to the IUPAC definition, a self-contained integrated analytical device can be
called an electrochemical biosensor when it uses a biological recognition element (biochem-
ical receptor) that is kept in close proximity to an electrochemical transduction element to
provide exact quantitative or semi-quantitative analytical information. They are clearly
distinguishable from a bioanalytical system which necessitates additional processing steps,
such as reagent addition [82]. Electrochemical biosensors based on CNTs can be classified
into three categories namely, amperometric, potentiometric, and impedimetric biosensors,
and among them, the amperometric method is most extensively used. The main principle
of this type of sensing is to change the chemical signal to electrical signals, once the en-
zyme electrode is submerged in the test solution, the analytes will diffuse into the enzyme
layer and quickly undergo an enzymatic reaction. Amperometric CNT-based biosensors
work by using an enzyme-fixed CNT electrode to catalyze oxidation or reduction as the
sensing mechanism. Following this principle, different types of different enzyme-based
electrodes are reported to date including nicotinamide adenine dinucleotide (NADH) [83],
glucose oxidase (GOD) [84], lactic acid oxidase [85], cholesterol oxidase [86], etc. In the
case of potentiometric sensors, transducers measure potential based on the intensification
of charges on the working electrode, where biochemical receptors converse with analytes.
When negligible current flows between the reference and working electrodes, the poten-
tial is recorded between them. Potentiometric devices typically translate the ion activity
signal during electrochemical feedback [87]. The impedimetric sensing pathway is further
classified into two, faradaic and non-faradaic. In the faradaic pathway, the electrochemical
transducer, over a wide range of applied alternating current frequencies, measures the
resistance and reactance produced by the charge transfer aptitude of an analyte between
an electrode and a redox electrolyte solution or redox medium between electrodes or a
reference node whilst for the non-faradaic pathway, the change in dielectric parameters
namely capacitance, impedance, permittivity, and current in between the electrode and the
medium (electrolyte) as well as at the sensor electrode interface are directly measured [88].

4. Toxicology Profile of Carbon Nanotubes

Nanomaterials for therapeutic and sensor applications have non-negligible toxicity.
It is caused by a very large surface area, the inherent toxicity of the material itself, and its
very small size [89]. In addition, it is very important to determine the toxicity of carbon
nanotubes for clinical use because there is a possibility of accumulation in organs [90]. Like
many studies conducted for clinical application, CNTs also need to be carefully evaluated
and verified for toxicity in vitro and in vivo [91,92]. Here, we provide the toxicity of carbon
nanotubes and present methodological explanations to reduce toxicity. Epithelial cell
proliferation is a general phenomenon that occurs in recovery after tissue damage caused
by foreign substances. This is particularly noticeable in CNT-treated lungs [93]. CNTs at a
concentration of 6 mg/m3 were inhaled by rats for 13 weeks. After 39 weeks, bronchiolar
and alveolar hyperplasia were confirmed [94]. However, no cell hyperproliferation was
found in mice that inhaled CNTs at low concentrations (1.5 mg/m3). Therefore, exposure
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to CNTs can induce fibrosis by irritating the respiratory system, such as bronchioles and
alveolar ducts, depending on their concentration. Repetitive stimulation of cells results in
genetic damage, which causes a very fatal problem in cell proliferation and division [95].
Recent studies have shown that multi-walled carbon nanotubes (MWCNTs) induced DNA
breaks and mutations in cells of the respiratory system as well as being acute genotoxic [96].
MWCNT showed DNA strand damage in vitro in human bronchial epithelial BEAS-2B cells.
MWCNTs also showed an in vivo dose-dependent increase in damage of DNA strands
with single pharyngeal aspiration in the lung cells, bronchoalveolar lavage cells, and
micronucleated alveolar type II cells. MWCNTs caused DNA damage after inhalation but
not after pharyngeal aspiration in bronchoalveolar lavage cells. This phenomenon possibly
reflects changes in the BAL cell population following the bolus dose. Their findings indicate
that straight MWCNTs induce not only DNA damage in vitro but also produce both DNA
damage and micronuclei in mouse lungs. The toxicology results using rats (Sprague–
Dawley rats) are similar to the mice used in research [97]. MWCNTs were administered
intratracheally (0.5, 2, or 5 mg) to Sprague–Dawley rats, and inflammation and fibrosis
level were evaluated. MWCNTs were still not only present in the lung after 60 days but
also induced inflammation and fibrosis. MWCNTs lead to a significantly higher level of
TNF-a and the formation of collagen in the lung. Therefore, due to the accumulation of
CNTs in the tissue, the tissue gets damaged and stimulation lasts for a long time, which
not only increases the secretion of inflammatory cytokines but also causes genetic damage.
These continuously occurring actions eventually lead to fatal function loss of organs and
act as a major hurdle for the clinical application of CNTs.

The liver is one of the organs most closely related to metabolism [98,99]. Metabolism
and absorption of nutrients, drugs, and other foreign substances occur mainly in the
liver [100]. In particular, since it plays an important role in the metabolism and detoxifi-
cation of drugs, it is essential to check whether toxicity occurs in the liver for the clinical
use of CNT [101]. CNT will accumulate in the liver and should be closely monitored to
see if this causes toxicity problems [102]. Zongfei Ji et al. reported severe hepatotoxicity
of MWCNT [103]. The two types of MWCNT (acid-oxidized MWCNT and Tween-80-
dispersed MWCNT) were intravenously injected to investigate hepatotoxicity. The body
weight of the mice injected with MWCNT was reduced and the color of the liver changed
to dark red. In addition, the level of total bilirubin was increased. Bilirubin is one of the
components of bile and is produced from hemoglobin [104]. Red blood cells composed of
hemoglobin circulate throughout the body for about 3 weeks and undergo gas exchange in
the tissues, and then are destroyed. At this time, red blood cells are metabolized to form
bilirubin. The produced bilirubin is secreted together with bile from the liver, decomposed
in the small intestine, and finally excreted from the body. However, the concentration of
bilirubin in the blood increases when the metabolic process does not proceed smoothly due
to liver damage or decreased function [105]. With the increased concentration of bilirubin,
liver function and damage can be determined. Zongfei Ji et al. investigated Kunming mice
and reported a significantly increased (2-fold increased, 0.5 mmol L−1 to 1.0 mmol L−1)
bilirubin level in the MWCNT-treated group which was exposed to 10 and 60 mg/kg by
intravenous injection for 15 and 60 days. The result also reported a significantly increased
(27% increased, 110 U L−1 to 140 U L−1) aspartate aminotransferase level. Aspartate amino-
transferase is an enzyme that can detect liver disease [106]. Aspartate aminotransferase
exists in hepatocytes and is basically detected in the blood. However, when abnormal liver
function, degeneration and destruction of liver tissue, and various liver diseases occur,
aspartate aminotransferase is released from the liver into the blood, leading to changes in
concentration in the blood [107]. Through this change in blood concentration, liver disease
and liver damage can be checked. As well as the problems of long-term accumulation in
the lungs mentioned earlier, they reported the accumulation of MWCNTs in the liver up to
60 days after administration and histological morphology changes in livers and inflamma-
tory infiltration. Moreover, when the liver tissue was observed with a transmission electron
microscope (TEM), it was confirmed that the mitochondria were physically destroyed due
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to the penetration of MWCNTs. These results suggest the possibility that MWCNTs physi-
cally destroy mitochondria, creating additional problems beyond the toxicity discussed
so far.

Through the process of decomposing and excreting most foreign substances including
CNTs, the body protects itself and maintains homeostasis [108–110]. We also need to look
closely at the toxicity of CNTs to the excretory organs that are responsible for the clearance
of drugs and foreign substances. The kidney is a very important organ for the excretion
of toxins, and it is necessary to accurately study whether CNTs accumulate in the kidney
during excretion and whether toxicity is caused by CNT. Zamani F et al. used MWCNTs
for the construction of an MWCNT-induced kidney injury model [111]. They reported
the assessment of apigenin against an MWCNT-induced kidney-injured rat model. As a
flavonoid, apigenin is contained in a large amount in various fruits and vegetables [112],
and has the effect of suppressing inflammation [113], oxidative stress [114], and ameliorates
carbohydrate metabolism [115]. They administered 10 mg kg−1 of apigenin to Wistar rats.
After 2 weeks, the Wistar rats were exposed to MWCNTs for 5 h/day and 5 days/week.
After exposure to MWCNTs, mitochondria were extracted from the kidneys of Wistar
rats and mitochondrial toxicity parameters were analyzed to evaluate the renal toxicity of
MWCNTs. Succinate dehydrogenase is an important parameter that can be used to evaluate
kidney-derived mitochondrial toxicity. Succinate dehydrogenase is found in almost all
cells. In animal cells, it is present in the mitochondria and is contained in the TCA cycle. It
is an important enzyme that is particularly closely related to the respiratory chain [116].
The main role of this enzyme is to catalyze fumarate production by dehydrogenation of
succinate [117]. Surprisingly, the activity of mitochondrial succinate dehydrogenase from
kidneys that are harvested from MWCNT-exposed Wistar rats was significantly reduced
to 25% compared to the control group. In addition, mitochondria in the kidneys of the
MWCNT-treated group swelled by nearly 50%, and the number of reactive oxygen species
was increased by 2.5 times. They also investigated the release of cytochrome c. Cytochrome
is a hemeprotein that plays a role in the transport of electrons as an electron transporter [118].
Among the hemeproteins present in cells except for myoglobin, peroxidase, and catalase
are cytochromes and those are classified into various types such as cytochromes a, b,
and c. When apoptosis proceeds, cytochrome c inside the mitochondria is released [119].
For this reason, it is possible to determine whether apoptosis is progressing based on
the released cytochrome c. Results showed that cytochrome c was released more than
2-fold as compared to the control group from rat kidney mitochondria after the inhalation
exposure to MWCNTs. In conclusion, they reported that MWCNTs induce nephrotoxicity
and apigenin exerted its protective effect through the reduction in ROS-mediated oxidative
stress and mitochondrial damage.

The spleen is the largest secondary lymphoid organ in the human body and plays
the most important role in eliciting and regulating the immune response for the removal
of foreign substances [120,121]. The spleen, like the liver, lungs, and kidneys, is one of
the organs most likely to be damaged due to its high sensitivity to foreign substances. In
addition, the spleen is more burdened by the removal of foreign substances through the
immune response. When a toxic substance enters the body, an inflammatory response is
triggered, and lymphatic organs including the spleen and immune cells are activated to
respond to the inflammatory response [120,122]. Abnormalities of the immune system
affect the whole body as well as the lymphatic organ. Therefore, immune system toxicity of
CNT is important for further application. Lee S et al. reported that less-dispersed single-
walled carbon nanotubes (SWCNTs) caused cytotoxicity in macrophages and abnormalities
in immune organs such as the spleen [123]. As a result, treatment with 10 µg mL−1 of
SWCNTs in J774A.1, a rodent macrophage cell line, significantly decreased the cell viability
to 30% after 24 h. In addition, the concentration of reactive oxygen species in the cells in-
creased more than 4 times, and the concentration of superoxide dismutase was increased by
2.4 times. In the cells treated with SWCNTs, the concentrations of inflammatory cytokines,
IL-1β and TNF-α, also showed a 2-fold increase. To investigate the effect of SWCNTs
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in vivo, BALB/c mice were intravenously injected with SWCNTs (1 mg kg−1 every day)
for 2 weeks. The spleen was stimulated by SWCNTs, and splenocyte proliferation was
significantly increased by more than 2-fold. Concentrations of inflammatory cytokines in
the BALB/c were examined, and IL-2, IL-1β, and TNF-α also showed significant increases.
Clichici S et al. reported the short-term impact of MWCNTs on the spleen [124]. They
produced DNA functionalized MWCNT to improve the dispersity of MWCNT in the body.
MWCNT were intraperitoneally administrated to Wistar rats (single dose; 270 mg L−1 of
MWCNT). MWCNT were translocated into the spleen, showing maximum concentration
at 48 h after administration. Through histological analysis, a large number of macrophages
were identified in the spleen of the MWCNT-administered group, and it was confirmed that
apoptosis also occurred actively. Oxidative stress was further increased as the concentration
of nitric oxide (3-fold) and inducible NO synthase (2.5-fold) in the spleen increased. The
concentration of interleukin-1b (one of the pro-inflammatory cytokines which is an impor-
tant biomarker for assessing the level of the inflammatory response [125]) and caspase-3,
proliferating cell nuclear antigen (PCNA)-expressing cells. The concentration of interleukin-
1b increased more than 4 times, and the number of cells expressing caspase-3 increased
by 2.3 times. In addition, the number of PCNA-expressing cells increased by 1.6 times.
Eventually, the spleen swelled, and the weight increased from 0.68 ± 0.26 g to 0.87 ± 0.29.
Since this study is a short-term study that evaluates toxicity with a single dose, additional
long-term toxicity studies are required.

For further applications, developments, and clinical use, the safety of CNTs would
be established carefully. Various studies have been conducted to eliminate the toxicity
of CNTs. A method to reduce toxicity through modification of CNT with PEG has been
proposed [126]. PEG is a biocompatible polymer, and PEG is already widely used in other
drugs, diseases, and various fields [127]. Researchers modified PEG on CNT (pegylated
CNTs) and looked at their toxicity in the liver [126]. Single-walled CNTs (SWCNTs) and
PEG-SWCNTs were examined and both CNT were retained in the liver for more than
4 months. However, there was no statistically significant change in body weight and blood
pressure between the control and CNT-treated groups. The serological tests and biochemical
inflammatory factors levels in the CNT-treated group support that PEG-SWCNT are not
toxic material for the body. Many studies have been conducted to reduce the toxicity
in vivo application of CNTs through many approaches such as not only pegylation but
also hydroxylation [128], carboxylation [129], amination [130], surface coating [131], and
antibody binding [132]. Liu Z et al. compared the cytotoxicity of hydroxylated multi-
walled carbon nanotubes (MWCNTs–OH) on L02 cells for 24, 48, and 72 h with pristine
multi-walled carbon nanotubes [128]. They also measured the mitochondrial membrane
potential in L02 cells. Furthermore, the effects of MWCNTs-OH on the activation of
caspase-3 and caspase-9 (which have distinct roles during intrinsic apoptosis [133]) in
L02 cells for detailed examination of the apoptosis process were also assessed. They
discovered that MWCNTs–OH triggered a significantly milder cytotoxic response than
that of pristine multi-walled carbon nanotubes. The results further showed that such
an attenuated response could be attributed to a reduced disruption of the mitochondrial
membrane potential. MWCNTs–OH also leads to the attenuation of both cytochrome
c release from mitochondria to cytoplasm and activation of caspases-3 and caspases-9.
These results show that CNTs whose surface has been modified with hydroxyl groups
have statistically significantly lower toxicity to cells than pristine multi-walled carbon
nanotubes. This means that, as the previous results showed, CNTs whose surface was
modified with hydroxyl groups are less likely to disrupt the mitochondrial surface and
cause less apoptosis. Sweeney S et al. investigated the physicochemical characteristics and
toxicity of two MWCNT materials: acid purified ‘Purified-MWCNT’ and concentrated acid
functionalized ‘COOH-MWCNT’ [129]. Purified-MWCNT were significantly more toxic as
measured by reduced alveolar macrophage viability and increased inflammatory mediator
releases such as IL-1β and IL-8. Those cytokines were released 3.5- and 2.4-fold more
respectively by alveolar macrophages after 24 h of purified-MWCNT treatment. In contrast,
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those cytokines released by alveolar macrophages did not significantly change after 24 h
of COOH-MWCNT treatment. Therefore, the secretion of inflammatory cytokines does
not increase significantly because COOH-MWCNTs do not vigorously stimulate alveolar
macrophages and are relatively less recognized as toxic substances by alveolar macrophages.
This result means that COOH-MWCNTs are less toxic than purified-MWCNTs and that
when applied to the human body, toxicity due to immune response is significantly lower.
For the clinical use of CNTs, it is necessary to consider a method for modifying CNTs that
is appropriate according to the target disease, type of drug, and route of administration.

5. Applications of Carbon Nanotubes as Biosensors
5.1. Carbon Nanotube-Based Sensors for Detection of Cancer
5.1.1. CD44 Expressing Cancer Cell

Recently, cancer stem cells (CSCs) were identified as rare tumor-initiating cell popula-
tions which show self-renewal, pluripotent, and highly tumorigenic which makes them
more resistant to breast cancer treatment. These cells are mainly responsible for breast
cancer recurrence since even though most of the cells were killed by therapy, still few CSCs
can regenerate tumors. Notably, CSCs are isolated from various cancer types including
breast, brain, lung, colon, and skin cancer or melanoma. In particular, the case of breast
cancer CSCs is identified by the presence of characteristic biomarkers namely CD44 and
CD24 as well as one of the enzyme activities (ALDH1). This literature suggests that it is
very important to detect and target the CSCs and their daughter cells responsible for cancer
regeneration to achieve double remission. Al Faraj et al. reported an efficient nanoprobe
based on functionalized cancer nanotubes that can selectively detect breast cancer in the
murine model as shown in Figure 2.
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Figure 2. Biodistribution of Gallium-67-labeled single-walled carbon nanotubes in murine breast
cancer model. (A) SPECT/CT images of tumor-bearing mice after 24 h of injection of either Ga-
SWCNT or Ga-SWCNT + CD44 (right). (B) Quantitative measurement of radioactivity of Ga-SWCNT
or Ga-SWCNT + CD44 at various organs and tumor after dosing at different time points: 2, 24, and
48 h represented as dose per gram of tissue. Image reproduced with permission from [134]. Copyright
2016 Future Medicine Ltd.

In this study, a novel and biocompatible nanoprobe was developed to selectively target
the CSCs cells responsible for the regeneration of breast cancer while allowing to monitor
the biodistribution of a probe with noninvasive imaging techniques after I.V administration
of a carbon nanotube-based nanoprobe. To construct the nanoprobe, PEG-conjugated
SWCNTs were functionalized with anti-CD44 antibody capable of CSCs detection at the
breast cancer tumor site. This probe allowed to monitor biodistribution with various
non-invasive modalities such as MRI/SPECT/NIR fluorescence imaging.

5.1.2. EpCAM Expressing Cancer Cell

Epithelial cell adhesion/activating molecule abbreviated as EpCAM is the first tumor-
associated antigen and currently it is considered as the most intensely and frequently
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expressed tumor-associated antigen. It is found to be expressed in a great variety of cancer
types and it can be utilized as a biosensor application. Circulating tumor cells (CTCs)
can also express EpCAM antigen and a nanoprobe or sensor can be developed to study
the presence of these biomarkers on cancer cells by using anti-EpCAM antibody. Neoh
et al. developed a CNT chip containing promising microfluidic technology for the effective
capture and release of the CTCs. This technique allowed to perform downstream analysis
of CTCs such as molecular and functional analyses as shown in Figure 3. Researchers
successfully developed a chip platform with the ability to not only capture the CTSs but
also release them in a pH-responsive manner with higher sensitivity. This platform was
tested for the clinical samples for the optimization of a device in order to maximize the
cell capture and release efficiency, viability as well as application of this technology for
single-cell molecular profiling and in vitro culture. Since EpCAM is a widely expressed
antigen by various cancer cells, this platform could be generalized for different types of
CTCs capture and detailed analysis.
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Figure 3. (a) Functionalization and fabrication of CNTs chip. In order to fabricate the chip CNT film
was allowed to adsorb on the glass substrate followed by sealing with PDMS cover. Biotin-PLL was
attached to the CNT film via Pi and hydrophobic interaction. (b) Schematic illustration showing
the release mechanism of captured CTCs. There will be deprotonation of positively charged amino
groups causing the conformational changes in the PLL structure of random coil to alfa-helix resulting
in cancellation of interaction between PLL and CNTs releasing the captured CTCs. Image reproduced
with permission from [135]. Copyright 2022 American Chemical Society.

5.1.3. CA19-9 Expressing Cancer Cell

Carbohydrate antigen 19-9 (CA 19-9) is a cell protein glycoprotein also known as
Sialyl Lewis-a produced by ductal cells in the pancreas, salivary gland, biliary system, and
epithelial cells in the stomach and colon. It is the most used biomarker for the diagnosis
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and management of prognosticating pancreatic ductal adenocarcinoma (PDAC) [136]. Its
widespread expression in several tumor cells makes it useful for the diagnosis of other
tumor types apart from its historical use in the case of PDAC. Considering its diagnostic
potential Thapa et al. developed a highly sensitive biosensor to detect the pancreatic cancer
biomarker CA19-9. This developed biosensor based on nanomaterials promises cheaper,
faster, and more efficient early diagnosis of pancreatic cancer as compared to traditional
bulky devices. To fabricate the device, MWCNTs with functionalized anti-CA19-9 antibody
were utilized. As shown in Figure 4, a concentric bundle of carbon nanotubes to construct
the thin film was used to make the sensing part of the biosensor device. Functional carboxyl
groups on the surface of functionalized CNTs act as antibody attachment sites. MWCNTs
are particularly important for immunosensors since they can provide a large number of
sites for antibody binding in the active layer of the sensor.
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Figure 4. Using CNTs and PEI layer-by-layer (LbL) assembly was constructed on gold surface to
fabricate the thin film. Carboxylic acid groups on the CNT surface were activated using EDC-NHS
reagents to attach the anti-CA19-9 antibodies. Right side image shows the antibody–antigen reaction.
Image reproduced with permission from [137]. Copyright 2017 American Chemical Society.

In this study, a sensitive biosensor based on impedance spectroscopy was designed
and the selectivity of the biosensor towards the CA19-9 was confirmed by checking various
other biological samples containing glucose, ascorbic acid, and antigen p53. To check the
selectivity between samples with and without CA19-9 biomarkers, a multidimensional
projection technique along with computer software was used. This biosensor showed
promising results in terms of predicting the pancreatic cancer probability among various
blood samples from patients.

5.1.4. VEGF Expressing Cancer Cell

Vascular endothelial growth factor (VEGF) is considered a main angiogenic factor in
the case of many malignant tumors. VEGF acts by specific effects by stimulating cell growth
and migration as well as increasing vascular permeability. It is a promising biomarker,
especially in the case of the prognosis of cancer cells [138]. Electrochemical aptasensors
are promising agents due to their advantages of being cheaper and the possibility to have
quantitative analysis. Park et al. [139] developed a stable and sensitive sensor based on
polyaniline (PANI) and carbon nanotube (CNT) nanocomposites which uses anti-VEGF
antibody to detect cancer cells as shown in Figure 5.
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duced with permission from [139].

Recently, aptamers have emerged as sensor agents due to their higher binding ability
and stability. Aptamers are either artificial oligo-nucleic acid or peptide molecules that act
as single-stranded DNA (ssDNA) or RNA. Aptamers are considered “artificial antibodies”
which can replace animal-derived antibodies and have the advantage of being easy to
synthesize, low cost, and stable as compared to animal-derived antibodies. PANI is an
attractive conducting polymer with great potential to use in sensor applications when
combined with nanomaterials such as CNTs. Combining the PANI with CNTs helps to
increase the surface-to-volume ratio. Additionally, this composite of PANI/CNT can
provide higher sensitivity as well as minimizes the signal intensity by providing the direct
path for transportation of charge. This composite has assured potential to be used in a
flexible device due to the polymeric nature of the PANI.

5.1.5. MUC−1 Expressing Cancer Cell

A broad range of human epithelia express mucin 1 (MUC−1) including gastric, colorec-
tal, and lung cells. Overexpressed MUC−1 is related to various cancers such as stomach,
lung, and breast cancer. The exact detection of MUC−1 is very crucial for the early de-
tection of cancer cells. Aptamers can be used to detect MUC−1 overexpression at greater
sensitivity and stability while combined with carbon nanotubes. Rashid et al. fabricated a
nanosensor for the detection of MUC−1 expression on cancer cells as shown in Figure 6.
In this study, they tried to explore the advantages of aptamer combined with the CNTs to
fabricate the nanoprobe. Additionally, dopamine was used to enhance the sensitivity of
the nanoprobe because of its hydrophilic nature along with electron donors with variable
redox properties. The inclusion of DA resulted in the generation of a signal amplification
probe. As shown in Figure 5, in order to construct the nanoprobe, DA was linked to the
MWCNTs using its carboxylic group, and MUC−1 was linked to MWCNTs with the help
of an amine group. This probe was integrated with an electrode to form the competitive
electrochemical immunosensor. In the case of ultrasensitive immunosensors, nanomaterials
are incorporated to serve as an electro-active label or as a substrate to immobilize electro-
active agents. MWCNTs are considered an important nanomaterial to increase the electron
transfer rate. Additionally, due their intrinsic electrical and electrochemical properties, they
are highly promising in sensing strategies.
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Figure 6. (A) Schematic illustration of the nanoprobe fabrication steps. (B) Working electrode
modification along with immunosensor principle based on direct competitive electrochemical sensor
for MUC−1 detection. Several steps are involved: (1) Electro oxidative grafting of gelatin on electrode;
(2) MUC−1 antibody binding with EDC/NHS; (3) attaching nanoprobe with modified electrode;
(4) decrease in signal after free MUC−1 replaced nanoprobe in a competitive assay. Image reproduced
with permission from [140]. Copyright 2020 Elsevier.

Combining the Ag or DA along with fMWCNTs offered an advantage of higher
sensitivity over the reported electro-active labels. Modification of carbon nanotubes with
compatible polymers helped to reduce toxicity and biological damage. These modifications
provided an ideal and conducive platform because of the amino-carboxyl surface chemistry
of gelatin and fMWCNTs. This type of immonosensor can be easily adapted for the clinical
diagnosis of various cancer types by changing the aptamer or conjugates antibody for the
detection of biomarkers. Immunosensors based on nanomaterials could be useful for the
early detection as well as monitoring of the disease progression. Table 1 shows a summary
of CNTs and their derivatives as biosensors for cancer detection.

Table 1. Summarization of CNTs and their derivatives as biosensors for cancer detection.

Functionalization of CNTs Sizes Diagnosis Methods Type of Cancer Ref.

PEG-conjugated SWCNT
functionalized with anti-CD44

antibody
1–2/200 nm MRI/SPECT/NIR fluorescence

imaging with nanoprobe
Breast cancer stem cells by
monitoring iron content. [134]

High-purity CNT films with gold
nanoparticles (AuNPs) Thin film layer Field-effect transistor (FET)

biosensor

Breast cancer based on
detection of exosomal

miRNA (miR-FET)
[141]

CNT chip coated with thin film
with anti-EpCAM antibody

CNT film
(10 mm × 10 mm)

pH responsive CNT film based
microfluidic device capturing

EpCAM expressing CTC

Various EpCAM-expressing
circulating tumor cells

(CTCs)
[135]

Functionalized multi-walled
carbon nanotubes (MWCNTs) with

anti-CA19-9 antibody
-

PEI-CNT film immobilized with
antibodies (anti-CA19-9) was studied

using the PM-IRRAS technique

Colon cancer cells (HT-29)
expressing CA19-9 [137]
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Table 1. Cont.

Functionalization of CNTs Sizes Diagnosis Methods Type of Cancer Ref.

Hyaluronic acid (HA)-conjugated
MWCNTs with anti-CD44

antibody

ITO substrate with
standard size

[7.5 (width) × 25 (height)
mm]

Ligand–protein recognition
[hyaluronic acid (HA)-CD44] assay.
Electrochemistry can convert target

analytes into the signal output.

Lung and breast cancer cells
expressing CD44 [142]

Nanocomposite containing
polyaniline (PANI) and CNT with
anti-VEGF RNA aptamer on tumor

cells.

CNTs diameter 1.5 nm and
length = 1–5 µm)

VEGF detection by electrochemical
sensor using RNA aptamer on

screen-printed carbon electrode
(SPCE)

VEGF-expressing cancer
cells [139]

Photo-luminescent SWCNTs
engineered to respond metastatic
prostate cancer biomarker (uPA).

-
Act by modulating the optical

bandgap upon interaction with
analyte

Metastatic prostate cancer
biomarker (uPA)-expressing

cell line
[143]

DNA/RGD-peptide/SWCNTS as
nIR labels Length 350 nm

ssDNA-peptide non-covalently
adsorbed on SWCNTs and recognize
cell surface receptors like integrins.

Integrin receptor-expressing
cancer cells [144]

DA-coated MUC1-functionalized
MWCNTs

MWCNTs (diameter: 4–5
nm, length: 0.5–1.5 µm)

Electrochemical immunosensor
based on dopamine coated MUC1

functionalized multi-walled carbon
nanotubes sensing MUC1 biomarker

MUC1-expressing cancer
cells [140]

Enzyme aggregate-conjugated
CNTs. -

Emitted chemiluminescence by
nanosensor catalyzed substrates will

be detected in different time
windows

Hepatocellular carcinoma [145]

5.2. Carbon Nanotube-Based Sensors for Detection of Diabetes

Two primary approaches are used while incorporating nanotechnology for glucose
sensing applications. In the first approach, sensors can be designed by using micro or
macroscopic components while incorporating nanomaterials in the sensing device. These
nanomaterials in the sensor design offer several advantages such as higher surface area
and enhanced catalytic activity. In the case of the second approach, nanofabrication can
generate nanoscale sensors for glucose sensing. These sensors have some advantages such
as offering continuous monitoring and avoiding foreign body responses of the immune
system resulting in a longer life as compared to traditional sensors. In the case of diabetes,
CNTs incorporation is heavily investigated as enzymatic electrode detection of glucose
due to the electron transfer ability of the CNT and their surface areas [146]. CNT-based
electrochemical biosensors immensely helped with glucose sensing. Both single-walled
CNTs as well as multi-walled CNTs have been explored as a nanomaterial for the detection
of glucose. Functionalization of MWCNTs is less complex as compared to the SWCNTs
since GOx could be directly adsorbed on the surface of MWCNTs as compared to the
SWCNTs where a covalent linkage is required. It is possible to fabricate the best-performing
glucose sensing devices when they are combined with the other nanomaterials [147].

Enzymatic sensors are based on the use of enzymes for the conversion of an electro-
inactive substrate into an electro-active product such as the use of glucose oxidase enzyme
on a platinum electrode. On the other hand, non-enzymatic glucose sensors are based on
the direct electrochemical oxidation of glucose. Most of the researchers focused on the
development of enzymatic electrochemical sensors using glucose oxidase, but recently,
non-enzymatic sensors using direct electrochemistry of glucose on noble metals are com-
ing forward as next-generation glucose sensing technology [148]. Here are examples of
enzymatic and non-enzymatic sensors fabricated to enhance the ultrasensitive detection
of glucose. Researchers tried to use carbon nanotubes to either modify the sensitivity of
enzyme-based sensors that are prone to temperature-based degradation or used an alter-
native non-enzymatic sensing strategy by combining the carbon nanotubes in the device
fabrications. Additionally, we have presented a tabular form of CNT-based enzymatic and
non-enzymatic biosensors (Table 2).
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Table 2. Summarization of CNT-based enzymatic and non-enzymatic biosensors.

Methods Analytes Limit of Detection Detection Range Ref.

Enzymatic

Lactate Not reported 5–20 nM [149]

Uric acid 9.91 µM 50 to 650 µM [150]

Glucose 0.58 µM 0.8 to 250 µM [151]

Glucose 3 × 10−4 M (1–15) × 10−3 M [152]

Glucose 5 × 10−5 M (0–5) × 10−3 M [153]

Glucose 2.99 × 10−6 M (3–14) × 10−3 M [154]

Ethanol 1 × 10−5 M (1–5) × 10−4 M [155]

Urease 67 µM 1.0–25.0 mM [156]

Alcohol dehydrogenase 10 µM 0.1 to 0.5 µM [152]

Choline 0.6 µM 3–120 µM [157]

Non-enzymatic

Pyruvic acid 0.048 µM 0.1–200 µM [158]

Human epidermal growth factor receptor 2 7400 pg/mL 10–110 ng mL−1 [159]

Cholesterol 0.5 nM 0.001–3 µM [160]

glucose 500 nM 2–19,600 µM [161]

Zearalenone 0.15 pg mL−1 0.001–0.1 [162]

Long non-coding RNAs 42.8 fM 10−14–10−7 M [163]

MicroRNA 21 0.01 fM 10−17–10−6 M [164]

Thrombin 0.08 pM 0.001–4 nM [165]

Human epidermal growth factor receptor 2 50 fg mL−1 0.1 pg mL−1–1 ng mL−1 [166]

Cardiac troponin T 0.04 pg mL−1 0.1–8 pg mL−1 [167]

Urea 4.7 nM 0.066–20,600 µM [168]

Ascorbic acid 0.85 nM 0.001–8000 µM [169]

Glucose 645 nM 20–10,500 µM [170]

Glucose 0.33 nM 10–2000 µM [171]

Dopamine 9.5 nM 0.033–1 µM [172]

Potassium ions Not reported 1000–32,000 µM [173]

Hydrogen peroxide Not Reported 5 × 10−6–5 × 10−3 M [174]

MicroRNA 155 3.34 × 10−14 M 1 × 10−13–1 × 10−9 M [175]

Digoxin 7.95 × 10−12 M 2.65 × 10−11–6.8 × 10−10 M [176]

Sequence specific to chronic myelogenous
leukemia 1 fM 10−15–10−6 M [177]

Myeloperoxidase 327 ng mL−1 Not reported [178]

SARS-CoV-2 spike protein 35 mg L−1 Not reported [179]

SARS-CoV-2 spike protein 0.55 fg mL−1 0.0055–5.5 pg mL−1 [180]

Ascorbic acid 76.5 pM 100 pM to 1 mM [181]

5.2.1. SWCNTs Based Nanosensors

The development of a non-invasive, cost-effective, and painless glucose monitoring
system would be very helpful for diabetes patients. Detection of glucose in the saliva can
be an ideal biological fluid providing non-invasive glucose monitoring as well as ease of
sample collection. However, saliva glucose monitoring is considered challenging due to
lower glucose concentration. Even though saliva is the most suitable non-invasive fluid
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and has a better correlation with blood glucose levels, it still needs to employ ultrasen-
sitive glucose-sensing devices. Most of the currently reported glucose sensors based on
GOx have limitations due to intrinsic limitations of enzyme GOx. An alternative can be
the use of non-enzymatic glucose sensors, but they also have several drawbacks mainly
associated with the cost of noble metals which makes these sensors very expensive. Re-
cently, researchers reported that the use of carbon nanotubes (CNTs)/reduced graphene
oxide (rGO) can greatly help for the synergistic improvement in electrochemical properties
along with better analytical performance. Adeniyi et al. [182] prepared a nanohybrid
electrocatalyst-based sensor for the ultrasensitive detection of glucose in saliva. To do
so, they utilized SWCNTs/rGO as an amplification scaffold for the improvement of the
conductivity and electrocatalytic activity of the metallophalocyanines GoPc as shown in
Figure 7. In this glucose sensor, a glassy carbon electrode was modified with the help of a
single-walled carbon nanotube/reduced graphene oxide/cobalt-phthalocyanines nanohy-
brid (GCE-SWCNT/rGO/CoPc) for the non-enzymatic determination of human saliva
glucose. The developed electrode showed promising potential for the development of a
painless, non-invasive, and accurate glucose-sensing device.
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Figure 7. (i, ii) Nanohybrid preparation: SWCNT was modified with reduced graphene oxide
(which was prepared by Improved Hummers Method) and cobalt phthalocyanine. The SEM image
corresponds to SWCNT/rGO/CoPc nanohybrid. (iii) Fabrication of sensing electrodes (glassy carbon
electrode or GCE) by drop-casting method. (iv) Electrochemical oxidation of D-glucose to gluconic
acid. (a) Static chronoamperogram response of GCE-SWCNT/rGO/CoPc with increasing glucose
concentrations from 0 mM to 5.0 mM in 0.10 M NaOH, and (b) the corresponding calibration plot of
steady-state current against concentrations of glucose.. Image reproduced with permission from [182].
Copyright 2021 Elsevier.

5.2.2. MWCNTs Based Nanosensors

Increasing the analytical performance of the sensors is one of the crucial requirements
in the development of glucose sensors, and paper-based microfluidic devices combined
with nanoparticles can be of particular interest. Disposable microfluidic paper-based
devices (µPADs) are a promising new class of point-of-care systems. Paper-based analytical
devices provide unique advantages for ultrasensitive sensing applications such as easy
fabrication, affordable cost, and the ability to drive the flow without additional equipment.
However, they need to add additives, which can interfere with the sensor performances
by possible interaction with the enzyme activity (Figure 8). Figueredo et al. developed a
microfluidic paper-based device with the help of Fe3O4 nanoparticles (MNPs), multi-walled
carbon nanotubes (MWCNTs), and graphene oxide (GO), and the analytical performance
of the device was studied with the help of bienzymatic colorimetric detection. To fabricate



Biosensors 2022, 12, 731 18 of 41

the device, a CO2 laser was used on 20 × 20 cm Whatman #1 filter paper. The laser
was used to create the microfluidic channels and detection zones by cutting the paper.
Microfluidic channels help to conduct the sample and the detection zone helps to create
the color development. Three circular detection zones were created and interconnected by
microfluidic channels. HP office scanner with 600 dpi was used to perform colorimetric
measurements. This modified µPAD showed promising analytical performance allowing
the low concentration visual detection of the glucose. The used modified POC device
showed many advantages such as simple instrumentation, cost-effectiveness, and ease of
operation. Combining the carbon and magnetic nanoparticles could offer greater potential
in bioanalytical applications.
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In the case of electrochemical biosensors, enzymes play important roles to generate
chemical signals by serving as biological recognition molecules. Enzymes show high
thermal sensitivity and display catalytic activity only at an optimum temperature range.
It is reported that enzyme-based biosensors could be temperature sensitive since they are
dependent on strong temperature-dependent catalytic activity. It is important to develop
sensors resistant to a wide temperature range. In this case, phase-changeable materials
can be of particular interest due to their several advantages such as high-energy storage
density, simple design, affordable cost, and great heat delivery capacity with controllable
temperature. However, they cannot be used because of some drawbacks such as leakage,
low thermal conductance, corrosiveness, and higher supercooling. Another study recently
published by Sun et al. [184] developed an intelligent biosensor based on functionalized
multi-walled carbon nanotubes (MWCNTs) along with phase change materials (PCMs). To
overcome the drawbacks associated with PCMs, microencapsulation can be a promising
strategy as reported in this study. This study demonstrated the thermal self-regulatory
biosensor with the help of CNTs and PCMs for the detection of glucose sensing in a high-
temperature environment. They developed a microcapsule system with PCMs as the core
and CNT/SiO2 as the shell and used it to modify glassy carbon electrodes along with GOx.
Such a system with the conjunction of GOx with the CNTs interface results in an effective
conveyor belt to receive the electrons from the cofactor FAD (flavin adenine dinucleotide)
in GOx.

5.3. Carbon Nanotube for Biological Components Detection

The detection of biological components is very important in biology, clinical science,
and in hospitals facing real patients. In particular, it can make an early diagnosis of the
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disease, thereby allowing the patient to receive a faster and more correct response to the
disease [185]. This is closely related to the quality of life of patients. However, even if the
patient has a specific disease, if the biological component cannot be detected or not, the
patient’s life will be very difficult and painful, the treatment cost will increase significantly,
and a cure cannot be guaranteed. In fact, many patients around the world suffer from
misdiagnosis and late diagnosis [186]. In order to fundamentally solve these problems, it is
urgent and very important to develop materials, devices, and equipment that can detect
biological components with high performance and high sensitivity.

CNTs have also been studied for use in the detection of biological components. CNTs
have many advantages in the detection of various components due to their unique physical
properties, such as large surface area [187], tubular three-dimensional structure [188], and
the possibility of multiple modifications [189]. Here, we introduce studies of CNTs for
the detection of biological components. Recently, much research has been conducted to
develop a sensor that detects glucose using CNTs. The detection of glucose in the serum is
very important to mankind and has been performed for a long time. Measurement of blood
glucose levels, especially in diabetic patients, is indispensable that must be performed daily
and frequently. Scientific, patient-friendly, and modern blood glucose level measurement
began with Clinistix developed by Kohn in 1957 [190], and Dextrostix developed by Ernie
Adams in 1965 [191]. In a recent glucose detection study, a biosensor using ZnFe2O4, CNT,
and glucose oxidase was developed [151]. Briefly, ZnFe2O4 was conjugated with CNT by a
one-step solvothermal approach using acid-treated CNT as a precursor. Glucose oxidase
(GOD) was linked to ZnFe2O4-conjugated CNT by coupling reaction between the amine
group and carboxyl group (ZnFe2O4-CNT-GOD). When glucose is added to ZnFe2O4-CNT-
GOD, glucose is oxidized by GOD. In this process, the intermediate product, hydrogen
peroxide, oxidizes the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate and is eventually
visualized in blue. In this process, ZnFe2O4 acts as a peroxidase and not only accelerates
the overall reaction but also increases the intensity of the detected signal (Figure 9).
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ZnFe2O4-CNT-GOD has a glucose detection range of 0.8 to 250 µM with a detection
limit of 0.58 µM. ZnFe2O4-CNT-GOD did not react with lactose, maltose, fructose, sucrose,
uric acid, dopamine, cystine, albumin, and ascorbic acid, so there was no component
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detection, but only a glucose-specific reaction occurred. In addition, the ZnFe2O4-CNT-
GOD showed only a negligible change in the detection sensitivity of glucose even in
the presence of 100 µM of copper, zinc, potassium, calcium, and iron ions. The authors
report that the fabrication method of ZnFe2O4-CNT-GOD is simple, maintains the sensing
activity for at least 20 days, and can be reused at least five times. Wang C et al. reported
enzyme-functionalized CNTs and their application in glucose and Fe2+ detection [192].
Briefly, CNT was modified with carboxylation for functionalization. Later, carboxylated
CNTs were covalently conjugated with GOD and/or horseradish peroxidase (HRP) (CNT-
HRP-GOD). CNT-HRP-GOD detects glucose through the chain reaction between glucose,
GOD, and HRP. In this process, the intermediate product, hydrogen peroxide, oxidizes the
3,3′,5,5′-tetramethylbenzidine (TMB) substrate and results in the production of colorimetric
products (blue). Fe2+ reacts with hydrogen peroxide and leads to a lower concentration
of hydrogen peroxide, which in turn decreases the oxidation state of TMB and eventually
causes a lower colorimetric absorbance of the solution. CNT-HRP-GOD has a glucose and
Fe2+ detection range of 1 to 100 µM with a detection limit of glucose and Fe2+ of 0.3 and
0.22 µM, respectively. CNT-HRP-GOD did not react with other sugars except glucose and
did not react with albumin and ascorbic acid, so it was verified as a biosensor through a
glucose-specific reaction.

Alcohol detection can be applied to a variety of fields, from the quality analysis of
bio-alcohol, which has been actively researched and manufactured recently, to checking the
blood alcohol concentration and analyzing the quality of alcoholic beverages. Wilson, T
et al. reported a CNT-based alcohol biosensor [155]. They modified CNTs using polytyra-
mine (PT) and glassy carbon (GC). PT has been electro-deposited onto MWCNT-modified
GC electrodes via oxidation of tyramine (GC/MWCNT/PT). ADH immobilization for
alcohol detection was improved by the PT layer. The polymeric film was formed on the
electrode surface of MWCNT and it was confirmed using SEM and XPS. In order to detect
alcohol with GC/MWCNT/PT, GC/MWCNT/PT was immersed in 0.05 M of sodium
phosphate buffer (PBS) which contained 1 mg mL−1 of alcohol dehydrogenase (ADH).
The EDC/NHS coupling reaction was performed for one hour for the conjugation of the
two substances (GC/MWCNT/PT/ADH). This alcohol biosensor showed a sensitivity of
4.28 ± 0.06 µA mM−1 cm−2, a regression coefficient of 0.9993, and a response time of 5 s.
Furthermore, it had a 10 µM limit of detection and it almost accurately detected the alcohol
content of commercial alcoholic beverages at a level of recovery of 97.4–102.1%.

Ascorbic acid is one of the water-soluble vitamins, and since L-gulono-γ-lactone oxi-
dase is not present in the body, ascorbic acid must be consumed as a food or nutritional
supplement [193]. A deficiency of this causes scurvy [194]. Ascorbic acid acts as an antioxi-
dant in the body, protecting normal cells from various reactive oxygen species [195] and
helping to maintain the immune system [196]. In addition, it suppresses various inflamma-
tory reactions [197] and aging [198], and helps the elderly to maintain cognitive ability and
memory, thereby helping to prevent Alzheimer’s disease [199]. Zhao, Y et al. reported an
ultra-sensitive biosensor for the voltammetric determination of ascorbic acid (AA) [200].
For the fabrication of CNT-based high-sensitivity ascorbic acid sensors, MWCNTs were
surface modified with glassy carbon electrodes (GCEs), graphene oxide (GO), and gold
nanorods (AuNRs). Since the aggregation of MWCNTs reduces the detection sensitivity of
biological components, prevention of aggregation improves the sensitivity. In this study,
they used GO to prevent the aggregation of MWCNTs. Furthermore, overpotential was
reduced and the peak current of AA oxidation was increased by positively charged AuNRs.
The electrochemical properties of biosensors were investigated by cyclic voltammetry (CV).
Finally, this ascorbic acid biosensor sensitively detected ascorbic acid with low working
potential (0.036 V), low detection limit (0.85 nM), and high sensitivity (7.61 µA µM−1 cm−2).

CNTs can be applied as biosensors for the detection of uric acid and it has already
been proven in several studies [201–203]. Some chronically ill patients have hyperuricemia,
in which there is too much uric acid in the body [204]. It accumulates in the cartilages
and produces tophi and uric acid crystals, which cause great pain to the patient. In
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addition, the accumulation of tophi and uric acid induces an inflammatory response in
the cartilages and causes lasting damage to cartilage and bones [205]. This phenomenon
also entails great pain for the patient. Tophi and uric acid accumulate in the kidneys
as well as in the cartilages, and just as they accumulate in the cartilages, they cause
very severe organ irritation and pain [206]. For the detection of uric acid, Huang B et al.
reported a standing electrochemical sensor based on CNT for the determination of uric
acid [207]. They developed a free-standing electrochemical biosensor. CNT was modified
with 3D graphene foam (GF) and gold nanoparticles (GNPs) for the fabrication of biosensors
(GF/CNTs/GNPs). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV)
were used for the investigation of the electrochemical properties of GF/CNTs/GNPs.
GF/CNTs/GNPs show outstanding electrocatalytic activity toward dopamine and uric
acid. Detection of uric acid with GF/CNTs/GNPs shows remarkable sensitivity of 3.36 µA
µM−1 cm−2, the low detection limits of 33.03 nM (S/N = 3), with a wide linear range of
0.50–60 µM. Furthermore, GF/CNTs/GNPs evaluated the quantification of uric acid with
human urine. GF/CNTs/GNPs show good agreement in the concentration of uric acid
(µM), total found (µM), and recovery (%) with high-performance liquid chromatography
(Figure 10).
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CNT-based biosensors can detect not only single molecules but also protein-based
components. Here, we introduce the detection of biological components for the diagnosis
of Alzheimer’s disease. Amyloid-β accumulates in the brains of people with Alzheimer’s
disease and this phenomenon is a pathological mechanism of Alzheimer’s disease [208].
Amyloid precursor protein is one of the proteins that plays a very important role in regu-
lating the homeostasis of the neuronal system, such as neuronal development and signal
transfer between neurons [209]. However, various precursor protein cleavage products pro-
duced by the cleavage of amyloid precursor protein are very closely related to Alzheimer’s
disease and induce dysfunction of the neuronal system [210]. Oh, J et al. reported a carbon
nanotube (CNT) film-based biosensor with a metal-semiconductor field effect transistor
structure (MESFET) for amyloid-β detection in human serum [211]. Briefly, for the fab-
rication of CNT-MESFET, the top gate was modified by depositing Au (10 nm) only in
the middle of the semiconducting CNT channel. These immobilized antibodies on CNT-
MESFETs were controlled by the antibody-binding proteins. In order to detect HRP used as
the model analyte, anti-HRP antibodies were immobilized on the Au top gate with protein
G or auto-displayed Zdomains of protein A as the antibody-binding protein. CNT-MESFET
exhibited a higher sensitivity than the antibodies immobilized biosensor using a chemical
linker. CNT-MESFET could detect the HRP at levels as low as 1 fg mL−1 in serum. Finally,
they applied the CNT-MESFET to the detection of amyloid-β in human serum. This CNT-
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MESFET could detect the amyloid-β at the level of 1 pg mL−1 in human serum. It can be
applied as a CNT-based biological material detection sensor with very high sensitivity, and
further research is needed to see if it can detect other substances besides amyloid-β.

Thrombin is a protein closely related to blood clotting [212]. During bleeding, platelets
are destroyed, and thromboplastin is released into the plasma, which is activated in the
presence of calcium ions in the blood and becomes thrombin. It catalyzes the reaction of
hydrolysis of soluble fibrinogen in the blood, which is the essence of blood coagulation, into
insoluble fibrin [213]. Therefore, quantitative detection of thrombin in bleeding patients
or patients undergoing surgery can prevent accidents caused by bleeding and judge the
patient’s condition for bleeding more clearly. Su, Z et al. reported an amperometric
thrombin aptamer sensor (aptasensor) as a thrombin biosensor [165]. For the fabrication
of the aptasensor, polyaniline-coated MWCNT was placed on the glassy carbon electrode
(GCE). Later thiolated thrombin-specific aptamers were conjugated with polyaniline by the
thiol-ene reaction. The surface of the aptasensor was coated with bovine serum albumin
to prevent non-specific binding. The modified GCE shows a pair of well-defined redox
peaks (at 50/−25 mV) and the tethered TTA–thrombin interaction shows a decreased
electrochemical signal. Thrombin in spiked human serum (0.2 to 4 nM) was accurately
detected by the aaptasensor and it shows recoveries that ranged from 95 to 102%.

Accurately detecting COVID-19 is very important in the situation of the pandemic.
Early detection and accurate diagnosis of the virus can prevent the spread of coronavirus
infection. In addition, diagnosis of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is crucial for tracking the route of transmission and suitable treatment for
patients in the event of a pandemic [214,215]. Pinals, R et al. introduced an SWCNT-
based optical sensing approach toward this end [179]. SARS-CoV-2 enters the host cell
through binding to the ACE2 receptor [216]. They used ACE2 to fabricate the noncovalently
functionalized SWCNT as a virus sensor since ACE2 has a high binding affinity to the
SARS-CoV-2 spike protein. Biosensor fluorescence was increased (2-fold) in the presence of
the SARS-CoV-2 spike protein. They evaluated biosensor stability and confirmed preserv-
ing sensing responses in saliva and virus delivery media. In addition, it was demonstrated
that the biosensor had a 73% fluorescence-on response within 5 s of exposure to 35 mg L−1

SARS-CoV-2 virus-like particles. The biosensor shows a 100% turn-on response in fluores-
cence upon the addition of 1 µM CoV-2 S spike protein receptor-binding domain (S RBD)
(Figure 11).
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Zamzami, M et al. developed a fast (2–3 min), easy-to-use, low-cost, and quantitative
electrochemical biosensor based on a CNT field-effect transistor (CNT-FET) that allows
digital detection of the SARS-CoV-2 S1 [28]. It can quickly and accurately detect SARS-
CoV-2 S1 antigens in saliva samples. The anti-SARS-CoV-2 S1 was immobilized on a
Si/SiO2 surface by CNT printing for the fabrication of a CNT-FET biosensor. The CNT-FET
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biosensor effectively detected the SARS-CoV-2 S1 antigen in 10 mM ammonium acetate
buffer at concentrations from 0.1 fg mL−1 to 5.0 pg mL−1. The limit of detection (LOD)
of the CNT-FET biosensor was 4.12 fg mL−1. In order to confirm whether the biosensor
can specifically detect only the target antigen, selectivity tests were performed using target
SARS-CoV-2 S1 and non-target SARS-CoV-1 S1 and MERS-CoV S1 antigens. The biosensor
has good detection sensitivity with SARS-CoV-2 S1 antigen. However, it shows no detection
response to SARS-CoV-1 S1 and MERS-CoV S1 antigen. The developed CNT-FET biosensor
was verified to be capable of sensitive, fast, and accurate detection of SARS-CoV-2 S1 in
human saliva (Figure 12).
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5.4. Carbon Nanotube for Bacteria and Virus Detection

As mentioned before, CNTs and their derived structures have excellent physical
properties including electrical conductivity, SERS, FRET, and so on. They can be utilized
as sensing channels to detect bacteria, viruses, virus DNA, etc. [217,218]. Especially, the
need for high-performance virus sensing platforms has increased for well-being and better
human life, so many CNT-based sensing systems have been introduced. For example, Lee
and his co-workers introduced virus DNA detection via an electrical biosensing platform
which is composed of magnetically aligned NPs decorated CNT on the IDE (Figure 13) [219].
In this study, firstly gold and magnetic nanoparticles were modified on the surface of CNT
(Au/MNP-CNT) and they were laid on the Pt-IDE via an external magnetic field. After that,
the thiol-modified probe DNA was immobilized on the Au NP. In this case, Au and CNT
played a role as electrical sensing channels and MNP was the moiety for alignment. Due
to the synergic properties between the three nanomaterials, this sensing platform showed
high sensitivity with a LOD of 8.4 pM for influenza virus DNA and 8.8 pM for norovirus
DNA. Furthermore, it showed high selectivity against mismatched DNA strains. Therefore,
this sensing platform could show excellent sensing performance.
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On the other hand, metallic nanoparticles (NPs)-decorated CNT was also used as a
plasmonic substrate for a plasmonic resonance energy transfer (PRET)-based FL immune
sensing system. In this case, metallic NPs such as gold or silver NPs and CNT possess
plasmonic properties; thus, their hybrid structure-based plasmonic material has synergic
properties. For instance, the plasmonic property of gold NP-decorated CNT (gold-CNT)
assisted in the detection of influenza viruses [220]. In this study, gold-CNT was modified
with influenza virus Ab, so it could capture the target virus and subsequently, fluorescent
quantum dots (QDs)-Ab were added into the mixture and bound with virus-Ab-gold
CNTs, and finally, sandwich structures were induced. As a result, depending on the
concentrations of the target influenza virus, the FL of QD was changed linearly. According
to the results of detection performance, the limit of detection of viruses was estimated
at around 0.1 pg mL−1. Furthermore, the influenza virus from a clinical sample was also
monitored with excellent sensitivity was 50 PFU mL−1 in the range of 50–10,000 PFU mL−1.
It meant that a metal NP-CNT structure-based fluoro-immuno sensing system could be
potentially applied for virus detection.

In another study, CNT could be utilized as a sensing channel to detect the dengue
virus (DENV) via an electrochemical approach. Wasik et al. fabricated a heparin-SWCNT
hybrid structure on the electrode to monitor the dengue virus and the resistance difference
was measured depending on the concentration of the virus [221]. The limit of detection of
this system showed 8 DENV/chip and this system showed excellent selectivity against the
influenza virus. Therefore, a CNT-based electrochemical sensing platform also could be
developed for high-performance biosensors.

On the other hand, some bacteria have caused critical diseases, and they have threat-
ened human life. So, a highly sensitive and selective bacteria sensing system was required,
and several bacteria were also successfully detected by using a CNT-based sensing platform.
For instance, Zhang et al. reported a gold-CNT-based sensing system that could detect
Escherichia coli (E. coli) through an electrochemical approach [222]. Firstly, they fabricated
the gold-CNT/GCE for the sensing channel. Then, the captured Ab was immobilized on
the surface of gold-CNT to monitor the E. coli. The sensing behavior of the gold-CNT-based
sensing system was characterized depending on the amounts of bacteria from 2.0 × 102 to
2.0 × 106 CFU mL−1. This system showed linear response depending on the amount of
E. coli and good sensitivity and selectivity was also proven. Especially, E. coli in sludge was
also successfully detected, thus this system exhibited excellent sensing performance.
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In another study, the detection of E. coli O157:H7 based on an MWCNT electrical
sensing system was introduced by Li and co-workers [223]. In this study, MWCNT was
covered by polystyrene sulfonate (PSS) and the authors produced a PSS-MWCNT-based
layer-by-layer (LBL) structure using poly(ethyleneimine) (PEI) to apply for the electrical
sensing channel. O157:H7 Abs were modified on the surface of MWCNT to capture the
target bacteria. The electrical signal was monitored depending on the concentration of
O157:H7 and a linear response was shown. Interestingly, the authors collected the bacteria
that were captured (O157:H7) by the sensing channel and isolated specific DNA from
the collected O157:H7. Subsequently, the concentration of O157:H7 DNA was estimated
by loop-mediated isothermal amplification (LAMP). Based on the sensing performance
results, the LOD of this system was around 1 PFU mL−1. Therefore, they developed highly
sensitive bacteria detection systems using MWCNT.

E. coli in dairy products were also detected by using CNT and gold NP mixture [224].
In this case, the surface of CNT was modified with target Ab by an EDC/NHS coupling
reaction and horseradish peroxidase (HRP) enzyme at the same time. On the other hand,
gold NPs were coated by poly(amidoamine) dendrimer and specific Ab for E. coli was
attached to the surface of NPs. In this environment, if target bacteria existed in the sample,
these two nanomaterials could be formed as a sandwich structure with bacteria and its
electrochemical sensing signal might be changed. The sensing performance of this system
was tested under a range of 1.0 × 102 to 1.0 × 106 CFU mL−1 and a LOD of around
50 CFU mL−1 was estimated. Therefore, a CNT-based sensing system could be applied to
the bacteria screening platform.

Liu et al. have reported that molecular imprinted TiO2-coated multiwalled carbon
nanotubes (MI-TiO2@CNTs) were fabricated to detect microcystin-LR (MC-LR), a type
of cyanobacterial toxin in water by the photoelectrochemical method. The molecular
imprinted TiO2 showed enhanced detection in comparison to traditional TiO2 and non-
imprinted TiO2. This sensor resulted in a wide linear range from 1.0 pM to 3.0 nM for
the detection of MC-LR. MI-TiO2@CNTs achieved magnificent selectivity towards MC-LR.
Moreover, this promising sensor showed high sensitivity for the detection of MC-LR which
could be a potential candidate for water purification [29].

He and co-workers developed an enzyme-free and dual-signal readout immunosensor
that was used to detect MC-LR while an enzyme-based biosensor with great obstacles
such as instability, sensitivity, temperature, and pH should be considered. Initially, gold
nanoparticle-decorated CNT (AgNP-CNTs) was fabricated for the detection of MC-LR and
secondly, silver nanorods were coated over AgNP-CNTs to detect via dual-signal mode.
These sensors showed the determination of MC-LR in a linear range from 0.005 µg L−1 to
20 µg L−1 with a LOD of 2.8 ng L−1. In terms of reproducibility, high selectivity, and sensi-
tivity, these sensors indicated their promising application in environment monitoring [225].

In another study, Han et al. proposed an MWCNT-based electrochemical biosensor
that was demonstrated to monitor the MC-LR in drinking water supplies. This biosensor
was fabricated in well-aligned and millimeter-long MWCNT arrays by water-assisted CVD.
In addition, monoclonal antibodies were decorated to specify MC-LR toxin detection. A
linear range from 0.05 to 20 µg L−1 was observed for the detection of MC-LR with a LOD
of 1 µg L−1 in drinking water [226]. To reduce the burden of cost-effectiveness and increase
the rapid detection of MC-LR in environmental water, Queiros and co-workers proposed
label-free potentiometric sensors composed of MWCNTs. These sensors were synthesized
by imprinted polymer and polyvinyl chloride membranes. This method was applied
successfully to detect MC-LR with great selectivity and sensitivity. Moreover, this method
benefited with easy production and cost-effectiveness [227].

Cholera is another devastating disease that has taken uncountable lives over the
past few decades. The detection of cholera toxin (CT) was highly required to eradicate
cholera from our lives. Viswanathan et al. proposed a sensitive method to detect CT by
using an electrochemical immunosensor. This immunosensor was composed of potassium
ferrocyanide, ganglioside (GM1)-functionalized liposomes, and monoclonal antibodies on
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the surface of Nafion-supported multi-walled carbon nanotubes. The detection mechanism
was proposed by a sandwich-type assay, where the toxin was first coupled with an anti-CT
antibody and followed by a GM1-functionalized liposome. This sandwich method resulted
in the detection of CT in ultra-trace levels. The detection of CT showed a linear range of
10−14−10−7 g mL−1 with a LOD of 10−16 g of CT [228].

In another study, Palomar et al. proposed an impedimetric immunosensor based on
CNTs to improve sensing performances by increasing electroactive surface areas on CNTs.
These systems were modified with polypyrrole-nitrilotriacetic acid (poly(pyrrole-NTA)) and
Cu (II) complex to produce sensor devices. With great sensitivity and easy reproducibility, the
cholera sensor showed a promising linear detection range from 10−13–10−5 g mL−1 with a
LOD of 10−13 g mL−1, which could be a potential sensing platform to detect cholera in the
environment [229].

Additionally, we have made efforts on CNT-based biosensors on the action of detection
methods (Table 3).

Table 3. CNT-based biosensors on action of detection methods.

Methods Analytes Limit of Detection Detection Range Ref.

Amperometric

Zearalenone 0.15 pg mL−1 0.001–0.1 ng mL−1 [162]

Polyclonal anti-Staphylococcus
aureus 100 CFU mL−1 102–105 CFU mL−1 [230]

Glucose 645 nM 20–10,500 µM [170]

Glucose 0.33 nM 10–2000 µM [171]

Glucose 500 nM 1–1000 µM [231]

Glucose 3 × 10−4 M (1–15) × 10−5 M [152]

Glucose 5 × 10−5 M (0–5) × 10−3 M [153]

Glucose 2.99 × 10−6 M (3–14) × 10−3 M [154]

Glucose 5 µM 8 µM–1.5 mM [232]

Alcohols 3.3 × 10−3 M (12.5–100) × 10−3 M [152]

Ethanol 1 × 10−5 M (1–5) × 10−4 M [155]

Xanthine 1.2 × 10−7 M (2–86) × 10−6 M [233]

Choline 6 × 10−7 M (3–120) × 10−6 M [157]

Nitrite 0.4 µM 1–1000 µM [234]

Urine albumin 4.96 × 10−8 mol L−1 3.3 ng µL−1–3.3 mg µL−1 [235]

Cholesterol 0.1 × 10−3 2–8 × 10−3 M [236]

Fluorescence

Adenosine triphosphate 2.4 × 10−7 M Not Reported [237]

Troponin T 2.5 × 10−9 M Not Reported [238]

Acetic acid 0.05% (v/v) 0.05–3.2% (v/v) [239]

SARS-CoV-2 spike protein 35 mg L−1 Not reported [179]

Hydrogen peroxide Not Reported 5 × 10−6–5 × 10−3 M [174]

MicroRNA 155 3.34 × 10−14 M 1 × 10−13–1 × 10−9 M [175]

Digoxin 7.95 × 10−12 M 2.65 × 10−11–6.8 × 10−10 M [176]
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Table 3. Cont.

Methods Analytes Limit of Detection Detection Range Ref.

Chemiresistive

E. coli O157:H7

105 colony-forming
units (CFU) mL−1

(whole cell);
103 CFU mL−1

(lysates)

103–107 CFU mL−1 [240]

Cardiac myoglobin 1 ng mL−1 1–1000 ng mL−1 [241]

histidine rich protein II (HRP2) 0.97 fg mL−1 10 fg mL−1–10 ng mL−1 [242]

Avian influenza virus (H5N1)
DNA sequence Not Reported 2–200 pM [243]

Microcystin-LR 0.6 pg mL−1 0.001–1 ng mL−1 [244]

Differential
pulse voltammetry
(DPV)

Bisphenol A 4 nM 0.01–0.7 µM [245]

Ascorbic acid 0.85 nM 0.001–8000 µM [169]

Dopamine 1.36 nM 0.1–48 µM [207]

Dopamine 0.87 nM 0.005–100.0 µM [246]

Uric acid 33.03 nM 0.5–60 µM [207]

Anthrax lethal
factor 3.5 fM 10−14–10−10 M [247]

Hepatitis B virus genomic DNA 2.5 fM 10−14–10−8 M [248]

Folic acid
(vitamin B9) 0.095 µmol L−1 0.5–26 µmol L−1 [249]

Matrix metalloproteinase-7
(MMP-7) 6 pg mL−1 1 × 10−2–1 × 103 ng mL−1 [250]

Daunorubicin Tamoxifen 3.0 nM
0.1 µM

0.008–350 µM
0.5–330 µM [251]

Long non-coding RNAs 42.8 fM 10−14–10−7 M [163]

Sequence specific to E. coli 17 × 106 fM Not reported [252]

MicroRNA 21 0.01 fM 10−17–10−6 M [164]

Thrombin 0.08 pM 0.001–4 nM [165]

Methotrexate 70 nM 0.7–100 µM [253]

Staphylococcus aureus 15 CFU mL−1 10–107 CFU mL−1 [254]

Cyclic voltammetry
(CV)

Methotrexate 70 nM 0.7–100 µM [253]

Urea 4.7 nM 0.066–20,600 µM [168]

3-ocatnone 0.3 ppb 0–0.0025% (v/v) [255]

Butanone 0.5 ppb 0–0.055% (v/v) [255]

Carcinoembryonic antigen 8.39 pg mL−1 10 pg mL−1 to 10 ng mL−1 [256]

Semicarbazide 0.025 ng mL−1 0.04–7.6 ng mL−1 [257]

Escherichia coli 50 CFU mL−1 102−109 CFU of UPEC mL−1 [258]

Dopamine 9.5 nM 0.033–1 µM [172]
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Table 3. Cont.

Methods Analytes Limit of Detection Detection Range Ref.

Impedance
spectroscopy

Human epidermal growth factor
receptor 2 7400 pg mL−1 10–110 ng mL−1 [159]

CA19-9 0.35 U mL−1 Not reported [137]

Prostate-specific antigen 0.48 pg mL−1 1–10,000 pg mL−1 [259]

Sequence specific to chronic
myelogenous leukaemia 1 fM 10−15–10−6 M [177]

2,4-dichlorophenoxy acetic acid 0.3 ppb 1–100 ppb [260]

Transistor

SARS-CoV-2 spike
protein 0.55 fg mL−1 0.0055–5.5 pg mL−1 [180]

SARS-CoV-2
nucleocapsid protein 0.016 fg mL−1 0.016–16 pg mL−1 [180]

Microcystin-LR 0.6 pg mL−1 0.001–1 ng mL−1 [244]

miRNA-15 0.03 fM 0.1 fM–10 nM [261]

SARS-CoV-2 S1 antigen 4.12 fg mL−1 0.1 fg mL−1–5.0 pg mL−1 [28]

Glucose 0.01 mM 0.01–2 mM [262]

influenza A virus DNA 1 pM 1 pM to 10 nM [263]

HIV-1 Tat protein 600 pM 0.2 nM–1µM [264]

cDNA 0.88 µg L−1 1.6 × 10−4–5 µmol L−1 [265]

6. Commercialization of Carbon Nanotube as Sensors

Despite great achievements in CNT-based biosensors, their commercialization is still
under investigation. Over recent years, many efforts have been explored to fabricate
devices with CNTs and utilize them to interact with analytes in controlled ways. The
mechanism of sensing and interaction between CNTs and analytes is complicated and
actively debated for generalization. To avoid non-specific binding (NSB) on CNTs rather
than the analytes of interest, sophisticated methods are being demanded. Some attempts
such as using blocking agents have been investigated to minimize the NSB molecules to
CNTs and sensing activities. Ye et al. reported that using the lipid bilayers can influence the
sensing of transmembrane and signaling phenomena. These methods have gained great
attention to suppress NSB.

Many challenges have arisen towards device fabrication due to having controlled
synthesis of CNTs, and limits for commercialization. Interestingly, some exciting results
showed a hope to produce CNTs in terms of reasonable size and shape. Moreover, the
production of high-performance devices requires a high density of well-aligned CNTs as
the backbone of transportation, while the chirality of CNTs leads to differing device charac-
teristics. Therefore, many strategies such as surface modification and electrical burn-off
of CNTs have been applied to shape more homogeneity. One of the promising strategies
was functionalization on the surface of CNTs, which has been explored to differentiate
and sort them, which raised another obstacle in terms of cost-effectiveness and separation
techniques [266]. Sophisticated and outstanding development in sciences has enriched the
technology over the years which has resulted in a cost reduction in device production. In-
terestingly, reliable sensor response has been investigated to specific analytes by fabricating
CNTs [267,268]. Furthermore, several outcomes are successfully integrated with CNTs for
commercial devices.

Therefore, for the production and release of new cost-effective electronics onto the
market, research on prolific CNT synthesis processes would be of foremost relevance. The
exploration of CNT toxicity would be one of the obstacles to be surmounted prior to the
large-scale development of CNTs as new sophisticated functional materials in the industry.
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Since these materials are both novel and microscopic, this challenge is accentuated; the
assessment of a material’s toxicity is made more onerous due to the tendency of materials
to exhibit unique behaviors in the nanoscale range as a result of quantum phenomena.
Reviews of the toxicological implications of CNTs are conflicting. According to a pilot
study, when CNTs are injected into the abdominal cavity of mice, within a week they
exhibit asbestos-like pathogenicity on their contact with the lungs, causing granulomas
to develop on the lungs’ mesothelium cells. The toxicity in CNT (thinner than 3 nm
and longer than 20 nm) [269] induces due to their elongated, fiber-like morphology that
mimics asbestos and is governed by the length of the CNTs [270]. However, some studies
that contradict these results claim that CNTs only have a small toxicological impact on
humans. The interaction of SWCNTs with different human cells, especially lung cells, has
been found to exhibit no changes in cellular viability [271]. However, deep and accurate
interaction between CNTs and human cells is required to get practical output in terms of
commercialization of CNTs as biosensors, especially in vivo employment. The challenges
associated with realistic applications of CNTs-based sensors towards integration with
analytical devices and fabrication on an industrial scale. Impurities and defects of CNTs
are to be concerned cautiously as they hamper the original properties of CNTs for their
applications. Importantly, the purification techniques are crucial for large-scale production
to translate into commercialization [272]. Interestingly, the recent advancement in device
fabrication with CNTs has been upgraded as disposable, even single isolated CNTs have
also been integrated into commercialization.

7. Conclusions

Over the years, researchers and scientists have used a diverse range of nanomaterials
such as metal nanoparticles (NPs), metal oxide NPs, nanofibers [273], quantum dots (QDs),
and carbon nanomaterials such as carbon quantum dots [274], graphene, and carbon
nanotubes (CNTs) to fabricate high-performance and sensitive biosensors. CNTs and their
derivatives have gained great attention in the field of advanced functional materials today.
It has been explored in diverse fields from defense to electronics. The field of biomedical
applications has investigated CNTs and their derivatives extensively as potential candidates.
Although the physical and chemical properties are not completely understood, it has been
exploited by the electronics industry over the years. CNTs showed excellent properties
in device fabrications as well as sensing behaviors. CNTs and their derivatives have
been utilized for bio and chemical sensing due to having similar sizes to the analytes
and bio-species. Due to their small size and high aspect ratio, CNTs exhibit unusual
optical, mechanical, electrical, and chemical properties due to their small diameter and
high aspect ratio. Utilizing them, a wide class of sensors is fabricated. It has been shown
that CNTs have improved cell penetration properties and stability, as well as chirality and
diameter-based physicochemical properties. On the account of synthesis, the materials
that are necessary for CNT production are profuse, and they can be crafted with only a
modest amount of raw materials. Further functionalization without damaging the covalent
backbone extends the desired application of CNTs. Although one major drawback of CNT
production is reproducibility, structurally and chemically reproducible batch production
with minimal impurities is an immediate concern. Another two important properties that
distinguish them from other nanomaterials are temperature stability (2800 ◦C in vacuum
and ~750 ◦C in air) and hydrophilicity. While considering the mechanical properties,
extremely high Young’s modulus values (1–1.8 TPa range) allow them to act as an excellent
candidate for probe tips for scanning microscopy. Although some other disadvantages
are always associated with CNTs, namely cellular toxicity, incompatibility with biological
mediums, agglomeration, accumulation, and long-term persistence which require a strong
action for mitigation. Numerous studies on CNTs and their derivatives have reported
their interactions with analytes and their toxicology profiles. However, to allow their
commercialization, there are limits in terms of cost-effectiveness, purity, and high density
of perfect alignment during industrialization. A huge number of studies are conducted on
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biosensors to enable their commercialization. Interestingly, CNTs have been investigated
as biosensors as in vivo devices, while many efforts have been made to minimize their
toxicity profile.

8. Future Perspective

CNTs are one of the most exciting and intriguing materials to the materials sciences
and sensing platforms, particularly biomedical applications. Reducing the burden of
synthesis of CNT-based biosensors, researchers are focusing to avoid the utilization of
enzymes while increasing interest in the fabrication of other materials for CNTs [275]. Some
studies have reported that the combination of CNTs and metals such as Au, Pt, etc., resulted
in a great sensitivity and enhanced LOD. Another concern is how to make thermal stability
and enhance the lifetime of CNT-based biosensors. Moreover, molecular modeling must
be implemented along with experimental investigation in the development of promising
CNT-based biosensors.

The research on CNTs is being redoubled after the coronavirus pandemic in health
services as well as sensing industries. With their great properties, CNTs have found
themselves as potential candidates to overcome their challenges and impact on aspects of
health care as well as the environment.
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