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Study designs: Part 5 – Interventional studies (III)
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Statistics

In this last of  the three pieces on interventional studies, we 
examine some additional aspects of  clinical trials, which are 
crucial to ensure the validity of  their results. These include:

a. Choice of  study outcomes
b. Appropriate sample size
c. Minimizing missing data
d. Appropriate analysis technique

i. Intention-to-treat versus per-protocol analysis
ii. Choice of  statistical test
iii. Adjustment for multiple testing.

e. Complete and unbiased reporting.

CHOICE OF STUDY OUTCOME

The study outcomes are the variables that a research study 
sets out to measure. These should be chosen such that they 
capture the key effects of  the study interventions. Study 
outcomes should be defined a priori (in the protocol; before 
the study commences), should be clinically relevant, should 
be amenable to quick and reliable measurement, should be 
sensitive to the effect of  the study intervention, and should 
address the overall aim of  the study. At times, a study may 
assess a few additional exploratory outcomes, which are 

essentially hypothesis generating, and these hypotheses can 
then form the basis of  future studies.

Most studies will have a single primary outcome 
(corresponding to the primary objective of  the study) and 
a number of  secondary outcomes (corresponding to the 
secondary objectives). For example, the DREAMS study 
compared the efficacy of  dexamethasone versus standard 
therapy for postoperative nausea and vomiting in patients 
undergoing gastrointestinal surgery.[1] The primary outcome 
was the occurrence of  “any episode of  vomiting within 
24 h after surgery.” The study also assessed many secondary 
outcomes, including the number of  episodes of  vomiting, 
the need for anti-emetics, and severity of  nausea and of  
vomiting.

Sometimes, a researcher may choose to study more than 
one (multiple) primary outcomes. Although this may 
provide a more comprehensive assessment of  the effects 
of  the experimental treatment, it carries an increased risk 
of  false-positive results, as discussed in the section below 
on multiple testing. Hence, such studies need more careful 
planning and interpretation.

Several methodological and statistical aspects of clinical trials can affect the robustness of their results. We 
conclude the series of articles on “Interventional Studies” by discussing some of these features.
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The sample size required for a study is calculated based on the 
expected difference in a primary outcome measure between 
the intervention and the control groups. Studies are often not 
sufficiently powered to definitively address the secondary outcomes.

Very often, in addition to the efficacy outcomes, some 
outcomes related to toxicity (e.g., the total number of  
adverse events or the number of  individuals with specific 
adverse events, in each arm) are also included.

Outcomes can be of  different types. Several considerations 
may influence the decision to choose some specific types 
of  outcomes.

Surrogate outcomes
Researchers may choose to measure one or more 
biochemical or radiological parameters (which are often 
easier to measure and show a change over a shorter time 
frame) as substitutes for more direct outcomes - such as 
clinical improvement, improved survival, or reduced risk of  
disease recurrence. These are known as surrogate outcomes. 
For example, to assess the effect of  a new treatment for 
diabetes, one may measure the change in glycosylated 
hemoglobin, although the real interest is the impact of  
experimental treatment on diabetic complications and 
end-organ damage. In prostate cancer, one could measure 
the changes in blood levels of  prostate‑specific antigen 
or tumor shrinkage after therapy; however, again, the real 
interest is in whether the treatment translates into a benefit 
in survival. Other examples include measurement of  CD4 
counts to assess the efficacy of  antiretroviral therapy or of  
lipid levels for that of  statins.

The use of  surrogate outcomes is valid only if  the changes 
in these correlate well with changes in clinical outcomes. 
Their use may sometimes lead to a misleading conclusion. 
Medical literature is replete with examples of  drugs that 
were initially approved for marketing based on benefit 
in surrogate outcomes but were subsequently found to 
worsen clinical outcomes. For example, anti-arrhythmic 
drugs in myocardial infarction (MI) patients were found 
to suppress ventricular premature beats, which are known 
in this situation to be associated with increased mortality. 
Hence, these drugs were, for several years, recommended for 
post-MI patients.[2] However, a subsequent trial showed that 
the use of  these drugs, despite reducing the occurrence of  
premature beats (a surrogate outcome), was not associated 
with a reduction in more complex fatal arrhythmias (the 
desired clinical endpoint) and in fact led to increased 
mortality.[2] Similarly, higher doses of  erythropoietin in 
patients with renal failure improve hematocrit but lead to 
increased cardiovascular thrombotic events and death.[3]

Composite outcomes
Researchers often combine many related outcomes 
into a single outcome measure known as a composite 
endpoint. For example, trials of  cardiovascular diseases 
commonly use major adverse cardiovascular event 
(MACE) as a composite endpoint; this combines any 
myocardial infarction, cerebrovascular event (e.g., 
stroke), and cardiovascular death. Composite endpoints 
increase the total number of  patients who have events 
of  interest, improving the statistical power of  the 
analysis of  study results. However, one should be 
careful to combine only such outcomes that have the 
same biological pathway and are affected similarly by 
the study interventions.

Some considerations for integrating many outcomes into 
a composite endpoint include whether the components 
are of  similar importance, whether they occur with 
somewhat similar frequency, and whether the intervention 
is likely to affect all the components similarly.[4] A 
systematic review of  studies with composite endpoints in 
cardiovascular medicine found that the largest treatment 
effects were seen in the components which were clinically 
less important, thus potentially misleading readers.[5] 
Interestingly, in a trial of  cariporide, a cardiovascular 
drug, the incidence of  composite outcome (death or 
MI) showed a reduction from 20.3% in the placebo 
group to 16.6% in the treatment group; however, a 
closer look showed that though the incidence of  MI had 
declined (from 18.9% to 14.4%), the mortality had in fact 
increased (from 1.5% to 2.2%).[6]

Subjective versus objective outcomes
Objective or “hard” outcomes are those which are 
unambiguous and can be consistently measured by 
different assessors. On the other hand, subjective or “soft” 
outcomes are based on interpretation by the participant 
or assessor and can be associated with measurement bias. 
For example, in the DREAMS study, episodes of  vomiting 
defined as projectile expulsion of  gastric content would be 
a hard endpoint, whereas nausea (as experienced by the 
participant) is a subjective endpoint.[1] Wherever possible, 
one should use objective endpoints, in order to minimize 
bias and improve the validity of  study results. If  subjective 
outcomes have to be used (since patient-reported outcomes 
are important though often subjective), all attempts must 
be made to reduce or eliminate bias, such as using blinding 
techniques (for patients and assessors) and standardized 
validated scales and scores. As an example, the DREAMS 
trial used standard validated scales to measure nausea, 
fatigue, and quality of  life.[1]
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APPROPRIATE SAMPLE SIZE

Research studies begin with a statement of  belief  or a 
hypothesis. For conventional superiority studies, where the 
objective is to compare an experimental treatment (E) with 
standard treatment (S), we start with a null hypothesis – that 
there is no difference between the effects of  treatment S 
and treatment E. The alternate hypothesis states that there 
is a difference between these effects.

Research studies are carried out in subsets (“samples”) from 
the entire universe (“population”) of  individuals to whom 
the research question pertains. For example, to compare 
two drugs for the treatment of  hypertension, ideally, we 
would randomly assign all the individuals with hypertension 
to receive either drug and compare the results. However, 
since this is not practical or feasible, we choose a sample 
of  individuals with hypertension, compare the effects of  
the two anti-hypertensive drugs in them, and extrapolate 
the results to the rest of  the population. In doing so, we 
run the risk of  two types of  errors.

1. Finding a difference between the effects of  treatments 
when a true difference does not exist (i.e., there 
would be no difference if  we could study the entire 
population). This is called a type 1 error or alpha 
error or a false-positive error. In terms of  hypothesis 
testing, this means that we would falsely reject the null 
hypothesis and accept the alternate hypothesis

2. Not finding a difference between the effects of  
treatments when, in fact, a difference exists. This is 
known as a type 2 error or beta error or a false-negative 
error. This means that we falsely accept the null 
hypothesis and reject the alternate hypothesis.

Fortunately, statistical methods allow us to assess the 
likelihood of  these errors. By convention, the upper limit 
of  type 1 error is set at 5%. This means that if  we observe 
a difference between the samples receiving new and the 
standard treatments, and the probability of  this difference 
having occurred by chance is 5% or less, we conclude (with 
95% or greater certainty) that the observed difference is 
a true difference.

In most studies, the type 2 error is set at 10% or 20%. 
This means that even if  there is a true difference between 
the treatments in the population, there is a 10% (or 20%) 
probability that the study will fail to pick up this difference. 
The converse of  beta error is the “power” of  a study, 
which is defined as the ability of  the study to detect a true 
difference in treatment effects (90% or 80%, in the above 
example).

These errors are more likely if  the sample sizes are small. In 
particular, studies with a small sample size have low study 
power and a high risk of  beta error. Thus, if  a study with 
only a few subjects fails to find a difference between two 
treatments, this may reflect a failure to detect a difference 
even if  one existed, rather than a true absence of  difference. 
Hence, it is important to ensure that a study is designed 
to be sufficiently large to have a reasonable power, i.e., to 
have a reasonable likelihood of  picking up a difference if  
one exists.

The formula for the calculation of  the sample size required 
for a clinical trial is based on type 1 and type 2 errors 
that one is willing to accept and the expected difference 
between the treatment effects. The lower the type 1 and 
type 2 errors one permits, the larger is the required sample 
size. One may wish both these errors to be zero; however, 
this would mean an infinite sample size – an impossible 
task. Hence, as indicated above, we conventionally limit 
the acceptable type 1 error to 5% and the type 2 error to 
10% or 20%. As for the treatment effect, if  the expected 
difference in outcomes (or the difference that one wishes 
to detect) between the two groups is smaller or if  the 
outcome measure (on a continuous scale) has a larger 
standard deviation, the required sample size is larger. The 
estimate of  expected difference can be based on previous 
literature, a pilot study or the researcher’s assessment of  
what would be a clinically meaningful yet feasible difference 
between treatments. The calculated sample size is inflated 
by 10%–20% to account for protocol violations and 
losses to follow-up (please see the section on “Minimizing 
missing data” below), so that an adequate final number of  
observations is available for the analysis when the study 
ends.

Researchers are often tempted to use a large expected 
treatment difference to obtain a smaller estimate of  the 
required sample size. However, if  this is not a realistic 
difference, one would run a greater risk of  negative study 
results.

All trial protocols (and reports) should include a detailed 
section on sample size calculation, allowing readers to 
assess whether the assumptions made are valid.

MINIMIZING MISSING DATA

During a trial, there are likely to be protocol deviations or 
violations, and participant losses to follow-up, resulting 
in missing data. This has a negative impact on the validity 
of  the study results. Statisticians have developed methods 
to deal with missing data, such as multiple imputation 
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techniques, best- and worst-case scenarios, and the 
last-observation-carried-forward technique. However, the 
best way of  ensuring the validity of  results is to have as 
complete data as possible. There are no absolute cut-off  
points to define the acceptable level of  missing data – these 
vary with the clinical condition being studied and the 
duration of  follow-up required.

Some ways to improve completeness of  data collection 
include training of  the study personnel to minimize 
protocol violations, keeping the study protocol simple so 
that compliance is better and motivating participants to 
adhere to the protocol.

APPROPRIATE STATISTICAL ANALYSIS

Intention to treat versus per‑protocol analysis
Intention-to-treat analysis refers to the analysis of  
participants in the group to which they were randomized, 
irrespective of  what treatment they received. On the other 
hand, per-protocol analysis refers to the analysis of  only 
those participants who adhered to the protocol. To minimize 
bias, as discussed in a previous article in the journal,[7] 
intention-to-treat analysis should always be reported in 
superiority studies; per-protocol analysis may be reported 
in addition, if  desired.

Choice of statistical test
The choice of  statistical test used for the analysis depends 
on the type of  data, the number of  groups to be compared, 
the objective of  the study, and the study design (paired 
versus unpaired). The use of  an inappropriate test can give 
misleading results. Readers can refer to published articles 
for further details on the different types of  tests and their 
application.[8]

Adjustment for multiple testing
In a previous article, we had discussed how the comparison 
of  several outcomes, interim analyses, or multiple subgroup 
comparisons increases the possibility of  spuriously 
significant results.[9] For such analyses, the validity of  
positive results without examining and correcting for 
multiple comparisons is questionable.

COMPLETE AND UNBIASED REPORTING

The CONSORT statement lists the elements which are 
mandatory for the reporting of  randomized clinical trials.[10] 

This ensures that the readers can better assess the quality of  
a study and hence the validity and applicability of  its results.

It is not uncommon for investigators to compare multiple 
outcomes or to use multiple statistical tests for a particular 
comparison and then cherry-pick the results that show a 
positive impact of  a treatment. This is inappropriate. It 
is important to report the results of  a trial in totality and 
without bias so that readers can assess the validity of  the 
study findings. Mandatory registration of  clinical trials, 
with the investigators being required to specify the primary 
and secondary outcomes before starting a trial, is aimed at 
promoting such behavior.
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